狠狠撸

狠狠撸Share a Scribd company logo
廣告效果導向為基礎的行動廣告系統
Recommender as an example
Steven Chiu
RD department
Vpon Inc.
Outline
? Background, challenges and KPIs
? Basic concept
? Challenges and KPIs
? Vpon Ad service infrastructure
? AD effectiveness related work
? Recommender
? System flows
? Summary
? Q&A
Basic concept
Vpon Ad service infrastructure
Challenges and KPIs
Typical use case
Clicks
Conversions
The media
Landing pages
ADs
Ads on Vpon…
Mainly for Navigation apps, e.g. Navidog
POI (Map)
POI (Banner)
Normal
Full screen ads Video ads
Ads on Vpon…
AD Performance Evaluation
? Click Through
Rate (CTR)
? Conversion Rate
? Goals
?To maximize
CTR
?To maximize
conversations
Click
Conversion
Impression
Integration
Apps
Placing Ads
? Charged in CPC,
CPM
? Criteria:
? time, locations, app
categories, budget,
Performance reports
Advertisers
app
App reports
app app …
Mobile app users
Mobile app publishers
Advertisers
Ad performance reports
Vpon AD services backend
Data Archiving & Analysis
User Context
Runtime
information
User’s Ad
Requests
Ad Serving
Scalable
AD Serving
Transaction
& Billing
Real-time
Ad Selection
UserScenario
Modeling
Data
Mining
MR/Spark
HBase
HDFS
Ad-hoc
Analytics
Reporting &
Data
Warehouse
Adaptive AD
Distribution
System
Continues
Improvement
Ad
performance
P3
60+ M
Monthly Active Unique Devices
200+ M
of Daily Ad Requests
2+ T
Ad transaction records over time
25+ M
Cell Towers/Wi-Fi AP Location Data
Some numbers for Vpon AD Network
P2
Taipei, Shanghai, HK, Bejing and Tokyo
2 IDCs at Taipei, Shanghai and Some Amazon EC2 nodes
Data Analysis
Ad Requests
Ad web
service
Backend
Memory
cache
In-
memory
Grid
HBase
MapReduce/Spark
HA Proxy
Message Routing (Apache Kafka)
Ad
Request
Cue
Backend
Hadoop Distributed
File System
(HDFS)
User Profiles
Ad Requests
HTTP POST
Avro Avro Avro
Ad videos, images
HTTP Get
Data Processing and Archiving
Creative
and videos
AD
management
Report UI
(Django,
SSH)
Vpon AD services
backend functionsCDN
Recommender System
Other
undergoing
topics
Reporting system
Sales
Support
System
AD-hoc
reporting
Operation
Ganglia
Solr
AD Operation
AD
Monitoring
System
Scenario
modeling
Avro
Web
Proxy
+
Cache
Memory
cache
In-
memory
Grid
Cue
User Profiles
(Couch DB
and HBase)
Rsync, Avro Avro
Python + pig, hive,
Hadoop Streaming, spark
Python + pig, hive,
Hadoop Streaming, spark
Advertisers
Recommender as an example
Design and Implementation
Vpon - 廣告效果導向為基礎的行動廣告系統
Recommender
? Types
? User(imei) based recommender system
? Item(ad) based recommender system
? Steps
? Step1: Campaign/AD similarity table
? Step2: Prediction Phase
? Step3: Verification Phase
? (Continuous Improvement)
? Serve ads according to users
preference
Recommender flow
Prediction
Machine
Learning
(e.g. recommender)
Evaluation
Data
Selection
? Select user records of the Ad
Click/Conversion action by
different kinds of Apps
? Select users logs of the
Location, Date/Time, Usage
Freq., Area, Movement Speed…
? Identify relation of the conversion
types, App info, Ad info and user
info to best choose configurations
? Campaign/AD similarity calculation
? User preferences
? Advertising in accordance with
the identified targeted users
? Feedback the AD execution
results into the system for
adjusting the modeling adaptively
P5
Ad 1 Ad 2 Ad 3 Ad 4 Ad N
User 1 0 0 1 0 0
User 2 1 1 0 1 0
User 3 1 1 1 1 1
User 4 1 1 0 0 0
User N … … … … …
Step1: Ads' Similarities
Unique
device IDs
from latest
K months
Historical and ongoing ads (App downloads as conversions)
Ad 1 Ad 2 Ad 3 Ad 4 Ad N
User 1 P(1,1) P(1,2) P(1,3) P(1,4) P(1,5)
User 2 P(2,1) P(2,2) P(2,3) P(2,4) P(2,5)
User 3 P(3,1) P(3,2) P(3,3) P(3,4) P(3,5)
User 4 P(4,1) 1P(4,2) P(4,3) P(4,4) P(4,5)
User Z … … … … …
Step2: Users' Preferences
Unique
device IDs
from latest
K months
Historical and ongoing ads (App downloads as conversions)
User 1
User 2
… … … … … …
Step3: Prediction Phase:
ADs sorted by preference
Data Analysis
Ad Requests
Ad web
service
Backend
Memory
cache
In-
memory
Grid
HBase
MapReduce/Spark
HA Proxy
Message Routing (Apache Kafka)
Ad
Request
Cue
Backend
Hadoop Distributed
File System
(HDFS)
User Profiles
Ad Requests
HTTP POST
Avro Avro Avro
Ad videos, images
HTTP Get
Data Processing and Archiving
Creative
and videos
Billing
System
CDN
Recommender System
Other
undergoing
topics
Reporting system
Sales
Support
System
AD-hoc
reporting
Operation
Ganglia
Solr
AD Operation
AD
Monitoring
System
Scenario
modeling
Avro
Billing
Proxy
+
Cache
Memory
cache
In-
memory
Grid
Cue
User Profiles
(Couch DB
and HBase)
Rsync, Avro Avro
Step3: Prediction Phase:
Serving Ads based on
Preferences
user1 ad1,ad2, ad5
user2 ad2,ad4, ad5
user3 ad4,ad5,ad6,ad8
user1
Persisted on Apache CouchDB
Replicated to in-memory grid
Step4: Evaluation Phase
Using our Optimization Model,
the CTR increased 3~4 times
Normal
1st Rnd
Optimized
1st Rnd
Normal
2nd Rnd
Optimized
2nd Rnd
Clk 987 2318 973 2330
Imp 122,514 82,229 122,397 81,882
CTR 0.81% 2.82% 0.79% 2.85%
0.00%
0.50%
1.00%
1.50%
2.00%
2.50%
3.00%
1
10
100
1,000
10,000
100,000
1,000,000
CTR
#ofImp./Clk.
Perf. Campaign
0.000%
1.000%
2.000%
3.000%
4.000%
5.000%
6.000%
7.000%
Clk v.s. Conv
0.746%
3.646%
6.386%
Clk v.s. Conv
Normal 0.746%
recm_1st lvl. 3.646%
recm_2nd lvl. 6.386%
Game App DL Clk v.s. Conv.
After our 2nd lvl optimization,
the conv. v.s. click increased 8.56 times
Step5: continuous monitoring and improvement
10,037,003
2,451,061
85.01%
81.29%
0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%
100.00%
0
2,000,000
4,000,000
6,000,000
8,000,000
10,000,000
12,000,000
No-Optimization Optimized
Target%(Perf.)
Imp.consumed(Cost)
Imp. Consumed (Cost) Targeted % (Perf.)
0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%
CTR
CVR
IVR
0.90%
1.53%
1.37%
0.88%
0.57%
0.50%
Optimize Normal
CTR = Click v.s. Impression
CVR = Click v.s. Conv.
IVR = Imp. v.s. Conv.
Conv. Rate increased 3 times
Cost Optimization:
Cost reduced more than 75% while
performance only decreased 3.72%
Implementation
? Hadoop MapReduce as computing platform
? Using Hadoop streaming with Python
? Map: a list of ad pairs as input for similarity caculation
? Reduce: simply aggregate the map results
? Re-modeling on a daily basis based on results
? Will go on to use Haoop HDFS + Spark + Python for performance
benefit
Vpon - 廣告效果導向為基礎的行動廣告系統
Summary
? Build the infra. that proves models effective or not as early
as possible
? AB testing for new models
? Automate as much as possible
? Monitoring and measurement
? Computing resource
? Properly manage Product, ad-hoc, analysis jobs
? Optimization does work
? Use Python wherever it fits

More Related Content

What's hot (20)

CityAds Affiliate Marketing
CityAds Affiliate MarketingCityAds Affiliate Marketing
CityAds Affiliate Marketing
Nikolay Khokhlov
?
Paid search management technology
Paid search management technologyPaid search management technology
Paid search management technology
bbullockRKG
?
Lurker intro ppc_seo_2011
Lurker intro ppc_seo_2011Lurker intro ppc_seo_2011
Lurker intro ppc_seo_2011
RebelRouse
?
Full Picture For Ad Serving On Multiple Screens
Full Picture For Ad Serving On Multiple ScreensFull Picture For Ad Serving On Multiple Screens
Full Picture For Ad Serving On Multiple Screens
Axel Hoehnke
?
Online Ad Serving
Online Ad ServingOnline Ad Serving
Online Ad Serving
Neha Gupta
?
Watson Customer Engagement
Watson Customer EngagementWatson Customer Engagement
Watson Customer Engagement
Heber Lopes
?
Cheat sheetmonetization1
Cheat sheetmonetization1Cheat sheetmonetization1
Cheat sheetmonetization1
GM BBI research & liaison
?
Intro to Programmatic Advertising with Matt Prohaska from Prohaska Consulting
Intro to Programmatic Advertising with Matt Prohaska from Prohaska ConsultingIntro to Programmatic Advertising with Matt Prohaska from Prohaska Consulting
Intro to Programmatic Advertising with Matt Prohaska from Prohaska Consulting
Stukent Inc.
?
Internet Advertising for Dummies
Internet Advertising for DummiesInternet Advertising for Dummies
Internet Advertising for Dummies
Sajid Abdul Rahiman
?
Programmatic ad buying in 3 slides
Programmatic ad buying in 3 slidesProgrammatic ad buying in 3 slides
Programmatic ad buying in 3 slides
One Marketing Ltd
?
iMobiTrax Overview
iMobiTrax OverviewiMobiTrax Overview
iMobiTrax Overview
Ralph Ruckman
?
Iab weborama october
Iab weborama octoberIab weborama october
Iab weborama october
iabrussiaprez
?
Aumark Marketing Automation
Aumark Marketing AutomationAumark Marketing Automation
Aumark Marketing Automation
EDS FZE
?
Display Advertising Basics
Display Advertising BasicsDisplay Advertising Basics
Display Advertising Basics
BidGear Inc.
?
Emarketing
EmarketingEmarketing
Emarketing
Pradeep Yuvaraj
?
Attribution marketing, from theory to reality - Kwanko
Attribution marketing, from theory to reality - KwankoAttribution marketing, from theory to reality - Kwanko
Attribution marketing, from theory to reality - Kwanko
Kwanko
?
Overview RTB ecosystem
Overview RTB ecosystemOverview RTB ecosystem
Overview RTB ecosystem
Digital Training Courses in Noida
?
Qpx CLab unipro
Qpx CLab uniproQpx CLab unipro
Qpx CLab unipro
Claudio Acace
?
SiteScout DSP Update (September 2014)
SiteScout DSP Update (September 2014)SiteScout DSP Update (September 2014)
SiteScout DSP Update (September 2014)
sitescout
?
Deck
DeckDeck
Deck
DigiBrahma Ad Network
?
Paid search management technology
Paid search management technologyPaid search management technology
Paid search management technology
bbullockRKG
?
Lurker intro ppc_seo_2011
Lurker intro ppc_seo_2011Lurker intro ppc_seo_2011
Lurker intro ppc_seo_2011
RebelRouse
?
Full Picture For Ad Serving On Multiple Screens
Full Picture For Ad Serving On Multiple ScreensFull Picture For Ad Serving On Multiple Screens
Full Picture For Ad Serving On Multiple Screens
Axel Hoehnke
?
Online Ad Serving
Online Ad ServingOnline Ad Serving
Online Ad Serving
Neha Gupta
?
Watson Customer Engagement
Watson Customer EngagementWatson Customer Engagement
Watson Customer Engagement
Heber Lopes
?
Intro to Programmatic Advertising with Matt Prohaska from Prohaska Consulting
Intro to Programmatic Advertising with Matt Prohaska from Prohaska ConsultingIntro to Programmatic Advertising with Matt Prohaska from Prohaska Consulting
Intro to Programmatic Advertising with Matt Prohaska from Prohaska Consulting
Stukent Inc.
?
Programmatic ad buying in 3 slides
Programmatic ad buying in 3 slidesProgrammatic ad buying in 3 slides
Programmatic ad buying in 3 slides
One Marketing Ltd
?
Aumark Marketing Automation
Aumark Marketing AutomationAumark Marketing Automation
Aumark Marketing Automation
EDS FZE
?
Display Advertising Basics
Display Advertising BasicsDisplay Advertising Basics
Display Advertising Basics
BidGear Inc.
?
Attribution marketing, from theory to reality - Kwanko
Attribution marketing, from theory to reality - KwankoAttribution marketing, from theory to reality - Kwanko
Attribution marketing, from theory to reality - Kwanko
Kwanko
?
SiteScout DSP Update (September 2014)
SiteScout DSP Update (September 2014)SiteScout DSP Update (September 2014)
SiteScout DSP Update (September 2014)
sitescout
?

Viewers also liked (20)

數位廣告的血淚進化 20150714
數位廣告的血淚進化 20150714數位廣告的血淚進化 20150714
數位廣告的血淚進化 20150714
Ruby Kuan 關芸如
?
[SDX2016] 網站分析工作的領悟 / 鍾喬后 Isobar 安索帕 資料分析經理
[SDX2016] 網站分析工作的領悟 / 鍾喬后 Isobar 安索帕 資料分析經理[SDX2016] 網站分析工作的領悟 / 鍾喬后 Isobar 安索帕 資料分析經理
[SDX2016] 網站分析工作的領悟 / 鍾喬后 Isobar 安索帕 資料分析經理
悠识学院
?
如何社群行销?就是不销而销!
如何社群行销?就是不销而销!如何社群行销?就是不销而销!
如何社群行销?就是不销而销!
綠生活 GreenLife
?
十分鐘关键字广告上手
十分鐘关键字广告上手十分鐘关键字广告上手
十分鐘关键字广告上手
bahn hong
?
最新网路行销广告策略与分配管理
最新网路行销广告策略与分配管理最新网路行销广告策略与分配管理
最新网路行销广告策略与分配管理
Norika
?
[SDX2016] 2016年 SEO 的關鍵在 UX / 連啓佑 將能數位行銷 執行長
[SDX2016] 2016年 SEO 的關鍵在 UX / 連啓佑 將能數位行銷 執行長[SDX2016] 2016年 SEO 的關鍵在 UX / 連啓佑 將能數位行銷 執行長
[SDX2016] 2016年 SEO 的關鍵在 UX / 連啓佑 將能數位行銷 執行長
悠识学院
?
打倒程式化购买术语
打倒程式化购买术语打倒程式化购买术语
打倒程式化购买术语
NT150 Com
?
施典志(罢别苍锄):社群工具的本质与应用方法
施典志(罢别苍锄):社群工具的本质与应用方法施典志(罢别苍锄):社群工具的本质与应用方法
施典志(罢别苍锄):社群工具的本质与应用方法
开拓文教基金会
?
新手创业家的哀愁与美丽
新手创业家的哀愁与美丽新手创业家的哀愁与美丽
新手创业家的哀愁与美丽
Norika
?
融合與衝突 是促進還是毀滅世界的武器
融合與衝突 是促進還是毀滅世界的武器融合與衝突 是促進還是毀滅世界的武器
融合與衝突 是促進還是毀滅世界的武器
Norika
?
创业这条不归路
创业这条不归路创业这条不归路
创业这条不归路
Norika
?
贵补肠别产辞辞办广告操作实务
贵补肠别产辞辞办广告操作实务贵补肠别产辞辞办广告操作实务
贵补肠别产辞辞办广告操作实务
Norika
?
创业的美丽与哀愁
创业的美丽与哀愁创业的美丽与哀愁
创业的美丽与哀愁
Norika
?
网路广告基础入门
网路广告基础入门网路广告基础入门
网路广告基础入门
Norika
?
Facebook 粉絲團經營教學
Facebook 粉絲團經營教學Facebook 粉絲團經營教學
Facebook 粉絲團經營教學
Vince Liao
?
How to Successfully Run a Remote Team
How to Successfully Run a Remote TeamHow to Successfully Run a Remote Team
How to Successfully Run a Remote Team
Weekdone.com
?
Melt (Beta)
Melt (Beta)Melt (Beta)
Melt (Beta)
Miikka Leinonen
?
The Build Trap
The Build TrapThe Build Trap
The Build Trap
Melissa Perri
?
20 Fantastic Flat Icons and Their Meaning In Logo Design
20 Fantastic Flat Icons and Their Meaning In Logo Design20 Fantastic Flat Icons and Their Meaning In Logo Design
20 Fantastic Flat Icons and Their Meaning In Logo Design
DesignMantic
?
2016 Digital predictions for marketing, tech, pop culture and everything in b...
2016 Digital predictions for marketing, tech, pop culture and everything in b...2016 Digital predictions for marketing, tech, pop culture and everything in b...
2016 Digital predictions for marketing, tech, pop culture and everything in b...
Soap Creative
?
數位廣告的血淚進化 20150714
數位廣告的血淚進化 20150714數位廣告的血淚進化 20150714
數位廣告的血淚進化 20150714
Ruby Kuan 關芸如
?
[SDX2016] 網站分析工作的領悟 / 鍾喬后 Isobar 安索帕 資料分析經理
[SDX2016] 網站分析工作的領悟 / 鍾喬后 Isobar 安索帕 資料分析經理[SDX2016] 網站分析工作的領悟 / 鍾喬后 Isobar 安索帕 資料分析經理
[SDX2016] 網站分析工作的領悟 / 鍾喬后 Isobar 安索帕 資料分析經理
悠识学院
?
如何社群行销?就是不销而销!
如何社群行销?就是不销而销!如何社群行销?就是不销而销!
如何社群行销?就是不销而销!
綠生活 GreenLife
?
十分鐘关键字广告上手
十分鐘关键字广告上手十分鐘关键字广告上手
十分鐘关键字广告上手
bahn hong
?
最新网路行销广告策略与分配管理
最新网路行销广告策略与分配管理最新网路行销广告策略与分配管理
最新网路行销广告策略与分配管理
Norika
?
[SDX2016] 2016年 SEO 的關鍵在 UX / 連啓佑 將能數位行銷 執行長
[SDX2016] 2016年 SEO 的關鍵在 UX / 連啓佑 將能數位行銷 執行長[SDX2016] 2016年 SEO 的關鍵在 UX / 連啓佑 將能數位行銷 執行長
[SDX2016] 2016年 SEO 的關鍵在 UX / 連啓佑 將能數位行銷 執行長
悠识学院
?
打倒程式化购买术语
打倒程式化购买术语打倒程式化购买术语
打倒程式化购买术语
NT150 Com
?
施典志(罢别苍锄):社群工具的本质与应用方法
施典志(罢别苍锄):社群工具的本质与应用方法施典志(罢别苍锄):社群工具的本质与应用方法
施典志(罢别苍锄):社群工具的本质与应用方法
开拓文教基金会
?
新手创业家的哀愁与美丽
新手创业家的哀愁与美丽新手创业家的哀愁与美丽
新手创业家的哀愁与美丽
Norika
?
融合與衝突 是促進還是毀滅世界的武器
融合與衝突 是促進還是毀滅世界的武器融合與衝突 是促進還是毀滅世界的武器
融合與衝突 是促進還是毀滅世界的武器
Norika
?
创业这条不归路
创业这条不归路创业这条不归路
创业这条不归路
Norika
?
贵补肠别产辞辞办广告操作实务
贵补肠别产辞辞办广告操作实务贵补肠别产辞辞办广告操作实务
贵补肠别产辞辞办广告操作实务
Norika
?
创业的美丽与哀愁
创业的美丽与哀愁创业的美丽与哀愁
创业的美丽与哀愁
Norika
?
网路广告基础入门
网路广告基础入门网路广告基础入门
网路广告基础入门
Norika
?
Facebook 粉絲團經營教學
Facebook 粉絲團經營教學Facebook 粉絲團經營教學
Facebook 粉絲團經營教學
Vince Liao
?
How to Successfully Run a Remote Team
How to Successfully Run a Remote TeamHow to Successfully Run a Remote Team
How to Successfully Run a Remote Team
Weekdone.com
?
20 Fantastic Flat Icons and Their Meaning In Logo Design
20 Fantastic Flat Icons and Their Meaning In Logo Design20 Fantastic Flat Icons and Their Meaning In Logo Design
20 Fantastic Flat Icons and Their Meaning In Logo Design
DesignMantic
?
2016 Digital predictions for marketing, tech, pop culture and everything in b...
2016 Digital predictions for marketing, tech, pop culture and everything in b...2016 Digital predictions for marketing, tech, pop culture and everything in b...
2016 Digital predictions for marketing, tech, pop culture and everything in b...
Soap Creative
?

Similar to Vpon - 廣告效果導向為基礎的行動廣告系統 (20)

Qcon London 2017 - Architecture overhaul - Ad serving @ Spotify scale
Qcon London 2017 -  Architecture overhaul - Ad serving @ Spotify scaleQcon London 2017 -  Architecture overhaul - Ad serving @ Spotify scale
Qcon London 2017 - Architecture overhaul - Ad serving @ Spotify scale
Kinshuk Mishra
?
Epam BI - Near Realtime Marketing Support System
Epam BI - Near Realtime Marketing Support SystemEpam BI - Near Realtime Marketing Support System
Epam BI - Near Realtime Marketing Support System
Dmitry Tolpeko
?
Rd Online Deck 3.0
Rd Online Deck 3.0Rd Online Deck 3.0
Rd Online Deck 3.0
Zestadz
?
Ad exchange product description
Ad exchange product descriptionAd exchange product description
Ad exchange product description
Ad Server Solutions
?
Data Science at Flurry
Data Science at FlurryData Science at Flurry
Data Science at Flurry
soupsranjan
?
KB Seminars: Working with Technology - Advertising; 10/13
KB Seminars: Working with Technology - Advertising; 10/13KB Seminars: Working with Technology - Advertising; 10/13
KB Seminars: Working with Technology - Advertising; 10/13
MDIF
?
ANIn Bengaluru Dec 2024 | Building a Quality-Centric Business Architecture: P...
ANIn Bengaluru Dec 2024 | Building a Quality-Centric Business Architecture: P...ANIn Bengaluru Dec 2024 | Building a Quality-Centric Business Architecture: P...
ANIn Bengaluru Dec 2024 | Building a Quality-Centric Business Architecture: P...
AgileNetwork
?
20141209 meetup hassan
20141209 meetup hassan20141209 meetup hassan
20141209 meetup hassan
Nanda Kishore
?
Smadex Company Profile
Smadex Company ProfileSmadex Company Profile
Smadex Company Profile
smadex
?
BOLO2010 Portugal
BOLO2010 PortugalBOLO2010 Portugal
BOLO2010 Portugal
BOLOlivestream
?
Deepak-Computational Advertising-The LinkedIn Way
Deepak-Computational Advertising-The LinkedIn WayDeepak-Computational Advertising-The LinkedIn Way
Deepak-Computational Advertising-The LinkedIn Way
yingfeng
?
ROI without monetization - Stefan Bielau
ROI without monetization - Stefan Bielau ROI without monetization - Stefan Bielau
ROI without monetization - Stefan Bielau
Adjust
?
Reach targeted audience segments with top-quality 3rd party data.
Reach targeted audience segments with top-quality 3rd party data.Reach targeted audience segments with top-quality 3rd party data.
Reach targeted audience segments with top-quality 3rd party data.
reklamajans
?
ANTS Programmatic Agency - Credential
ANTS Programmatic Agency - CredentialANTS Programmatic Agency - Credential
ANTS Programmatic Agency - Credential
ANTS
?
OMLIVE 2017 - ADWORDS TOOLS & SCRIPTS for PPC-NERDS 2017
OMLIVE 2017 - ADWORDS TOOLS & SCRIPTS for PPC-NERDS 2017OMLIVE 2017 - ADWORDS TOOLS & SCRIPTS for PPC-NERDS 2017
OMLIVE 2017 - ADWORDS TOOLS & SCRIPTS for PPC-NERDS 2017
Marcel Prothmann
?
Epom Ad Server For Networks
Epom Ad Server For NetworksEpom Ad Server For Networks
Epom Ad Server For Networks
Epom
?
ANIn Bengaluru Dec 2024 | Elevating AdTech Standards: Harnessing Big Data and...
ANIn Bengaluru Dec 2024 | Elevating AdTech Standards: Harnessing Big Data and...ANIn Bengaluru Dec 2024 | Elevating AdTech Standards: Harnessing Big Data and...
ANIn Bengaluru Dec 2024 | Elevating AdTech Standards: Harnessing Big Data and...
AgileNetwork
?
Data Science Salon: Enabling self-service predictive analytics at Bidtellect
Data Science Salon: Enabling self-service predictive analytics at BidtellectData Science Salon: Enabling self-service predictive analytics at Bidtellect
Data Science Salon: Enabling self-service predictive analytics at Bidtellect
Formulatedby
?
LINE's Vision of an Ideal Advertisement Platform
LINE's Vision of an Ideal Advertisement PlatformLINE's Vision of an Ideal Advertisement Platform
LINE's Vision of an Ideal Advertisement Platform
LINE Corporation
?
Project Lotus Intro Deck Aug
Project Lotus Intro Deck AugProject Lotus Intro Deck Aug
Project Lotus Intro Deck Aug
martinsunwenhua
?
Qcon London 2017 - Architecture overhaul - Ad serving @ Spotify scale
Qcon London 2017 -  Architecture overhaul - Ad serving @ Spotify scaleQcon London 2017 -  Architecture overhaul - Ad serving @ Spotify scale
Qcon London 2017 - Architecture overhaul - Ad serving @ Spotify scale
Kinshuk Mishra
?
Epam BI - Near Realtime Marketing Support System
Epam BI - Near Realtime Marketing Support SystemEpam BI - Near Realtime Marketing Support System
Epam BI - Near Realtime Marketing Support System
Dmitry Tolpeko
?
Rd Online Deck 3.0
Rd Online Deck 3.0Rd Online Deck 3.0
Rd Online Deck 3.0
Zestadz
?
Data Science at Flurry
Data Science at FlurryData Science at Flurry
Data Science at Flurry
soupsranjan
?
KB Seminars: Working with Technology - Advertising; 10/13
KB Seminars: Working with Technology - Advertising; 10/13KB Seminars: Working with Technology - Advertising; 10/13
KB Seminars: Working with Technology - Advertising; 10/13
MDIF
?
ANIn Bengaluru Dec 2024 | Building a Quality-Centric Business Architecture: P...
ANIn Bengaluru Dec 2024 | Building a Quality-Centric Business Architecture: P...ANIn Bengaluru Dec 2024 | Building a Quality-Centric Business Architecture: P...
ANIn Bengaluru Dec 2024 | Building a Quality-Centric Business Architecture: P...
AgileNetwork
?
Smadex Company Profile
Smadex Company ProfileSmadex Company Profile
Smadex Company Profile
smadex
?
Deepak-Computational Advertising-The LinkedIn Way
Deepak-Computational Advertising-The LinkedIn WayDeepak-Computational Advertising-The LinkedIn Way
Deepak-Computational Advertising-The LinkedIn Way
yingfeng
?
ROI without monetization - Stefan Bielau
ROI without monetization - Stefan Bielau ROI without monetization - Stefan Bielau
ROI without monetization - Stefan Bielau
Adjust
?
Reach targeted audience segments with top-quality 3rd party data.
Reach targeted audience segments with top-quality 3rd party data.Reach targeted audience segments with top-quality 3rd party data.
Reach targeted audience segments with top-quality 3rd party data.
reklamajans
?
ANTS Programmatic Agency - Credential
ANTS Programmatic Agency - CredentialANTS Programmatic Agency - Credential
ANTS Programmatic Agency - Credential
ANTS
?
OMLIVE 2017 - ADWORDS TOOLS & SCRIPTS for PPC-NERDS 2017
OMLIVE 2017 - ADWORDS TOOLS & SCRIPTS for PPC-NERDS 2017OMLIVE 2017 - ADWORDS TOOLS & SCRIPTS for PPC-NERDS 2017
OMLIVE 2017 - ADWORDS TOOLS & SCRIPTS for PPC-NERDS 2017
Marcel Prothmann
?
Epom Ad Server For Networks
Epom Ad Server For NetworksEpom Ad Server For Networks
Epom Ad Server For Networks
Epom
?
ANIn Bengaluru Dec 2024 | Elevating AdTech Standards: Harnessing Big Data and...
ANIn Bengaluru Dec 2024 | Elevating AdTech Standards: Harnessing Big Data and...ANIn Bengaluru Dec 2024 | Elevating AdTech Standards: Harnessing Big Data and...
ANIn Bengaluru Dec 2024 | Elevating AdTech Standards: Harnessing Big Data and...
AgileNetwork
?
Data Science Salon: Enabling self-service predictive analytics at Bidtellect
Data Science Salon: Enabling self-service predictive analytics at BidtellectData Science Salon: Enabling self-service predictive analytics at Bidtellect
Data Science Salon: Enabling self-service predictive analytics at Bidtellect
Formulatedby
?
LINE's Vision of an Ideal Advertisement Platform
LINE's Vision of an Ideal Advertisement PlatformLINE's Vision of an Ideal Advertisement Platform
LINE's Vision of an Ideal Advertisement Platform
LINE Corporation
?
Project Lotus Intro Deck Aug
Project Lotus Intro Deck AugProject Lotus Intro Deck Aug
Project Lotus Intro Deck Aug
martinsunwenhua
?

Vpon - 廣告效果導向為基礎的行動廣告系統

  • 1. 廣告效果導向為基礎的行動廣告系統 Recommender as an example Steven Chiu RD department Vpon Inc.
  • 2. Outline ? Background, challenges and KPIs ? Basic concept ? Challenges and KPIs ? Vpon Ad service infrastructure ? AD effectiveness related work ? Recommender ? System flows ? Summary ? Q&A
  • 3. Basic concept Vpon Ad service infrastructure Challenges and KPIs
  • 4. Typical use case Clicks Conversions The media Landing pages ADs
  • 5. Ads on Vpon… Mainly for Navigation apps, e.g. Navidog POI (Map) POI (Banner) Normal
  • 6. Full screen ads Video ads Ads on Vpon…
  • 7. AD Performance Evaluation ? Click Through Rate (CTR) ? Conversion Rate ? Goals ?To maximize CTR ?To maximize conversations Click Conversion Impression
  • 8. Integration Apps Placing Ads ? Charged in CPC, CPM ? Criteria: ? time, locations, app categories, budget, Performance reports Advertisers app App reports app app … Mobile app users Mobile app publishers Advertisers Ad performance reports
  • 9. Vpon AD services backend Data Archiving & Analysis User Context Runtime information User’s Ad Requests Ad Serving Scalable AD Serving Transaction & Billing Real-time Ad Selection UserScenario Modeling Data Mining MR/Spark HBase HDFS Ad-hoc Analytics Reporting & Data Warehouse Adaptive AD Distribution System Continues Improvement Ad performance P3
  • 10. 60+ M Monthly Active Unique Devices 200+ M of Daily Ad Requests 2+ T Ad transaction records over time 25+ M Cell Towers/Wi-Fi AP Location Data Some numbers for Vpon AD Network P2 Taipei, Shanghai, HK, Bejing and Tokyo 2 IDCs at Taipei, Shanghai and Some Amazon EC2 nodes
  • 11. Data Analysis Ad Requests Ad web service Backend Memory cache In- memory Grid HBase MapReduce/Spark HA Proxy Message Routing (Apache Kafka) Ad Request Cue Backend Hadoop Distributed File System (HDFS) User Profiles Ad Requests HTTP POST Avro Avro Avro Ad videos, images HTTP Get Data Processing and Archiving Creative and videos AD management Report UI (Django, SSH) Vpon AD services backend functionsCDN Recommender System Other undergoing topics Reporting system Sales Support System AD-hoc reporting Operation Ganglia Solr AD Operation AD Monitoring System Scenario modeling Avro Web Proxy + Cache Memory cache In- memory Grid Cue User Profiles (Couch DB and HBase) Rsync, Avro Avro Python + pig, hive, Hadoop Streaming, spark Python + pig, hive, Hadoop Streaming, spark Advertisers
  • 12. Recommender as an example Design and Implementation
  • 14. Recommender ? Types ? User(imei) based recommender system ? Item(ad) based recommender system ? Steps ? Step1: Campaign/AD similarity table ? Step2: Prediction Phase ? Step3: Verification Phase ? (Continuous Improvement)
  • 15. ? Serve ads according to users preference Recommender flow Prediction Machine Learning (e.g. recommender) Evaluation Data Selection ? Select user records of the Ad Click/Conversion action by different kinds of Apps ? Select users logs of the Location, Date/Time, Usage Freq., Area, Movement Speed… ? Identify relation of the conversion types, App info, Ad info and user info to best choose configurations ? Campaign/AD similarity calculation ? User preferences ? Advertising in accordance with the identified targeted users ? Feedback the AD execution results into the system for adjusting the modeling adaptively P5
  • 16. Ad 1 Ad 2 Ad 3 Ad 4 Ad N User 1 0 0 1 0 0 User 2 1 1 0 1 0 User 3 1 1 1 1 1 User 4 1 1 0 0 0 User N … … … … … Step1: Ads' Similarities Unique device IDs from latest K months Historical and ongoing ads (App downloads as conversions)
  • 17. Ad 1 Ad 2 Ad 3 Ad 4 Ad N User 1 P(1,1) P(1,2) P(1,3) P(1,4) P(1,5) User 2 P(2,1) P(2,2) P(2,3) P(2,4) P(2,5) User 3 P(3,1) P(3,2) P(3,3) P(3,4) P(3,5) User 4 P(4,1) 1P(4,2) P(4,3) P(4,4) P(4,5) User Z … … … … … Step2: Users' Preferences Unique device IDs from latest K months Historical and ongoing ads (App downloads as conversions)
  • 18. User 1 User 2 … … … … … … Step3: Prediction Phase: ADs sorted by preference
  • 19. Data Analysis Ad Requests Ad web service Backend Memory cache In- memory Grid HBase MapReduce/Spark HA Proxy Message Routing (Apache Kafka) Ad Request Cue Backend Hadoop Distributed File System (HDFS) User Profiles Ad Requests HTTP POST Avro Avro Avro Ad videos, images HTTP Get Data Processing and Archiving Creative and videos Billing System CDN Recommender System Other undergoing topics Reporting system Sales Support System AD-hoc reporting Operation Ganglia Solr AD Operation AD Monitoring System Scenario modeling Avro Billing Proxy + Cache Memory cache In- memory Grid Cue User Profiles (Couch DB and HBase) Rsync, Avro Avro Step3: Prediction Phase: Serving Ads based on Preferences user1 ad1,ad2, ad5 user2 ad2,ad4, ad5 user3 ad4,ad5,ad6,ad8 user1 Persisted on Apache CouchDB Replicated to in-memory grid
  • 20. Step4: Evaluation Phase Using our Optimization Model, the CTR increased 3~4 times Normal 1st Rnd Optimized 1st Rnd Normal 2nd Rnd Optimized 2nd Rnd Clk 987 2318 973 2330 Imp 122,514 82,229 122,397 81,882 CTR 0.81% 2.82% 0.79% 2.85% 0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00% 1 10 100 1,000 10,000 100,000 1,000,000 CTR #ofImp./Clk. Perf. Campaign 0.000% 1.000% 2.000% 3.000% 4.000% 5.000% 6.000% 7.000% Clk v.s. Conv 0.746% 3.646% 6.386% Clk v.s. Conv Normal 0.746% recm_1st lvl. 3.646% recm_2nd lvl. 6.386% Game App DL Clk v.s. Conv. After our 2nd lvl optimization, the conv. v.s. click increased 8.56 times
  • 21. Step5: continuous monitoring and improvement 10,037,003 2,451,061 85.01% 81.29% 0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00% 0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000 12,000,000 No-Optimization Optimized Target%(Perf.) Imp.consumed(Cost) Imp. Consumed (Cost) Targeted % (Perf.) 0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60% CTR CVR IVR 0.90% 1.53% 1.37% 0.88% 0.57% 0.50% Optimize Normal CTR = Click v.s. Impression CVR = Click v.s. Conv. IVR = Imp. v.s. Conv. Conv. Rate increased 3 times Cost Optimization: Cost reduced more than 75% while performance only decreased 3.72%
  • 22. Implementation ? Hadoop MapReduce as computing platform ? Using Hadoop streaming with Python ? Map: a list of ad pairs as input for similarity caculation ? Reduce: simply aggregate the map results ? Re-modeling on a daily basis based on results ? Will go on to use Haoop HDFS + Spark + Python for performance benefit
  • 24. Summary ? Build the infra. that proves models effective or not as early as possible ? AB testing for new models ? Automate as much as possible ? Monitoring and measurement ? Computing resource ? Properly manage Product, ad-hoc, analysis jobs ? Optimization does work ? Use Python wherever it fits