際際滷

際際滷Share a Scribd company logo
Background	
 油
Pas	
 油de	
 油Poisson	
 油is	
 油a	
 油鍖shing	
 油conglomerate	
 油headquartered	
 油in	
 油Montreal,	
 油CN.	
 油	
 油The	
 油
鍖eet	
 油is	
 油located	
 油remotely	
 油in	
 油two	
 油loca?ons,	
 油Halifax,	
 油NS	
 油and	
 油St.	
 油Johns	
 油
Newfoundland.	
 油	
 油The	
 油St.	
 油Johns	
 油鍖eets	
 油primarily	
 油work	
 油the	
 油near	
 油shore	
 油鍖shing	
 油
grounds	
 油of	
 油Nova	
 油Sco?a	
 油and	
 油Newfoundland	
 油within	
 油12	
 油nau?cal	
 油miles	
 油from	
 油
shore.	
 油	
 油The	
 油Halifax	
 油loca?ons,	
 油however,	
 油have	
 油鍖shing	
 油deployments	
 油that	
 油are	
 油
located	
 油much	
 油further	
 油o鍖shore,	
 油and	
 油in	
 油most	
 油cases,	
 油using	
 油U.S.	
 油territorial	
 油waters	
 油
in	
 油the	
 油North	
 油Atlan?c	
 油under	
 油the	
 油CANAM	
 油bilateral	
 油agreements.	
 油	
 油	
 油
The	
 油en?re	
 油crew	
 油of	
 油the	
 油St.	
 油Johns	
 油鍖eet	
 油are	
 油Canadian	
 油residents.	
 油	
 油Hiring	
 油managers	
 油
ensure	
 油that	
 油90%	
 油of	
 油the	
 油deck	
 油hands	
 油working	
 油on	
 油the	
 油Halifax	
 油鍖eet	
 油are	
 油foreign	
 油
workers	
 油as	
 油the	
 油labor	
 油rate	
 油is	
 油signi鍖cantly	
 油lower	
 油and	
 油the	
 油turnover	
 油rate	
 油is	
 油6	
 油?mes	
 油
the	
 油rate	
 油of	
 油St.	
 油Johns	
 油because	
 油the	
 油weather	
 油is	
 油constantly	
 油rough	
 油in	
 油the	
 油North	
 油
Atlan?c	
 油crea?ng	
 油excep?onally	
 油poor	
 油working	
 油condi?ons,	
 油but	
 油paying	
 油well.	
 油
Execu?ve	
 油Summary	
 油
The	
 油hiring	
 油managers	
 油of	
 油Pas	
 油de	
 油Poissen	
 油sought	
 油the	
 油guidance	
 油of	
 油a	
 油consul?ng	
 油
鍖rm	
 油to	
 油determine	
 油which	
 油of	
 油the	
 油na?onality	
 油of	
 油the	
 油foreign	
 油work	
 油force,	
 油entering	
 油
Canada,	
 油would	
 油have	
 油the	
 油highest	
 油probability	
 油that	
 油a	
 油judge	
 油would	
 油approve	
 油their	
 油
appeal	
 油to	
 油remain,	
 油and	
 油subsequently	
 油be	
 油employable	
 油in	
 油the	
 油country.	
 油	
 油	
 油
Establishing	
 油a	
 油model	
 油to	
 油best	
 油determine	
 油which	
 油candidates	
 油to	
 油hire	
 油provided	
 油
excep?onal	
 油cost	
 油saving	
 油opportuni?es.	
 油	
 油In	
 油the	
 油past,	
 油if	
 油the	
 油company	
 油was	
 油
informed	
 油that	
 油one	
 油of	
 油their	
 油new	
 油foreign	
 油na?onal	
 油workers	
 油was	
 油not	
 油granted	
 油an	
 油
appeal,	
 油and	
 油was	
 油ac?vely	
 油on	
 油a	
 油鍖shing	
 油deployment,	
 油at	
 油?mes	
 油las?ng	
 油for	
 油over	
 油45	
 油
days,	
 油the	
 油trawler	
 油was	
 油forced	
 油to	
 油return	
 油to	
 油port.	
 油	
 油A	
 油vessel	
 油having	
 油to	
 油return	
 油
equated	
 油to	
 油missed	
 油opportunis?c	
 油revenue,	
 油as	
 油it	
 油could	
 油no	
 油longer	
 油鍖sh,	
 油and	
 油
unexpected	
 油fuel	
 油expenses	
 油for	
 油return	
 油transit.	
 油	
 油Furthermore,	
 油the	
 油penalty	
 油for	
 油
knowing	
 油employing	
 油an	
 油illegal	
 油foreign	
 油worker	
 油was	
 油harsh	
 油from	
 油both	
 油the	
 油
Canadian	
 油and	
 油U.S	
 油鍖sheries	
 油enforcement	
 油agencies.	
 油
Data	
 油Integrity	
 油
≒ Source:	
 油Ra[le	
 油Library	
 油
≒ Name:	
 油Green:	
 油Refugee	
 油Appeal	
 油
≒ Cleaning	
 油steps	
 油
≒ Used	
 油transform	
 油tag	
 油to	
 油remove	
 油missing	
 油and	
 油ignored	
 油data	
 油a`er	
 油
comparing	
 油the	
 油original	
 油and	
 油cleaned	
 油OOB	
 油error	
 油rates.	
 油	
 油
Addi?onally,	
 油the	
 油categorical	
 油data	
 油judges	
 油was	
 油deemed	
 油to	
 油be	
 油
sta?s?cally	
 油insigni鍖cant	
 油for	
 油our	
 油purposes,	
 油hence	
 油it	
 油was	
 油omi[ed	
 油
thus	
 油increasing	
 油the	
 油integrity	
 油of	
 油the	
 油the	
 油dataset.	
 油
≒ Steps:	
 油	
 油In	
 油order	
 油to	
 油ful鍖ll	
 油the	
 油hiring	
 油strategy	
 油we	
 油targeted	
 油informa?on,	
 油from	
 油
the	
 油data	
 油(using	
 油ra[le,	
 油R	
 油and	
 油excel),	
 油that	
 油would	
 油serve	
 油to	
 油determine	
 油the	
 油
informa?on	
 油necessary	
 油to	
 油depict	
 油future	
 油hires	
 油based	
 油on	
 油the	
 油probability	
 油to	
 油
determine	
 油an	
 油approved	
 油appeal.	
 油	
 油
Forest	
 油Model	
 油
! Imported	
 油the	
 油data	
 油and	
 油Rescaled	
 油	
 油
! Created	
 油a	
 油Forest	
 油model	
 油with	
 油default	
 油op?ons	
 油
! OOB	
 油error	
 油=30.62%	
 油,	
 油Type	
 油1=	
 油16.12	
 油%	
 油and	
 油Type	
 油2	
 油=65.5	
 油%error,	
 油AUC	
 油=	
 油0.644	
 油
! Our	
 油business	
 油requires	
 油more	
 油focus	
 油on	
 油Type	
 油1	
 油error	
 油rather	
 油than	
 油Type	
 油2	
 油error	
 油
! Checked	
 油the	
 油trend	
 油of	
 油errors	
 油and	
 油importance	
 油
! Created	
 油a	
 油sample	
 油of	
 油35,35	
 油
! OOB	
 油es?mate	
 油of	
 油	
 油error	
 油rate:	
 油35.83%,	
 油Type	
 油1	
 油error	
 油rate	
 油=	
 油35.02%,	
 油Type	
 油2	
 油error	
 油rate	
 油=	
 油	
 油
37.77%,	
 油AUC	
 油=	
 油0.653	
 油
! Error	
 油rate	
 油increased,	
 油Type	
 油1	
 油increased-足	
 油not	
 油good	
 油
! No	
 油major	
 油change,	
 油although	
 油type	
 油2	
 油decreased	
 油
! Look	
 油for	
 油a	
 油be[er	
 油one.	
 油Prune	
 油the	
 油trees	
 油at	
 油minimum	
 油complexity	
 油
! Here	
 油tree	
 油=	
 油421	
 油and	
 油complexity	
 油=	
 油0.2913	
 油
! Now,	
 油OOB	
 油es?mate	
 油of	
 油	
 油error	
 油rate:	
 油29.32% 	
 油,	
 油AUC	
 油=	
 油0.646,	
 油Type	
 油1	
 油error	
 油=	
 油14.28571%,	
 油
Type	
 油2	
 油error=	
 油65.55%	
 油	
 油
! Type	
 油2	
 油is	
 油s?ll	
 油large	
 油but	
 油we	
 油are	
 油not	
 油much	
 油concerned	
 油about	
 油that.	
 油
! Best	
 油model	
 油so	
 油far	
 油
Forest	
 油Model	
 油
! Create	
 油Importance	
 油level	
 油of	
 油Type	
 油1,	
 油Type	
 油2	
 油error	
 油rate	
 油by	
 油sampling	
 油data	
 油(35,35)	
 油
! randomForest(formula	
 油=	
 油IMO_decision	
 油~	
 油.,	
 油data	
 油=	
 油crs$dataset[crs$sample,	
 油
c(crs$input,	
 油crs$target)],ntree	
 油=	
 油421,	
 油mtry	
 油=	
 油5,	
 油sampsize	
 油=	
 油c(35,	
 油35),	
 油
importance	
 油=	
 油TRUE,	
 油replace	
 油=	
 油FALSE,	
 油na.ac?on	
 油=	
 油na.rough鍖x)	
 油
! 	
 油OOB	
 油es?mate	
 油of	
 油	
 油error	
 油rate:	
 油36.48%,	
 油Type	
 油1	
 油error	
 油rate	
 油=	
 油36.4	
 油%,	
 油Type	
 油2	
 油error	
 油
rate	
 油=	
 油36.6%	
 油
! OOB	
 油increased	
 油.	
 油Type	
 油1	
 油increased	
 油as	
 油expected	
 油.	
 油Not	
 油a	
 油good	
 油solu?on	
 油 	
 油	
 油
! Our	
 油Best	
 油Solu?on	
 油so	
 油far	
 油is	
 油	
 油	
 油
! 95%	
 油CI:	
 油0.5462-足0.6554	
 油(DeLong)	
 油	
 油
! OOB	
 油es?mate	
 油of	
 油	
 油error	
 油rate:	
 油29.32%,	
 油Type	
 油1	
 油error	
 油rate	
 油=	
 油14.28%,	
 油Type	
 油2	
 油error	
 油
rate	
 油=	
 油65.6	
 油%.	
 油
! Run	
 油the	
 油evalua?on	
 油on	
 油the	
 油test	
 油data	
 油set	
 油to	
 油get	
 油the	
 油鍖nal	
 油result.	
 油
	
 油 	
 油 	
 油 	
 油	
 油
Final	
 油Confusion	
 油Matrix-足	
 油Forest	
 油Model	
 油
Boos?ng	
 油Model	
 油
≒ Run	
 油the	
 油Boos?ng	
 油model	
 油with	
 油default	
 油op?ons	
 油
≒ OOB	
 油es?mate	
 油of	
 油	
 油error	
 油rate:	
 油21.8%	
 油
≒ Type	
 油1	
 油error	
 油rate	
 油is	
 油6.9%,	
 油Type	
 油2	
 油error	
 油rate	
 油is	
 油61.1	
 油%.	
 油Look	
 油for	
 油error	
 油trends	
 油and	
 油importance	
 油of	
 油variables.	
 油
Analysis-足	
 油Success	
 油and	
 油language	
 油are	
 油major	
 油predictors	
 油
≒ Training	
 油Error	
 油is	
 油high	
 油ini?ally,	
 油down	
 油warding	
 油as	
 油number	
 油of	
 油itera?ons	
 油increase.	
 油
≒ Try	
 油to	
 油look	
 油at	
 油the	
 油point	
 油where	
 油error	
 油graph	
 油becomes	
 油constant.	
 油
≒ 1s	
 油as	
 油shown	
 油in	
 油the	
 油graph	
 油depict	
 油the	
 油trend,	
 油but	
 油the	
 油trend	
 油again	
 油is	
 油changing	
 油beyond	
 油itera?on	
 油50.	
 油
≒ Build	
 油more	
 油itera?ons	
 油to	
 油鍖gure	
 油out	
 油the	
 油trend	
 油and	
 油the	
 油point	
 油a`er	
 油which	
 油error	
 油rate	
 油is	
 油constant.	
 油
≒ Analysis-足	
 油Success	
 油and	
 油language	
 油are	
 油major	
 油predictors	
 油
≒ Build	
 油the	
 油model	
 油with	
 油itera?on	
 油=	
 油200	
 油
≒ Analysis-足:	
 油The	
 油trend	
 油seems	
 油clear.	
 油A`er	
 油140	
 油itera?ons,	
 油the	
 油error	
 油rate	
 油graph	
 油becomes	
 油constant.	
 油
≒ Set	
 油the	
 油itera?ons	
 油to	
 油140	
 油and	
 油con?nue	
 油the	
 油boos?ng	
 油model.	
 油
≒ Analysis-足:	
 油OOB	
 油error	
 油is	
 油21.2	
 油%	
 油but	
 油Type	
 油	
 油2	
 油errors	
 油are	
 油very	
 油large.	
 油	
 油
≒ AUC	
 油=68%.	
 油S?ll	
 油room	
 油for	
 油improvement.	
 油Set	
 油the	
 油importance	
 油matrix.	
 油We	
 油need	
 油less	
 油Type	
 油2	
 油error.	
 油
≒ Call:	
 油
ada(IMO_decision	
 油 ~	
 油 .,	
 油 data	
 油 =	
 油 crs$dataset[crs$train,	
 油 c(crs$input,	
 油 	
 油 crs$target)],	
 油 control	
 油 =	
 油
rpart.control(maxdepth	
 油=	
 油30,	
 油cp	
 油=	
 油0.01,	
 油 	
 油minsplit	
 油=	
 油20,	
 油xval	
 油=	
 油10),	
 油parms	
 油=	
 油list(split	
 油=	
 油"informa?on",	
 油 	
 油loss	
 油=	
 油
matrix(c(0,	
 油1,	
 油1.5,	
 油0),	
 油byrow	
 油=	
 油TRUE,	
 油nrow	
 油=	
 油2)),	
 油iter	
 油=	
 油140)	
 油	
 油
Final	
 油Confusion	
 油Matrix-足	
 油Boos?ng	
 油
Model	
 油
≒ 	
 油 	
 油
	
 油 	
 油 	
 油 	
 油	
 油
≒ Analysis-足:	
 油Best	
 油so	
 油far,	
 油although	
 油type	
 油2	
 油error	
 油is	
 油
s?ll	
 油big	
 油 	
 油	
 油
≒ Giving	
 油more	
 油importance	
 油doesnt	
 油help 	
 油 	
 油	
 油
≒ No	
 油major	
 油change	
 油in	
 油ROC.	
 油
Comparison	
 油of	
 油Models	
 油
Forest	
 油Model	
 油 Boos,ng	
 油Model	
 油
Conclusion	
 油
	
 油	
 油	
 油	
 油With	
 油the	
 油best	
 油dataset,	
 油it	
 油shows	
 油that	
 油there	
 油is	
 油a	
 油strong	
 油sta?s?cal	
 油signi鍖cance	
 油that	
 油
Czechoslovakia,	
 油exhibit	
 油1,	
 油is	
 油the	
 油na?on	
 油with	
 油the	
 油highest	
 油probability	
 油of	
 油winning	
 油
appeal	
 油based	
 油on	
 油data	
 油analyzed	
 油in	
 油MS	
 油Excel.	
 油	
 油Furthermore,	
 油exhibit	
 油2	
 油shows	
 油29%	
 油of	
 油
all	
 油applicants	
 油are	
 油denied	
 油their	
 油appeal.	
 油	
 油Of	
 油those	
 油the	
 油Rater,	
 油person	
 油who	
 油determines	
 油
the	
 油merit	
 油of	
 油their	
 油case	
 油going	
 油forward	
 油predicts	
 油with,	
 油an	
 油81%	
 油con鍖dence	
 油rate	
 油that,	
 油
when	
 油he	
 油or	
 油she	
 油predicts	
 油a	
 油appeal	
 油denial,	
 油it	
 油is	
 油the	
 油correct	
 油predic?on,	
 油conversely	
 油
they	
 油are	
 油only	
 油correct	
 油48%	
 油of	
 油the	
 油?me	
 油when	
 油they	
 油predict	
 油an	
 油awarded	
 油appeal	
 油by	
 油the	
 油
judge.	
 油	
 油Finally,	
 油the	
 油data	
 油shows	
 油that	
 油most	
 油applicants	
 油the	
 油seek	
 油an	
 油appeal	
 油have	
 油a	
 油
higher	
 油approval	
 油probability	
 油with	
 油the	
 油courts	
 油in	
 油Montreal	
 油and	
 油not	
 油Toronto.	
 油
	
 油	
 油	
 油	
 油	
 油As	
 油with	
 油the	
 油Appeal	
 油data	
 油(above)	
 油the	
 油same	
 油inferences	
 油can	
 油be	
 油established	
 油with	
 油
individual	
 油Judge	
 油data.	
 油For	
 油the	
 油judges	
 油tree,	
 油exhibit	
 油3,	
 油if	
 油we	
 油assume	
 油that	
 油the	
 油rater	
 油
predicts	
 油success	
 油for	
 油33-足34%	
 油of	
 油claimants,	
 油72%	
 油of	
 油those	
 油posi?ve	
 油predic?ons	
 油are	
 油
cases	
 油that	
 油are	
 油to	
 油be	
 油heard	
 油by	
 油judges	
 油that	
 油ARE	
 油NOT	
 油Heald,	
 油Hugessen,	
 油Iacobucci,	
 油
MacGuigan,	
 油Pra[e,	
 油and	
 油Stone.	
 油We	
 油can	
 油infer	
 油that	
 油Desjardins,	
 油Mahoney,	
 油Marceau,	
 油
and	
 油Urie	
 油ARE	
 油judges	
 油that	
 油will	
 油have	
 油the	
 油highest	
 油probability	
 油of	
 油ruling	
 油posi?ve	
 油on	
 油an	
 油
appeal.	
 油	
 油Therefore,	
 油as	
 油Desjardins	
 油is	
 油from	
 油Montreal	
 油and	
 油rules	
 油favorably	
 油on	
 油
Czechoslovakian	
 油na?onals,	
 油it	
 油would	
 油behoove	
 油the	
 油company	
 油to	
 油create	
 油a	
 油goal	
 油
congruent	
 油strategy	
 油that	
 油favors	
 油those	
 油results.	
 油
Exhibit	
 油1	
 油
Appeal	
 油Rate	
 油by	
 油Na?on	
 油
NATION	
 油 APPROVED	
 油APPEAL	
 油RATE	
 油
CZECHOSLOVAKIA	
 油 73%	
 油
SRI	
 油LANKA	
 油 36%	
 油
EL	
 油SALVADOR	
 油 36%	
 油
ARGENTINA	
 油 25%	
 油
IRAN	
 油 25%	
 油
CHINA	
 油 22%	
 油
BULGARIA	
 油 7%	
 油
Exhibit	
 油2	
 油
Exhibit	
 油3	
 油

More Related Content

Similar to Predictive Modeling using R (20)

205250 crystall ball
205250 crystall ball205250 crystall ball
205250 crystall ball
p6academy
Accurate Campaign Targeting Using Classification - Poster
Accurate Campaign Targeting Using Classification - PosterAccurate Campaign Targeting Using Classification - Poster
Accurate Campaign Targeting Using Classification - Poster
Jieming Wei
Dr. Jim Lowe - Big data and models: Are they really useful in disease managem...
Dr. Jim Lowe - Big data and models: Are they really useful in disease managem...Dr. Jim Lowe - Big data and models: Are they really useful in disease managem...
Dr. Jim Lowe - Big data and models: Are they really useful in disease managem...
John Blue
Mykola Herasymovych: Optimizing Acceptance Threshold in Credit Scoring using ...
Mykola Herasymovych: Optimizing Acceptance Threshold in Credit Scoring using ...Mykola Herasymovych: Optimizing Acceptance Threshold in Credit Scoring using ...
Mykola Herasymovych: Optimizing Acceptance Threshold in Credit Scoring using ...
Eesti Pank
Estimating default risk in fund structures
Estimating default risk in fund structuresEstimating default risk in fund structures
Estimating default risk in fund structures
IFMR
Reduction in customer complaints - Mortgage Industry
Reduction in customer complaints - Mortgage IndustryReduction in customer complaints - Mortgage Industry
Reduction in customer complaints - Mortgage Industry
Pranov Mishra
7. Plan, perform, and evaluate samples for substantive procedures IPPTChap009...
7. Plan, perform, and evaluate samples for substantive procedures IPPTChap009...7. Plan, perform, and evaluate samples for substantive procedures IPPTChap009...
7. Plan, perform, and evaluate samples for substantive procedures IPPTChap009...
55296
Adequacy of sample size in population surveys
Adequacy of sample size in population surveysAdequacy of sample size in population surveys
Adequacy of sample size in population surveys
Parasuram Balasubramanian
Accurate Campaign Targeting Using Classification Algorithms
Accurate Campaign Targeting Using Classification AlgorithmsAccurate Campaign Targeting Using Classification Algorithms
Accurate Campaign Targeting Using Classification Algorithms
Jieming Wei
Risk And Uncertainty Analysis: A Primer for Floodplain Managers
Risk And Uncertainty Analysis:  A Primer for Floodplain ManagersRisk And Uncertainty Analysis:  A Primer for Floodplain Managers
Risk And Uncertainty Analysis: A Primer for Floodplain Managers
Michael DePue
Hypothesis Testing: Proportions (Compare 1:1)
Hypothesis Testing: Proportions (Compare 1:1)Hypothesis Testing: Proportions (Compare 1:1)
Hypothesis Testing: Proportions (Compare 1:1)
Matt Hansen
Estimation of the probability of default : Credit Rish
Estimation of the probability of default : Credit RishEstimation of the probability of default : Credit Rish
Estimation of the probability of default : Credit Rish
Arsalan Qadri
Predictive Analytics, Predicting LIkely Donors and Donation Amounts
Predictive Analytics, Predicting LIkely Donors and Donation AmountsPredictive Analytics, Predicting LIkely Donors and Donation Amounts
Predictive Analytics, Predicting LIkely Donors and Donation Amounts
Michele Vincent
Predicting Likely Donors and Donation Amounts
Predicting Likely Donors and Donation AmountsPredicting Likely Donors and Donation Amounts
Predicting Likely Donors and Donation Amounts
Michele Vincent
Detecting Credit Card Fraud: An AI-driven Approach
Detecting Credit Card Fraud: An AI-driven ApproachDetecting Credit Card Fraud: An AI-driven Approach
Detecting Credit Card Fraud: An AI-driven Approach
Boston Institute of Analytics
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeCredit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Boston Institute of Analytics
Machine Learning Application: Credit Scoring
Machine Learning Application: Credit ScoringMachine Learning Application: Credit Scoring
Machine Learning Application: Credit Scoring
eurosigdoc acm
How to Build Pay Grades and Salary Ranges
How to Build Pay Grades and Salary RangesHow to Build Pay Grades and Salary Ranges
How to Build Pay Grades and Salary Ranges
PayScale, Inc.
BI PPT Finale
BI PPT FinaleBI PPT Finale
BI PPT Finale
Vipul Neema
Understanding Uncertainty.pdf
Understanding Uncertainty.pdfUnderstanding Uncertainty.pdf
Understanding Uncertainty.pdf
MohanadHussien2
205250 crystall ball
205250 crystall ball205250 crystall ball
205250 crystall ball
p6academy
Accurate Campaign Targeting Using Classification - Poster
Accurate Campaign Targeting Using Classification - PosterAccurate Campaign Targeting Using Classification - Poster
Accurate Campaign Targeting Using Classification - Poster
Jieming Wei
Dr. Jim Lowe - Big data and models: Are they really useful in disease managem...
Dr. Jim Lowe - Big data and models: Are they really useful in disease managem...Dr. Jim Lowe - Big data and models: Are they really useful in disease managem...
Dr. Jim Lowe - Big data and models: Are they really useful in disease managem...
John Blue
Mykola Herasymovych: Optimizing Acceptance Threshold in Credit Scoring using ...
Mykola Herasymovych: Optimizing Acceptance Threshold in Credit Scoring using ...Mykola Herasymovych: Optimizing Acceptance Threshold in Credit Scoring using ...
Mykola Herasymovych: Optimizing Acceptance Threshold in Credit Scoring using ...
Eesti Pank
Estimating default risk in fund structures
Estimating default risk in fund structuresEstimating default risk in fund structures
Estimating default risk in fund structures
IFMR
Reduction in customer complaints - Mortgage Industry
Reduction in customer complaints - Mortgage IndustryReduction in customer complaints - Mortgage Industry
Reduction in customer complaints - Mortgage Industry
Pranov Mishra
7. Plan, perform, and evaluate samples for substantive procedures IPPTChap009...
7. Plan, perform, and evaluate samples for substantive procedures IPPTChap009...7. Plan, perform, and evaluate samples for substantive procedures IPPTChap009...
7. Plan, perform, and evaluate samples for substantive procedures IPPTChap009...
55296
Adequacy of sample size in population surveys
Adequacy of sample size in population surveysAdequacy of sample size in population surveys
Adequacy of sample size in population surveys
Parasuram Balasubramanian
Accurate Campaign Targeting Using Classification Algorithms
Accurate Campaign Targeting Using Classification AlgorithmsAccurate Campaign Targeting Using Classification Algorithms
Accurate Campaign Targeting Using Classification Algorithms
Jieming Wei
Risk And Uncertainty Analysis: A Primer for Floodplain Managers
Risk And Uncertainty Analysis:  A Primer for Floodplain ManagersRisk And Uncertainty Analysis:  A Primer for Floodplain Managers
Risk And Uncertainty Analysis: A Primer for Floodplain Managers
Michael DePue
Hypothesis Testing: Proportions (Compare 1:1)
Hypothesis Testing: Proportions (Compare 1:1)Hypothesis Testing: Proportions (Compare 1:1)
Hypothesis Testing: Proportions (Compare 1:1)
Matt Hansen
Estimation of the probability of default : Credit Rish
Estimation of the probability of default : Credit RishEstimation of the probability of default : Credit Rish
Estimation of the probability of default : Credit Rish
Arsalan Qadri
Predictive Analytics, Predicting LIkely Donors and Donation Amounts
Predictive Analytics, Predicting LIkely Donors and Donation AmountsPredictive Analytics, Predicting LIkely Donors and Donation Amounts
Predictive Analytics, Predicting LIkely Donors and Donation Amounts
Michele Vincent
Predicting Likely Donors and Donation Amounts
Predicting Likely Donors and Donation AmountsPredicting Likely Donors and Donation Amounts
Predicting Likely Donors and Donation Amounts
Michele Vincent
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeCredit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Boston Institute of Analytics
Machine Learning Application: Credit Scoring
Machine Learning Application: Credit ScoringMachine Learning Application: Credit Scoring
Machine Learning Application: Credit Scoring
eurosigdoc acm
How to Build Pay Grades and Salary Ranges
How to Build Pay Grades and Salary RangesHow to Build Pay Grades and Salary Ranges
How to Build Pay Grades and Salary Ranges
PayScale, Inc.
BI PPT Finale
BI PPT FinaleBI PPT Finale
BI PPT Finale
Vipul Neema
Understanding Uncertainty.pdf
Understanding Uncertainty.pdfUnderstanding Uncertainty.pdf
Understanding Uncertainty.pdf
MohanadHussien2

Recently uploaded (20)

Satisfaction_Framework_Presentation.pptx
Satisfaction_Framework_Presentation.pptxSatisfaction_Framework_Presentation.pptx
Satisfaction_Framework_Presentation.pptx
nagom47355
Quantitative Presentation_Final.....pptx
Quantitative Presentation_Final.....pptxQuantitative Presentation_Final.....pptx
Quantitative Presentation_Final.....pptx
lenny lopez
How can Competitive Intelligence Platforms benefit a Business?
How can Competitive Intelligence Platforms benefit a Business?How can Competitive Intelligence Platforms benefit a Business?
How can Competitive Intelligence Platforms benefit a Business?
Contify
LITC-Living-in-the-IT-Era-for-CBA-Students.docx
LITC-Living-in-the-IT-Era-for-CBA-Students.docxLITC-Living-in-the-IT-Era-for-CBA-Students.docx
LITC-Living-in-the-IT-Era-for-CBA-Students.docx
JohnMark171
FinanceGPT Labs Whitepaper - Risks of Large Quantitative Models in Financial ...
FinanceGPT Labs Whitepaper - Risks of Large Quantitative Models in Financial ...FinanceGPT Labs Whitepaper - Risks of Large Quantitative Models in Financial ...
FinanceGPT Labs Whitepaper - Risks of Large Quantitative Models in Financial ...
FinanceGPT Labs
Predicting-Training-Needs-with-Machine-Learning.pptx
Predicting-Training-Needs-with-Machine-Learning.pptxPredicting-Training-Needs-with-Machine-Learning.pptx
Predicting-Training-Needs-with-Machine-Learning.pptx
Access Business Management Conferencing International
PLAN_OF_WORK_PPT_BY_ROHIT_BHAIRAM_--2212020201003[1] new.pptx
PLAN_OF_WORK_PPT_BY_ROHIT_BHAIRAM_--2212020201003[1] new.pptxPLAN_OF_WORK_PPT_BY_ROHIT_BHAIRAM_--2212020201003[1] new.pptx
PLAN_OF_WORK_PPT_BY_ROHIT_BHAIRAM_--2212020201003[1] new.pptx
bhairamrohit948
Agile Infinity: When the Customer Is an Abstract Concept
Agile Infinity: When the Customer Is an Abstract ConceptAgile Infinity: When the Customer Is an Abstract Concept
Agile Infinity: When the Customer Is an Abstract Concept
Loic Merckel
Lecture 2-DATABASE MODELS lecture 2.pptx
Lecture 2-DATABASE MODELS lecture 2.pptxLecture 2-DATABASE MODELS lecture 2.pptx
Lecture 2-DATABASE MODELS lecture 2.pptx
elvis24mutura
Drillingis_optimizedusingartificialneural.pptx
Drillingis_optimizedusingartificialneural.pptxDrillingis_optimizedusingartificialneural.pptx
Drillingis_optimizedusingartificialneural.pptx
singhsanjays2107
ARCH 2025: New Mexico Respite Provider Registry
ARCH 2025: New Mexico Respite Provider RegistryARCH 2025: New Mexico Respite Provider Registry
ARCH 2025: New Mexico Respite Provider Registry
Allen Shaw
GLOBAL-GOALS-LOCAL-ACTIONS-The-SDG-Journey-from-Vision-to-Reality.pptx
GLOBAL-GOALS-LOCAL-ACTIONS-The-SDG-Journey-from-Vision-to-Reality.pptxGLOBAL-GOALS-LOCAL-ACTIONS-The-SDG-Journey-from-Vision-to-Reality.pptx
GLOBAL-GOALS-LOCAL-ACTIONS-The-SDG-Journey-from-Vision-to-Reality.pptx
KunalBhadana3
data compression.ppt tree structure vector
data compression.ppt tree structure vectordata compression.ppt tree structure vector
data compression.ppt tree structure vector
vidhyaminnalveeran29
High-Paying Data Analytics Opportunities in Jaipur and Boost Your Career.pdf
High-Paying Data Analytics Opportunities in Jaipur and Boost Your Career.pdfHigh-Paying Data Analytics Opportunities in Jaipur and Boost Your Career.pdf
High-Paying Data Analytics Opportunities in Jaipur and Boost Your Career.pdf
vinay salarite
Reason To Switch to DNNDNNs excel in handling huge volumes of data (e.g., ima...
Reason To Switch to DNNDNNs excel in handling huge volumes of data (e.g., ima...Reason To Switch to DNNDNNs excel in handling huge volumes of data (e.g., ima...
Reason To Switch to DNNDNNs excel in handling huge volumes of data (e.g., ima...
SrideviPcSenthilkuma
ENG8-Q4-MOD2.pdfajxnjdabajbadjbiadbiwdhiwdhwdhiwd
ENG8-Q4-MOD2.pdfajxnjdabajbadjbiadbiwdhiwdhwdhiwdENG8-Q4-MOD2.pdfajxnjdabajbadjbiadbiwdhiwdhwdhiwd
ENG8-Q4-MOD2.pdfajxnjdabajbadjbiadbiwdhiwdhwdhiwd
shekainahrosej
BSCS_IASN21C-24-25-Information-Assurance-and-Security-1 (1).docx
BSCS_IASN21C-24-25-Information-Assurance-and-Security-1 (1).docxBSCS_IASN21C-24-25-Information-Assurance-and-Security-1 (1).docx
BSCS_IASN21C-24-25-Information-Assurance-and-Security-1 (1).docx
JohnMark171
Mastering Data Science with Tutort Academy
Mastering Data Science with Tutort AcademyMastering Data Science with Tutort Academy
Mastering Data Science with Tutort Academy
yashikanigam1
Pr辿sentation did辿e id辿e pour faire un projet
Pr辿sentation did辿e id辿e pour faire un projetPr辿sentation did辿e id辿e pour faire un projet
Pr辿sentation did辿e id辿e pour faire un projet
tahatraval88
chap2_nnejjejehhehehhhhhhhhhehslides.ppt
chap2_nnejjejehhehehhhhhhhhhehslides.pptchap2_nnejjejehhehehhhhhhhhhehslides.ppt
chap2_nnejjejehhehehhhhhhhhhehslides.ppt
Nikhil620181
Satisfaction_Framework_Presentation.pptx
Satisfaction_Framework_Presentation.pptxSatisfaction_Framework_Presentation.pptx
Satisfaction_Framework_Presentation.pptx
nagom47355
Quantitative Presentation_Final.....pptx
Quantitative Presentation_Final.....pptxQuantitative Presentation_Final.....pptx
Quantitative Presentation_Final.....pptx
lenny lopez
How can Competitive Intelligence Platforms benefit a Business?
How can Competitive Intelligence Platforms benefit a Business?How can Competitive Intelligence Platforms benefit a Business?
How can Competitive Intelligence Platforms benefit a Business?
Contify
LITC-Living-in-the-IT-Era-for-CBA-Students.docx
LITC-Living-in-the-IT-Era-for-CBA-Students.docxLITC-Living-in-the-IT-Era-for-CBA-Students.docx
LITC-Living-in-the-IT-Era-for-CBA-Students.docx
JohnMark171
FinanceGPT Labs Whitepaper - Risks of Large Quantitative Models in Financial ...
FinanceGPT Labs Whitepaper - Risks of Large Quantitative Models in Financial ...FinanceGPT Labs Whitepaper - Risks of Large Quantitative Models in Financial ...
FinanceGPT Labs Whitepaper - Risks of Large Quantitative Models in Financial ...
FinanceGPT Labs
PLAN_OF_WORK_PPT_BY_ROHIT_BHAIRAM_--2212020201003[1] new.pptx
PLAN_OF_WORK_PPT_BY_ROHIT_BHAIRAM_--2212020201003[1] new.pptxPLAN_OF_WORK_PPT_BY_ROHIT_BHAIRAM_--2212020201003[1] new.pptx
PLAN_OF_WORK_PPT_BY_ROHIT_BHAIRAM_--2212020201003[1] new.pptx
bhairamrohit948
Agile Infinity: When the Customer Is an Abstract Concept
Agile Infinity: When the Customer Is an Abstract ConceptAgile Infinity: When the Customer Is an Abstract Concept
Agile Infinity: When the Customer Is an Abstract Concept
Loic Merckel
Lecture 2-DATABASE MODELS lecture 2.pptx
Lecture 2-DATABASE MODELS lecture 2.pptxLecture 2-DATABASE MODELS lecture 2.pptx
Lecture 2-DATABASE MODELS lecture 2.pptx
elvis24mutura
Drillingis_optimizedusingartificialneural.pptx
Drillingis_optimizedusingartificialneural.pptxDrillingis_optimizedusingartificialneural.pptx
Drillingis_optimizedusingartificialneural.pptx
singhsanjays2107
ARCH 2025: New Mexico Respite Provider Registry
ARCH 2025: New Mexico Respite Provider RegistryARCH 2025: New Mexico Respite Provider Registry
ARCH 2025: New Mexico Respite Provider Registry
Allen Shaw
GLOBAL-GOALS-LOCAL-ACTIONS-The-SDG-Journey-from-Vision-to-Reality.pptx
GLOBAL-GOALS-LOCAL-ACTIONS-The-SDG-Journey-from-Vision-to-Reality.pptxGLOBAL-GOALS-LOCAL-ACTIONS-The-SDG-Journey-from-Vision-to-Reality.pptx
GLOBAL-GOALS-LOCAL-ACTIONS-The-SDG-Journey-from-Vision-to-Reality.pptx
KunalBhadana3
data compression.ppt tree structure vector
data compression.ppt tree structure vectordata compression.ppt tree structure vector
data compression.ppt tree structure vector
vidhyaminnalveeran29
High-Paying Data Analytics Opportunities in Jaipur and Boost Your Career.pdf
High-Paying Data Analytics Opportunities in Jaipur and Boost Your Career.pdfHigh-Paying Data Analytics Opportunities in Jaipur and Boost Your Career.pdf
High-Paying Data Analytics Opportunities in Jaipur and Boost Your Career.pdf
vinay salarite
Reason To Switch to DNNDNNs excel in handling huge volumes of data (e.g., ima...
Reason To Switch to DNNDNNs excel in handling huge volumes of data (e.g., ima...Reason To Switch to DNNDNNs excel in handling huge volumes of data (e.g., ima...
Reason To Switch to DNNDNNs excel in handling huge volumes of data (e.g., ima...
SrideviPcSenthilkuma
ENG8-Q4-MOD2.pdfajxnjdabajbadjbiadbiwdhiwdhwdhiwd
ENG8-Q4-MOD2.pdfajxnjdabajbadjbiadbiwdhiwdhwdhiwdENG8-Q4-MOD2.pdfajxnjdabajbadjbiadbiwdhiwdhwdhiwd
ENG8-Q4-MOD2.pdfajxnjdabajbadjbiadbiwdhiwdhwdhiwd
shekainahrosej
BSCS_IASN21C-24-25-Information-Assurance-and-Security-1 (1).docx
BSCS_IASN21C-24-25-Information-Assurance-and-Security-1 (1).docxBSCS_IASN21C-24-25-Information-Assurance-and-Security-1 (1).docx
BSCS_IASN21C-24-25-Information-Assurance-and-Security-1 (1).docx
JohnMark171
Mastering Data Science with Tutort Academy
Mastering Data Science with Tutort AcademyMastering Data Science with Tutort Academy
Mastering Data Science with Tutort Academy
yashikanigam1
Pr辿sentation did辿e id辿e pour faire un projet
Pr辿sentation did辿e id辿e pour faire un projetPr辿sentation did辿e id辿e pour faire un projet
Pr辿sentation did辿e id辿e pour faire un projet
tahatraval88
chap2_nnejjejehhehehhhhhhhhhehslides.ppt
chap2_nnejjejehhehehhhhhhhhhehslides.pptchap2_nnejjejehhehehhhhhhhhhehslides.ppt
chap2_nnejjejehhehehhhhhhhhhehslides.ppt
Nikhil620181

Predictive Modeling using R

  • 1. Background 油 Pas 油de 油Poisson 油is 油a 油鍖shing 油conglomerate 油headquartered 油in 油Montreal, 油CN. 油 油The 油 鍖eet 油is 油located 油remotely 油in 油two 油loca?ons, 油Halifax, 油NS 油and 油St. 油Johns 油 Newfoundland. 油 油The 油St. 油Johns 油鍖eets 油primarily 油work 油the 油near 油shore 油鍖shing 油 grounds 油of 油Nova 油Sco?a 油and 油Newfoundland 油within 油12 油nau?cal 油miles 油from 油 shore. 油 油The 油Halifax 油loca?ons, 油however, 油have 油鍖shing 油deployments 油that 油are 油 located 油much 油further 油o鍖shore, 油and 油in 油most 油cases, 油using 油U.S. 油territorial 油waters 油 in 油the 油North 油Atlan?c 油under 油the 油CANAM 油bilateral 油agreements. 油 油 油 The 油en?re 油crew 油of 油the 油St. 油Johns 油鍖eet 油are 油Canadian 油residents. 油 油Hiring 油managers 油 ensure 油that 油90% 油of 油the 油deck 油hands 油working 油on 油the 油Halifax 油鍖eet 油are 油foreign 油 workers 油as 油the 油labor 油rate 油is 油signi鍖cantly 油lower 油and 油the 油turnover 油rate 油is 油6 油?mes 油 the 油rate 油of 油St. 油Johns 油because 油the 油weather 油is 油constantly 油rough 油in 油the 油North 油 Atlan?c 油crea?ng 油excep?onally 油poor 油working 油condi?ons, 油but 油paying 油well. 油
  • 2. Execu?ve 油Summary 油 The 油hiring 油managers 油of 油Pas 油de 油Poissen 油sought 油the 油guidance 油of 油a 油consul?ng 油 鍖rm 油to 油determine 油which 油of 油the 油na?onality 油of 油the 油foreign 油work 油force, 油entering 油 Canada, 油would 油have 油the 油highest 油probability 油that 油a 油judge 油would 油approve 油their 油 appeal 油to 油remain, 油and 油subsequently 油be 油employable 油in 油the 油country. 油 油 油 Establishing 油a 油model 油to 油best 油determine 油which 油candidates 油to 油hire 油provided 油 excep?onal 油cost 油saving 油opportuni?es. 油 油In 油the 油past, 油if 油the 油company 油was 油 informed 油that 油one 油of 油their 油new 油foreign 油na?onal 油workers 油was 油not 油granted 油an 油 appeal, 油and 油was 油ac?vely 油on 油a 油鍖shing 油deployment, 油at 油?mes 油las?ng 油for 油over 油45 油 days, 油the 油trawler 油was 油forced 油to 油return 油to 油port. 油 油A 油vessel 油having 油to 油return 油 equated 油to 油missed 油opportunis?c 油revenue, 油as 油it 油could 油no 油longer 油鍖sh, 油and 油 unexpected 油fuel 油expenses 油for 油return 油transit. 油 油Furthermore, 油the 油penalty 油for 油 knowing 油employing 油an 油illegal 油foreign 油worker 油was 油harsh 油from 油both 油the 油 Canadian 油and 油U.S 油鍖sheries 油enforcement 油agencies. 油
  • 3. Data 油Integrity 油 ≒ Source: 油Ra[le 油Library 油 ≒ Name: 油Green: 油Refugee 油Appeal 油 ≒ Cleaning 油steps 油 ≒ Used 油transform 油tag 油to 油remove 油missing 油and 油ignored 油data 油a`er 油 comparing 油the 油original 油and 油cleaned 油OOB 油error 油rates. 油 油 Addi?onally, 油the 油categorical 油data 油judges 油was 油deemed 油to 油be 油 sta?s?cally 油insigni鍖cant 油for 油our 油purposes, 油hence 油it 油was 油omi[ed 油 thus 油increasing 油the 油integrity 油of 油the 油the 油dataset. 油 ≒ Steps: 油 油In 油order 油to 油ful鍖ll 油the 油hiring 油strategy 油we 油targeted 油informa?on, 油from 油 the 油data 油(using 油ra[le, 油R 油and 油excel), 油that 油would 油serve 油to 油determine 油the 油 informa?on 油necessary 油to 油depict 油future 油hires 油based 油on 油the 油probability 油to 油 determine 油an 油approved 油appeal. 油 油
  • 4. Forest 油Model 油 ! Imported 油the 油data 油and 油Rescaled 油 油 ! Created 油a 油Forest 油model 油with 油default 油op?ons 油 ! OOB 油error 油=30.62% 油, 油Type 油1= 油16.12 油% 油and 油Type 油2 油=65.5 油%error, 油AUC 油= 油0.644 油 ! Our 油business 油requires 油more 油focus 油on 油Type 油1 油error 油rather 油than 油Type 油2 油error 油 ! Checked 油the 油trend 油of 油errors 油and 油importance 油 ! Created 油a 油sample 油of 油35,35 油 ! OOB 油es?mate 油of 油 油error 油rate: 油35.83%, 油Type 油1 油error 油rate 油= 油35.02%, 油Type 油2 油error 油rate 油= 油 油 37.77%, 油AUC 油= 油0.653 油 ! Error 油rate 油increased, 油Type 油1 油increased-足 油not 油good 油 ! No 油major 油change, 油although 油type 油2 油decreased 油 ! Look 油for 油a 油be[er 油one. 油Prune 油the 油trees 油at 油minimum 油complexity 油 ! Here 油tree 油= 油421 油and 油complexity 油= 油0.2913 油 ! Now, 油OOB 油es?mate 油of 油 油error 油rate: 油29.32% 油, 油AUC 油= 油0.646, 油Type 油1 油error 油= 油14.28571%, 油 Type 油2 油error= 油65.55% 油 油 ! Type 油2 油is 油s?ll 油large 油but 油we 油are 油not 油much 油concerned 油about 油that. 油 ! Best 油model 油so 油far 油
  • 5. Forest 油Model 油 ! Create 油Importance 油level 油of 油Type 油1, 油Type 油2 油error 油rate 油by 油sampling 油data 油(35,35) 油 ! randomForest(formula 油= 油IMO_decision 油~ 油., 油data 油= 油crs$dataset[crs$sample, 油 c(crs$input, 油crs$target)],ntree 油= 油421, 油mtry 油= 油5, 油sampsize 油= 油c(35, 油35), 油 importance 油= 油TRUE, 油replace 油= 油FALSE, 油na.ac?on 油= 油na.rough鍖x) 油 ! 油OOB 油es?mate 油of 油 油error 油rate: 油36.48%, 油Type 油1 油error 油rate 油= 油36.4 油%, 油Type 油2 油error 油 rate 油= 油36.6% 油 ! OOB 油increased 油. 油Type 油1 油increased 油as 油expected 油. 油Not 油a 油good 油solu?on 油 油 油 ! Our 油Best 油Solu?on 油so 油far 油is 油 油 油 ! 95% 油CI: 油0.5462-足0.6554 油(DeLong) 油 油 ! OOB 油es?mate 油of 油 油error 油rate: 油29.32%, 油Type 油1 油error 油rate 油= 油14.28%, 油Type 油2 油error 油 rate 油= 油65.6 油%. 油 ! Run 油the 油evalua?on 油on 油the 油test 油data 油set 油to 油get 油the 油鍖nal 油result. 油 油 油 油 油 油
  • 6. Final 油Confusion 油Matrix-足 油Forest 油Model 油
  • 7. Boos?ng 油Model 油 ≒ Run 油the 油Boos?ng 油model 油with 油default 油op?ons 油 ≒ OOB 油es?mate 油of 油 油error 油rate: 油21.8% 油 ≒ Type 油1 油error 油rate 油is 油6.9%, 油Type 油2 油error 油rate 油is 油61.1 油%. 油Look 油for 油error 油trends 油and 油importance 油of 油variables. 油 Analysis-足 油Success 油and 油language 油are 油major 油predictors 油 ≒ Training 油Error 油is 油high 油ini?ally, 油down 油warding 油as 油number 油of 油itera?ons 油increase. 油 ≒ Try 油to 油look 油at 油the 油point 油where 油error 油graph 油becomes 油constant. 油 ≒ 1s 油as 油shown 油in 油the 油graph 油depict 油the 油trend, 油but 油the 油trend 油again 油is 油changing 油beyond 油itera?on 油50. 油 ≒ Build 油more 油itera?ons 油to 油鍖gure 油out 油the 油trend 油and 油the 油point 油a`er 油which 油error 油rate 油is 油constant. 油 ≒ Analysis-足 油Success 油and 油language 油are 油major 油predictors 油 ≒ Build 油the 油model 油with 油itera?on 油= 油200 油 ≒ Analysis-足: 油The 油trend 油seems 油clear. 油A`er 油140 油itera?ons, 油the 油error 油rate 油graph 油becomes 油constant. 油 ≒ Set 油the 油itera?ons 油to 油140 油and 油con?nue 油the 油boos?ng 油model. 油 ≒ Analysis-足: 油OOB 油error 油is 油21.2 油% 油but 油Type 油 油2 油errors 油are 油very 油large. 油 油 ≒ AUC 油=68%. 油S?ll 油room 油for 油improvement. 油Set 油the 油importance 油matrix. 油We 油need 油less 油Type 油2 油error. 油 ≒ Call: 油 ada(IMO_decision 油 ~ 油 ., 油 data 油 = 油 crs$dataset[crs$train, 油 c(crs$input, 油 油 crs$target)], 油 control 油 = 油 rpart.control(maxdepth 油= 油30, 油cp 油= 油0.01, 油 油minsplit 油= 油20, 油xval 油= 油10), 油parms 油= 油list(split 油= 油"informa?on", 油 油loss 油= 油 matrix(c(0, 油1, 油1.5, 油0), 油byrow 油= 油TRUE, 油nrow 油= 油2)), 油iter 油= 油140) 油 油
  • 8. Final 油Confusion 油Matrix-足 油Boos?ng 油 Model 油 ≒ 油 油 油 油 油 油 油 ≒ Analysis-足: 油Best 油so 油far, 油although 油type 油2 油error 油is 油 s?ll 油big 油 油 油 ≒ Giving 油more 油importance 油doesnt 油help 油 油 油 ≒ No 油major 油change 油in 油ROC. 油
  • 9. Comparison 油of 油Models 油 Forest 油Model 油 Boos,ng 油Model 油
  • 10. Conclusion 油 油 油 油 油With 油the 油best 油dataset, 油it 油shows 油that 油there 油is 油a 油strong 油sta?s?cal 油signi鍖cance 油that 油 Czechoslovakia, 油exhibit 油1, 油is 油the 油na?on 油with 油the 油highest 油probability 油of 油winning 油 appeal 油based 油on 油data 油analyzed 油in 油MS 油Excel. 油 油Furthermore, 油exhibit 油2 油shows 油29% 油of 油 all 油applicants 油are 油denied 油their 油appeal. 油 油Of 油those 油the 油Rater, 油person 油who 油determines 油 the 油merit 油of 油their 油case 油going 油forward 油predicts 油with, 油an 油81% 油con鍖dence 油rate 油that, 油 when 油he 油or 油she 油predicts 油a 油appeal 油denial, 油it 油is 油the 油correct 油predic?on, 油conversely 油 they 油are 油only 油correct 油48% 油of 油the 油?me 油when 油they 油predict 油an 油awarded 油appeal 油by 油the 油 judge. 油 油Finally, 油the 油data 油shows 油that 油most 油applicants 油the 油seek 油an 油appeal 油have 油a 油 higher 油approval 油probability 油with 油the 油courts 油in 油Montreal 油and 油not 油Toronto. 油 油 油 油 油 油As 油with 油the 油Appeal 油data 油(above) 油the 油same 油inferences 油can 油be 油established 油with 油 individual 油Judge 油data. 油For 油the 油judges 油tree, 油exhibit 油3, 油if 油we 油assume 油that 油the 油rater 油 predicts 油success 油for 油33-足34% 油of 油claimants, 油72% 油of 油those 油posi?ve 油predic?ons 油are 油 cases 油that 油are 油to 油be 油heard 油by 油judges 油that 油ARE 油NOT 油Heald, 油Hugessen, 油Iacobucci, 油 MacGuigan, 油Pra[e, 油and 油Stone. 油We 油can 油infer 油that 油Desjardins, 油Mahoney, 油Marceau, 油 and 油Urie 油ARE 油judges 油that 油will 油have 油the 油highest 油probability 油of 油ruling 油posi?ve 油on 油an 油 appeal. 油 油Therefore, 油as 油Desjardins 油is 油from 油Montreal 油and 油rules 油favorably 油on 油 Czechoslovakian 油na?onals, 油it 油would 油behoove 油the 油company 油to 油create 油a 油goal 油 congruent 油strategy 油that 油favors 油those 油results. 油
  • 11. Exhibit 油1 油 Appeal 油Rate 油by 油Na?on 油 NATION 油 APPROVED 油APPEAL 油RATE 油 CZECHOSLOVAKIA 油 73% 油 SRI 油LANKA 油 36% 油 EL 油SALVADOR 油 36% 油 ARGENTINA 油 25% 油 IRAN 油 25% 油 CHINA 油 22% 油 BULGARIA 油 7% 油