This presentation is about large hadron colliders .
The LHC is based at the European particle physics laboratory CERN, near Geneva in Switzerland,
Topics covered in presentation are
1)What is LHC?
2)What is main purpose of the LHC?
3)What is Higg boson and its speed
4)How particles are accelerated
5)Detectors
1)ATLAS
2)ALICE
3)CMS
4)LHCB
6)Application
7)Merits
8)Demerits
The Higgs boson is an elementary particle that is responsible for giving mass to other particles. It was proposed in 1964 and discovered in 2012 at CERN's Large Hadron Collider in Switzerland. The Higgs boson is extremely short-lived, decaying within one billionth of a trillionth of a second. Its discovery helps scientists better understand how particles acquire mass and could provide insights into cosmic inflation, dark matter, and the composition of the universe.
Introducción a la FÃsica de PartÃculasJesus Ruiz
Ìý
El documento introduce la fÃsica de partÃculas y describe cómo los fÃsicos estudian los componentes fundamentales del universo mediante colisiones de alta energÃa. Explica que las partÃculas elementales se pueden clasificar en quarks y leptones, que transmiten las interacciones, y describe brevemente los aceleradores de partÃculas y detectores utilizados en la investigación.
This document discusses elementary particles and their classification. It states that quarks are currently believed to be fundamental particles as they are not made of anything smaller. It provides classifications for elementary particles such as hadrons, baryons, mesons, and leptons. It also discusses nuclear quantum numbers, conservation laws in interactions between elementary particles, and provides an example question.
The document discusses different types of crystal defects including point defects, stoichiometric defects, and non-stoichiometric defects. Stoichiometric defects include Schottky and Frenkel defects which involve cation-anion pairs missing or cation dislocations. Non-stoichiometric defects result from deviations from the ideal ratio of cations to anions and include metal excess or deficiency defects involving anion or cation vacancies. Common examples of different defect types in various crystals are provided.
This document discusses the key concepts from Chapter 14 of the chemistry textbook. It covers d-block and f-block elements in the periodic table, including their electronic structures, properties, and important reactions. The chapter is divided into several sections, including an introduction to periodic table, transition elements, general features of transition elements, coordination compounds, and the chemistry of some important transition elements such as vanadium, chromium, manganese, iron and copper.
i am student of M.Sc (Physics) in university of sindh. it is my first book on high energy physics and i will also upload the new version of this book soon. so please read this book and give me feed back on my email address.
Nuclear physics studies the building blocks and interactions of atomic nuclei. The field is the basis for applications like nuclear power, nuclear bombs, nuclear medicine, and radiocarbon dating. Atoms consist of a nucleus containing protons and neutrons, surrounded by orbiting electrons. Radioactivity occurs when unstable atomic nuclei decay by emitting particles like alpha and beta particles or gamma rays. Nuclear fission and fusion can release energy as nuclei split or combine.
5 nuclear stability and radioactive decayMissingWaldo
Ìý
The document discusses nuclear stability and radioactive decay. It explains that stable nuclei have a balance of protons and neutrons, while unstable nuclei decay through processes like alpha decay, beta decay, and gamma emission to become more stable. Alpha decay involves emitting a helium nucleus, beta decay changes the number of protons or neutrons by converting between the two, and gamma emission releases energy without changing the nucleus. Unstable nuclei may undergo several types of decay until becoming a stable isotope. The various types of decay are illustrated with nuclear equations and examples.
The document discusses the classification and properties of fundamental particles. It explains that particles can be classified into three main categories: hadrons, which are made up of quarks; leptons, which are elementary particles not made of smaller particles; and quarks, which combine to form hadrons. The document also discusses the properties of quarks, including their relative charge, baryon number, and strangeness. It provides examples of how conservation laws, such as charge conservation, must be satisfied in particle interactions and decays.
Crystal and Crystal Systems PowerPoint PresentationMuhammadUsman1795
Ìý
1. Crystals are composed of atoms arranged in regular repeating patterns in three dimensions. The basic repeating unit is called the unit cell, which is defined by its lattice parameters of a, b, c, and the angles between them.
2. There are seven possible crystal systems depending on the geometry of the unit cell. Common crystal structures include body-centered cubic, face-centered cubic, and hexagonal close-packed.
3. Crystal structures are described using Miller indices to specify points, directions, and planes within the unit cell. Key crystallographic concepts include families of planes and directions.
This document provides an introduction to particle physics, including:
- A brief history of discoveries of the elementary constituents of matter like protons, neutrons, electrons.
- An overview of the four fundamental forces and how they control particle behavior.
- Explanations of conservation laws, neutrino theory, and early experiments verifying mass-energy equivalence.
- Descriptions of the Standard Model of particle families, forces, the quark model, and antimatter discoveries.
Louis De Broglie proposed in 1924 that electrons and other particles exhibit wave-like properties described by an equation relating the wavelength of a particle to its momentum. De Broglie's equation showed that all moving particles can be associated with a wavelength, and calculated wavelengths for everyday objects like cars and baseballs, though the wavelengths are too small to detect directly. The wavelength of electrons calculated using the equation could be measured using specialized equipment, providing evidence for the wave-particle duality of matter.
The Large Hadron Collider (LHC) is the highest energy particle collider ever built. It was constructed by CERN near Geneva, Switzerland to test theories of particle physics by colliding protons at high energies, recreating conditions shortly after the Big Bang. The LHC aims to answer questions like discovering the Higgs boson and exploring dark matter, extra dimensions, and what happened in the early universe. While searching for unknown particles, the LHC may provide insights with applications for medicine, technology, and understanding antimatter asymmetry that could explain our matter-dominated universe.
Wk 23 p5 wk 25-p2_26.3-26.4_particle and nuclear physicschris lembalemba
Ìý
This document provides an overview of nuclear physics concepts including:
- Mass defect and binding energy are explained using examples like helium-4 nucleus.
- Nuclear stability is determined by the balance of strong nuclear force and Coulombic repulsion.
- Nuclear fission and fusion are described along with examples like uranium-235.
- Radioactive decay is random and spontaneous in nature as demonstrated through a dice simulation example. The half-life concept is also introduced.
Introduction to perturbation theory, part-1Kiran Padhy
Ìý
Perturbation theory provides an approximate method for solving quantum mechanical problems where the Hamiltonian cannot be solved exactly. It involves splitting the Hamiltonian into an exactly solvable unperturbed part (H0) and a perturbed part (H1) treated as a small disturbance. The eigenvalues and eigenstates of the full Hamiltonian are expressed as power series expansions in terms of the perturbation strength parameter λ, allowing the effects of the perturbation to be calculated order by order. There are two types of perturbation theory: time-independent, where the unperturbed eigenstates are stationary; and time-dependent, where they vary with time under the perturbation.
The document discusses the Higgs boson particle, also known as the "God particle". It describes how the particle was theorized in 1964 by Peter Higgs and others to help explain how elementary particles acquire mass. Researchers at CERN used the Large Hadron Collider to finally detect the Higgs boson in 2012 through high-energy collisions of protons, confirming its existence after decades of experiments. The discovery of the Higgs boson was a major achievement that validated the Standard Model of particle physics.
The atomic nucleus is at the center of atoms and is composed of protons and neutrons. It was discovered in 1911 by Ernest Rutherford based on experiments showing that atoms have small, dense, positively charged nuclei. The nucleus contains nearly all of an atom's mass. Protons and neutrons are bound together in the nucleus by the strong nuclear force. Nuclear chemistry deals with the composition, properties, and reactions of atomic nuclei. Key discoveries included the neutron by Chadwick in 1932 and the development of nuclear models showing electrons orbiting the positively charged nucleus.
This document provides a summary of a lecture on solid state physics. It discusses several key topics:
1. It defines solid state physics as explaining the properties of solid materials by analyzing the interactions between atomic nuclei and electrons within solids.
2. It notes that most solids are crystalline, having a regular repeated atomic structure, and that crystalline solids are easier to analyze than non-crystalline materials.
3. It outlines the lecture, which will cover crystal structures, interatomic forces, and crystal dynamics to explain the behavior and properties of solids.
1. Elementary particles are classified as either bosons or fermions based on their spin. Bosons have integer spin while fermions have half-integer spin.
2. Bosons include photons, gluons, and mesons. Fermions include leptons like electrons and muons, and hadrons like protons, neutrons, and baryons.
3. Four fundamental forces - strong, weak, electromagnetic, and gravity - interact between elementary particles and hold matter together. The strong force binds quarks, the weak force governs radioactive decay, and gravity and electromagnetism are familiar long-range forces.
NANO106 is UCSD Department of NanoEngineering's core course on crystallography of materials taught by Prof Shyue Ping Ong. For more information, visit the course wiki at http://nano106.wikispaces.com.
Ψ (Psi) represents the state of an electron in the Schrodinger wave equation. Its probability density, Ψ2, gives the probability of finding the electron in a particular region of space. Several wave functions satisfy the Schrodinger equation and properties of the wave function, with each having a corresponding energy level. The wave function with the lowest energy level for a hydrogen atom is ψ1.
This document provides an overview of Lagrangian mechanics and constraints in classical mechanics. It defines different types of constraints including holonomic, non-holonomic, rheonomic, and scleronomic constraints. Generalized coordinates are introduced as a set of independent parameters that can describe the motion of a mechanical system with constraints. The configuration space is defined as a 3N-dimensional space where a point represents the configuration of a system of N particles. Constraints reduce the number of degrees of freedom from 3N coordinates to n generalized coordinates.
This document discusses the wave-particle duality of light and matter. It explains how experiments demonstrating the photoelectric effect and electron diffraction show that electromagnetic radiation and electrons exhibit both wave-like and particle-like properties depending on the situation. De Broglie hypothesized that all particles can behave as waves, and he formulated an equation showing that particles are associated with a wavelength determined by their momentum and Planck's constant.
A neutron star is formed by the gravitational collapse of a massive star after a supernova. It has a mass of 1-3 times the sun's mass but is only about 20 km in diameter, making it incredibly dense. The first neutron star was discovered in 1967 by Jocelyn Bell, a graduate student who discovered a pulsar, a type of neutron star that emits beams of electromagnetic radiation. Neutron stars come in different types, including pulsars which are highly magnetized and rotating neutron stars that emit beams, and magnetars which have extremely powerful magnetic fields that power their emission of high-energy radiation.
Presentazione semplice basata su http://www.infn.it/multimedia/particle/paitaliano/startstandard.html
usata nell'incontro di preparazione della conferenza del prof. Bertolucci del 19 maggio 2012 presso Romero di Albino
Nuclear physics studies the building blocks and interactions of atomic nuclei. The field is the basis for applications like nuclear power, nuclear bombs, nuclear medicine, and radiocarbon dating. Atoms consist of a nucleus containing protons and neutrons, surrounded by orbiting electrons. Radioactivity occurs when unstable atomic nuclei decay by emitting particles like alpha and beta particles or gamma rays. Nuclear fission and fusion can release energy as nuclei split or combine.
5 nuclear stability and radioactive decayMissingWaldo
Ìý
The document discusses nuclear stability and radioactive decay. It explains that stable nuclei have a balance of protons and neutrons, while unstable nuclei decay through processes like alpha decay, beta decay, and gamma emission to become more stable. Alpha decay involves emitting a helium nucleus, beta decay changes the number of protons or neutrons by converting between the two, and gamma emission releases energy without changing the nucleus. Unstable nuclei may undergo several types of decay until becoming a stable isotope. The various types of decay are illustrated with nuclear equations and examples.
The document discusses the classification and properties of fundamental particles. It explains that particles can be classified into three main categories: hadrons, which are made up of quarks; leptons, which are elementary particles not made of smaller particles; and quarks, which combine to form hadrons. The document also discusses the properties of quarks, including their relative charge, baryon number, and strangeness. It provides examples of how conservation laws, such as charge conservation, must be satisfied in particle interactions and decays.
Crystal and Crystal Systems PowerPoint PresentationMuhammadUsman1795
Ìý
1. Crystals are composed of atoms arranged in regular repeating patterns in three dimensions. The basic repeating unit is called the unit cell, which is defined by its lattice parameters of a, b, c, and the angles between them.
2. There are seven possible crystal systems depending on the geometry of the unit cell. Common crystal structures include body-centered cubic, face-centered cubic, and hexagonal close-packed.
3. Crystal structures are described using Miller indices to specify points, directions, and planes within the unit cell. Key crystallographic concepts include families of planes and directions.
This document provides an introduction to particle physics, including:
- A brief history of discoveries of the elementary constituents of matter like protons, neutrons, electrons.
- An overview of the four fundamental forces and how they control particle behavior.
- Explanations of conservation laws, neutrino theory, and early experiments verifying mass-energy equivalence.
- Descriptions of the Standard Model of particle families, forces, the quark model, and antimatter discoveries.
Louis De Broglie proposed in 1924 that electrons and other particles exhibit wave-like properties described by an equation relating the wavelength of a particle to its momentum. De Broglie's equation showed that all moving particles can be associated with a wavelength, and calculated wavelengths for everyday objects like cars and baseballs, though the wavelengths are too small to detect directly. The wavelength of electrons calculated using the equation could be measured using specialized equipment, providing evidence for the wave-particle duality of matter.
The Large Hadron Collider (LHC) is the highest energy particle collider ever built. It was constructed by CERN near Geneva, Switzerland to test theories of particle physics by colliding protons at high energies, recreating conditions shortly after the Big Bang. The LHC aims to answer questions like discovering the Higgs boson and exploring dark matter, extra dimensions, and what happened in the early universe. While searching for unknown particles, the LHC may provide insights with applications for medicine, technology, and understanding antimatter asymmetry that could explain our matter-dominated universe.
Wk 23 p5 wk 25-p2_26.3-26.4_particle and nuclear physicschris lembalemba
Ìý
This document provides an overview of nuclear physics concepts including:
- Mass defect and binding energy are explained using examples like helium-4 nucleus.
- Nuclear stability is determined by the balance of strong nuclear force and Coulombic repulsion.
- Nuclear fission and fusion are described along with examples like uranium-235.
- Radioactive decay is random and spontaneous in nature as demonstrated through a dice simulation example. The half-life concept is also introduced.
Introduction to perturbation theory, part-1Kiran Padhy
Ìý
Perturbation theory provides an approximate method for solving quantum mechanical problems where the Hamiltonian cannot be solved exactly. It involves splitting the Hamiltonian into an exactly solvable unperturbed part (H0) and a perturbed part (H1) treated as a small disturbance. The eigenvalues and eigenstates of the full Hamiltonian are expressed as power series expansions in terms of the perturbation strength parameter λ, allowing the effects of the perturbation to be calculated order by order. There are two types of perturbation theory: time-independent, where the unperturbed eigenstates are stationary; and time-dependent, where they vary with time under the perturbation.
The document discusses the Higgs boson particle, also known as the "God particle". It describes how the particle was theorized in 1964 by Peter Higgs and others to help explain how elementary particles acquire mass. Researchers at CERN used the Large Hadron Collider to finally detect the Higgs boson in 2012 through high-energy collisions of protons, confirming its existence after decades of experiments. The discovery of the Higgs boson was a major achievement that validated the Standard Model of particle physics.
The atomic nucleus is at the center of atoms and is composed of protons and neutrons. It was discovered in 1911 by Ernest Rutherford based on experiments showing that atoms have small, dense, positively charged nuclei. The nucleus contains nearly all of an atom's mass. Protons and neutrons are bound together in the nucleus by the strong nuclear force. Nuclear chemistry deals with the composition, properties, and reactions of atomic nuclei. Key discoveries included the neutron by Chadwick in 1932 and the development of nuclear models showing electrons orbiting the positively charged nucleus.
This document provides a summary of a lecture on solid state physics. It discusses several key topics:
1. It defines solid state physics as explaining the properties of solid materials by analyzing the interactions between atomic nuclei and electrons within solids.
2. It notes that most solids are crystalline, having a regular repeated atomic structure, and that crystalline solids are easier to analyze than non-crystalline materials.
3. It outlines the lecture, which will cover crystal structures, interatomic forces, and crystal dynamics to explain the behavior and properties of solids.
1. Elementary particles are classified as either bosons or fermions based on their spin. Bosons have integer spin while fermions have half-integer spin.
2. Bosons include photons, gluons, and mesons. Fermions include leptons like electrons and muons, and hadrons like protons, neutrons, and baryons.
3. Four fundamental forces - strong, weak, electromagnetic, and gravity - interact between elementary particles and hold matter together. The strong force binds quarks, the weak force governs radioactive decay, and gravity and electromagnetism are familiar long-range forces.
NANO106 is UCSD Department of NanoEngineering's core course on crystallography of materials taught by Prof Shyue Ping Ong. For more information, visit the course wiki at http://nano106.wikispaces.com.
Ψ (Psi) represents the state of an electron in the Schrodinger wave equation. Its probability density, Ψ2, gives the probability of finding the electron in a particular region of space. Several wave functions satisfy the Schrodinger equation and properties of the wave function, with each having a corresponding energy level. The wave function with the lowest energy level for a hydrogen atom is ψ1.
This document provides an overview of Lagrangian mechanics and constraints in classical mechanics. It defines different types of constraints including holonomic, non-holonomic, rheonomic, and scleronomic constraints. Generalized coordinates are introduced as a set of independent parameters that can describe the motion of a mechanical system with constraints. The configuration space is defined as a 3N-dimensional space where a point represents the configuration of a system of N particles. Constraints reduce the number of degrees of freedom from 3N coordinates to n generalized coordinates.
This document discusses the wave-particle duality of light and matter. It explains how experiments demonstrating the photoelectric effect and electron diffraction show that electromagnetic radiation and electrons exhibit both wave-like and particle-like properties depending on the situation. De Broglie hypothesized that all particles can behave as waves, and he formulated an equation showing that particles are associated with a wavelength determined by their momentum and Planck's constant.
A neutron star is formed by the gravitational collapse of a massive star after a supernova. It has a mass of 1-3 times the sun's mass but is only about 20 km in diameter, making it incredibly dense. The first neutron star was discovered in 1967 by Jocelyn Bell, a graduate student who discovered a pulsar, a type of neutron star that emits beams of electromagnetic radiation. Neutron stars come in different types, including pulsars which are highly magnetized and rotating neutron stars that emit beams, and magnetars which have extremely powerful magnetic fields that power their emission of high-energy radiation.
Presentazione semplice basata su http://www.infn.it/multimedia/particle/paitaliano/startstandard.html
usata nell'incontro di preparazione della conferenza del prof. Bertolucci del 19 maggio 2012 presso Romero di Albino
A brief and simple guide to understand the basic principles of chemistry. Useful not for chemist: it\'s too simple! Soon new chapters and english translation.
2. Cosa si intende per radioattività ?
Con il termine radioattività si
intende quell'inisieme di
processi chimico-fisici tramite cui
alcuni nuclei atomici si
trovano decadere per diventare più
stabili. Tutti quegli elementi che
posseggono un nucleo atomico
instabile e quindi sono
maggiormente susciettibili a tali
processi sono chiamati elementi
radioattivi.
3. La scoperta della
radioattività naturale
La radioattività naturale venne scoperta nel 1896 dal
fisico Henri Becquerel il quale riteneva che i materiali
fluorescenti sui quali faceva esperimenti erano in grado di
produrre radioazioni diverse dal visibile, tra cui anche raggi
x. Tramite esperimento egli riusci a impressionare su una
lastra coperta da un involucro nero le radiazioni emesse da
sali di uranio fluorescenti, anche senza che questi fossero
esposti alla luce del sole. Egli così dimostrò che determinati
elementi erano in grado di emettere radiazioni senza essere
eccitati. Le radiazioni emesse da questi corpi vennero poi
chiamate dall'allieva di Becquerel, Marie Curie, "radiazioni
Becquerel".
4. Il contributo di
Marie Curie
Marie Curie, due volte premio nobel (nel
1903 per la fisica e nel 1911 per la chimica), è
conosciuta per I suoi intensi studi sulle
radiazioni. Ella, insieme al marito Pierre,
analizzò diversi elementi e scoprì che l'uranio
non era l'unico materiale a emettere radiazioni
ma ne scoprirono
diversi altri. Un altro elemento ad esempio era
il torio.
Ai due si deve la scoperta inoltre di due nuovi
elementi chimici, ovvero il polonio e il radio,
entrambi radioattivi.
5. Il decadimento
radioattivo
Il processo tramite il quale un atomo perde
progressivamente particelle dal suo nucleo per
diventare più stabile è detto decadimento
radioattivo. Ne esistono in particolar modo tre
tipi:
• decadimento alfa;
• decadimento beta;
• decadimento gamma.
6. Caratteristiche delle
radiazioni alfa, beta e
gamma
• Per studiare la natura e le caratteristiche delle
radiazioni emesse dagli elementi radioattivi si
utilizza un campo magnetico che deflette il
moto delle particelle emesse se queste
posseggono carica. In tal modo è
possibile affermare che I raggi alfa sono
composti da protoni, I raggi beta da
elettroni e I raggi gamma da particelle neutre,
che più in avanti si scoprirà essere neutroni.
• Le tre radiazioni non sono ugualmente
energetiche: I raggi alfa fanno difficoltà a
oltrepassare anche solo pochi millimetri di
carta; I raggi beta sono maggiormente
penetranti ma si possono fermare anche
davanti a qualche centimetro d'acqua; per
arrestare le radiazioni gamma è necessario
invece un materiale composto da elementi
molto pesanti, ad esempio una lastra di
piombo di alcuni centimetri.
7. Il decadimento alfa
Il decadimento alfa è il processo secondo
cui un nucleo instabile emette raggi alfa,
composti da particelle elettricamente
positive chiamate particelle alfa. Queste
hanno le dimensioni di un nucleo di elio.
8. Il decadimento gamma
Nel decadimento gamma un nucleo instabile passa da uno stato di eccitazione a quello
fondamentale tramite l'emissione di radiazioni gamma.
Sono in assoluto le più energetiche e di conseguenza le più nocive.
9. Il decadimento
beta
Il decadimento beta è il processo
secondo cui un nucleo instabile
emette elettroni o positroni.
Esistono quindi due tipi di
decadimento beta:
• Beta negativo;
• Beta positivo.
10. I problemi del
decadimento beta
Fino alla scoperta del neutrone non si riusciva a
spiegare come un nucleo atomico, il quale non era
composto da elettroni, potesse emetterne durante
i processi di decadimento beta. Si ipotizzò che
degli elettroni potessero essere presenti in
maniera permanente nel nucleo ma questa
interpretazione andava contro il principio di
conservazione dell'energia. Qualcosa non
quadrava, sia nella struttura del nucleo sia nelle
ipotesi del decadimento beta. Inoltre il
decadimento beta sembrava violare anche il
principio di conservazione del momento angolare
e il principio di indeterminazione di Heisenberg.
11. L'ipotesi del neutrino
Un altro problema del decadimento beta è legato alla
conservazione della quantità di moto del sistema
nucleo-elettrone. Infatti se il nucleo di partenza è
fermo, il nucleo figlio e l'elettrone secondo tale
principio dovrebbero muoversi con la stessa quantitÃ
di moto in direzioni opposte. In tal modo sarebbe
facile anche calcolare l'energia cinetica dei due.
Tuttavia i calcoli e i risultati sperimentali differiscono di
una certa quantità : l'energia trasportata dall'elettrone è
solo una parte di quella prodotta. Doveva esistere
dunque un'altra particella, di carica neutra, che
trasportava la restante energia. Fu così che nel 1930
Wolfgang Pauli ipotizzò l'esistenza di tale particella
cui Enrico Fermi diede il nome di neutrino.
13. Il settimo Congresso Solvay
In questo contesto le domande che
riguardavano il decadimento beta
erano quasi esclusivamente legate a
come venissero prodotti elettroni e
neutrini e che ruolo giocasse il
neutrone in tal processo. Il tema era
fortemente dibattuto all'interno del
settimo Congresso Solvay, una
conferenza tenutasi nel 1933 cui vari
scienziati e fisici di tutto il mondo si
riunirono per discutere di questi
problemi.
14. Il contributo di Enrico Fermi
L'unico scienziato italiano che partecipò al settimo Congresso Solvay fu
Enrico Fermi. Premio nobel nel 1938 grazie ai suoi studi sulle reazioni
nucleari innescate dai neutroni lenti, egli rimase affascinato dalle ipotesi di
Pauli sul neutrino e sul decadimento beta. Egli ipotizzò che, come quando un
elettrone eccitato passa da un livello più energetico a uno meno energetico
esso emette un fotone, anche durante il decadimento beta il neutrino e
l'elettrone vengono creati istantaneamente. Per dimostrare tale
teoria vennero impiegati molti artifici matematici. Grazie a questa tutte le
domande riguardanti il decadimento beta ottennero risposta.
15. L'attività radioattiva
Con attività di un oggetto radioattivo si intende il numero di
decadimenti al secondo che avvengono in esso. Il numero di
nuclei attivi N con il tempo diminuisce; per cui si può scrivere
che l'attività è uguale al rapporto tra la variazione del numero
di nuclei e la variazione temporale in cui avviene il
decadimento. Questo è inoltre uguale al prodotto tra il
numero di nuclei iniziale e la costante di decadimento. La
formula che esprime il numero di nuclei a un dato istante di
tempo è:
17. Conseguenze delle
radiazioni ionizzanti
Le radiazioni emesse dai materiali radioattivi sono
comprese in quelle che vengono definite radiazioni
ionizzanti. Queste sono molto nocive per l'essere
umano in quanto sono sufficientemente energetiche
da liberare gli elettroni dall'atomo per cui possono
fare sì che si verifichino danni a livello del genoma.
La stessa Marie Curie è morta in seguito alla forte e
prolungata esposizione alle radiazioni per tempi
estremamente lunghi.
18. Applicazioni dei materiali radioattivi
nell'archelogia
La radioattività è stata impiegata in numerosi modi ai giorni nostri. Uno degli
esempi più lampanti di applicazione dei principi della radioattività sono le
radiazioni radiometriche. Se un oggetto contiene nuclei radioattivi al
momento della sua formazione, il tempo di decadimento può essere utilizzato
per determinare l'età del campione.