This document discusses recent advances in seq2seq learning. It begins with an overview of recurrent neural networks and LSTMs, which are used in seq2seq models. Seq2seq models are introduced as a way to map an input sequence to an output sequence without requiring explicit segmentation. The seq2seq idea involves using an encoder to represent the input sequence and a decoder to generate the output sequence. Attention mechanisms are discussed as a way to allow the decoder to focus on different parts of the input sequence. Applications mentioned include machine translation, image captioning, grammar parsing, and conversational bots.
bi畉n ng畉u nhi棚n v ph但n ph畛i x叩c su畉t trong to叩n th畛ng k棚. b畉n 畛c nh畛 like v share nh辿.
Random variables and probability distributions in statistical mathematics. Read and remember like and share.
4. 1. GI畛I THI畛U
V鱈 d畛: Tung con x炭c s畉c. G畛i X l s畛 ch畉m thu
動畛c.
T畉p gi叩 tr畛 c畛a X l {1,2,3,4,5,6}
V鱈 d畛: Tung con x炭c s畉c. G畛i X l s畛 l畉n tung cho
畉n khi 動畛c 6 ch畉m
T畉p gi叩 tr畛 c畛a X l:{1,2,3,4,}
V鱈 d畛: X l tu畛i th畛 c畛a b坦ng 竪n
T畉p gi叩 tr畛 c畛a X l :{0,}
55. 4. K畛 V畛NG TON V PH蕩NG SAI
V鱈 d畛 :Ch畛 s畛 IQ c畛a 1 ng動畛i b畉t k狸 c坦 th畛 coi l 1
bi畉n ng畉u nhi棚n X c坦 gi叩 tr畛 k畛 v畛ng l 100 v 畛
l畛ch chu畉n l 15. Ch畛 s畛 IQ o 動畛c cao nh畉t l 228
thu畛c v畛 Kasparov. T鱈nh x叩c su畉t g畉p 1 c叩 nh但n
kh叩c c坦 ch畛 s畛 IQ 鱈t nh畉t l b畉ng c畛a Kasparov
63. 5. M畛T S畛 QUY LU畉T
PHN PH畛I 畉C BI畛T
Quy lu畉t ph但n ph畛i nh畛 th畛c - B(n,p)
Th畛c hi畛n n ph辿p th畛 畛c l畉p, trong m畛i ph辿p th畛
c坦 2 tr動畛ng h畛p, bi畉n c畛 A xu畉t hi畛n ho畉c bi畉n c畛 A
kh担ng xu畉t hi畛n. X叩c su畉t bi畉n c畛 A xu畉t hi畛n trong
m畛i ph辿p th畛 l p. G畛i X l s畛 l畉n bi畉n c畛 A xu畉t
hi畛n. Ta c坦:
PX = Cnx px (1-p)n-x v畛i x=0,1,.,n
64. 5. M畛T S畛 QUY LU畉T
PHN PH畛I 畉C BI畛T
畛nh ngh挑a
N畉u X c坦 hm x叩c su畉t l
p(k)= Cnk pk (1-p)n-k , k= 0,1,n
th狸 ta n坦i X ph但n ph畛i theo quy lu畉t nh畛 th畛c v畛i
tham s畛 n v p, v ta vi畉t X ~ B(n,p)
68. 5. M畛T S畛 QUY LU畉T
PHN PH畛I 畉C BI畛T
Quy lu畉t ph但n ph畛i h狸nh h畛c
Ti畉n hnh n ph辿p th畛 畛c l畉p, x叩c su畉t 畛 bi畉n c畛 A
x畉y ra l p. G畛i X l s畛 l畉n th畛 cho t畛i khi bi畉n c畛 A
x畉y ra l畉n 畉u, X s畉 ph但n ph畛i theo quy lu畉t h狸nh
h畛c. {X=k}. Ta c坦
PX = p. (1-p) k-1
69. 5. M畛T S畛 QUY LU畉T
PHN PH畛I 畉C BI畛T
畛nh ngh挑a
N畉u hm x叩c su畉t c畛a X c坦 d畉ng
p(k) = p.(1-p)k-1 , k=1,2.
ta n坦i X ph但n ph畛i theo quy lu畉t h狸nh h畛c v畛i tham
s畛 p, ta vi畉t X~ geom (p)
91. 7 QUY LU畉T PHN PH畛I CHU畉N
V鱈 d畛 :Ch畛 s畛 IQ c畛a 1 ng動畛i 動畛c coi nh動 l bi畉n
ng畉u nhi棚n X ph但n ph畛i theo quy lu畉t chu畉n v畛i gi叩
tr畛 k畛 v畛ng 100 v 畛 l畛ch chu畉n 15. T狸m
a. X叩c su畉t 畛 1 ng動畛i c坦 IQ l畛n h董n 140
b. X叩c su畉t 畛 1 ng動畛i c坦 IQ gi畛a 120 v 130
c. x sao cho t畛 l畛 IQ l畛n h董n x l 99%