The document contains tables showing the probability distribution and cumulative distribution of the standard normal distribution. It provides the probability and cumulative probability values corresponding to a z-score of 1.34. The probability of being left of 1.34 is 0.9099. The probability of being right of 1.34 is 0.0901. The cumulative probability from 0 to 1.34 is 0.4099.
1. B?I 1
W a
F
¨¦ ¨´
¨º ¨º j
?
v
¨²
¨²
¨º? e x d
?
¨²
2. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
??nh ngh?a: Ma tr?n c? mxn tr¨ºn R l¨¤ m?t b?ng
g?m m.n s? th?c ???c vi?t th¨¤nh m h¨¤ng v¨¤ n c?t
nh? sau:
a a a
a a a
¨¦ ¨º 11 12 1
¨´
¨²
= ¨º 21 22 2
¨² ¨º ¨²
¨º ¨º? a a a
¨²
1 2
¨²?
...
...
A
... ... ... ...
...
n
n
m m mn
K¨ª hi?u: A = [aij]mxn
T?p h?p t?t c? c¨¢c ma tr?n c? mxn tr¨ºn R ???c k?
hi?u l¨¤ Mmxn(R)
3. ??i S? Tuy?n T¨ªnh ?
a a a a
a a a a
¨¦ ¨º 11 12 1 j 1
n
¨´
¨²
¨º 21 22 2 j 2
n
¨²
¨º ¨²
¨º ¨º a a a a
¨²
i 1 i 2
ij in
¨²
¨º ¨²
¨º ¨²
¨º? a a a a
1 2
¨²?
... ...
... ...
... ... ... ... ... ...
... ...
... ... ... ... ... ...
... ...
m m mj mn
H¨¤ng th? nh?t
a11 a22 a33 ¡ g?i l¨¤ ???ng
ch¨¦o ch¨ªnh (m = n)
H¨¤ng th? i
C?t th? 2 C?t th? j
aij: Ph?n t? n?m ? h¨¤ng i c?t j
aij
mxn: g?i l¨¤ c?p c?a ma tr?n
¡ì1: Ma Tr?n
5. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
* Khi m = n (s? h¨¤ng = s? c?t) ta n¨®i A l¨¤ ma tr?n
vu?ng c?p n.
T?p h?p t?t c? c¨¢c ma tr?n vu?ng c?p n ???c k?
hi?u Mn.
V¨ª d?:
0 7 8
1 3
¨¦ ¨´
¨¦ ¨´ ¨º ¨º- ¨² ; 4 - 2 0
¨² ? 2 7
? ¨º ¨² ¨º ? 5 0 2
?
¨² Ma tr?n vu?ng c?p 2
Ma tr?n vu?ng c?p 3
6. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
C¨¢c ma tr?n ??c bi?t:
1. Ma tr?n kh?ng: aij = 0,"i, j.
(t?t c? c¨¢c ph?n t? ??u = 0)
V¨ª d?:
0 0 0
0 0 0
O ¨¦ ¨´
= ¨º ¨²
? ?
7. T¨ªnh ?
¡ì1: Ma Tr?n
Tuy?n ??i S? C¨¢c ma tr?n ??c bi?t:
2. Ma tr?n ch¨¦o: l¨¤ ma tr?n vu?ng c¨®:
aij = 0,"i ? j.
(c¨¢c ph?n t? ngo¨¤i ???ng ch¨¦o ch¨ªnh = 0)
V¨ª d?:
2 0 0
0 4 0
0 0 9
¨¦ ¨´
¨º ¨²
¨º ¨²
¨º? ¨²?
¨¦ ¨º 11
¨´
¨²
¨º ¨²
¨º ¨²
¨º ¨²
? ?
0 ... 0
0 ... 0
22
... ... ... ...
0 0 ... nn
a
a
a
8. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
C¨¢c ma tr?n ??c bi?t:
3. Ma tr?n ??n v?: l¨¤ ma tr?n ch¨¦o c¨®:
aii =1,"i =1, 2,..., n.
K? hi?u: I, In.
V¨ª d?:
2 3
1 0 ... 0
1 0 0
1 0 0 1 ... 0
, 0 1 0 ,
0 1 .. .. ... ..
0 0 1
0 0 ... 1
n I I I
¨¦ ¨´
¨¦ ¨´ ¨º ¨² ¨¦ ¨´ ¨º ¨² ¨º ¨² = ¨º ¨² = ¨º ¨² = ? ? ¨º ¨² ¨º? ¨²? ¨º ¨²
? ?
9. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
C¨¢c ma tr?n ??c bi?t:
4. Ma tr?n tam gi¨¢c: l¨¤ ma tr?n vu?ng c¨®
aij = 0,"i > j.
(tam gi¨¢c tr¨ºn)
0, . ij a = "i < j (tam gi¨¢c d??i)
V¨ª d?: 1 2 5 4
¨¦ ¨´
¨º ¨º 0 3 - 1 0
¨² ¨²
¨º 0 0 2 6
¨²
¨º ? 0 0 0 9
¨²
?
2 0 0 0
7 1 0 0
0 8 2 0
2 9 1 5
¨¦ ¨´
¨º ¨²
¨º ¨²
¨º ¨²
¨º ¨²
? ?
MT tam gi¨¢c tr¨ºn MT tam gi¨¢c d??i
10. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
C¨¢c ma tr?n ??c bi?t:
5. Ma tr?n c?t:l¨¤ ma tr?n c¨® n=1.
Ma tr?n c?t c¨® d?ng:
a
a
¨¦ ¨º 11
¨´
¨²
¨º 21
¨²
¨º ..
¨²
¨º a
¨²
? m
1
?
11. T¨ªnh ?
¡ì1: Ma Tr?n
Tuy?n ??i S? C¨¢c ma tr?n ??c bi?t:
6. Ma tr?n h¨¤ng: l¨¤ ma tr?n c¨® m=1.
Ma tr?n h¨¤ng c¨® d?ng:
[ ] 11 12 1 ... n a a a
12. T¨ªnh ?
¡ì1: Ma Tr?n
Tuy?n ??i S? C¨¢c ma tr?n ??c bi?t:
7. Ma tr?n b?ng nhau:
= ¨¦? ¨´? = ¨¦? ¨´? = ? ij = ij " m n m n
A a b B a b i j
8. Ma tr?n chuy?n v?: cho ma tr?n A=[aij]mxn,
ma tr?n chuy?n v? c?a ma tr?n A k? hi?u AT
v¨¤ x¨¢c ??nh AT=[bij]nxm v?i bij=aji v?i m?i
i,j. (chuy?n h¨¤ng th¨¤nh c?t)
ij ij , , .
? ?
13. ??i S? Tuy?n T¨ªnh ?
¡ì1: Ma Tr?n
D?ng c?a ma tr?n chuy?n v?:
a a a a a a
a a a a a a
¨¦ ¨º 11 12 1 n ¨´ ¨¦ 11 21 m
1
¨´
¨² ¨º ¨²
= ¨º 21 22 2 n ¨² ? T = ¨º 12 22 m
2
¨² ¨º ¨² ¨º ¨²
¨º ¨² ¨º ¨²
¨º? ¨²? ¨º? ¨²?
A A
a a a a a a
m 1 m 2 mn m n 1 n 2
n nm n m
V¨ª d?:
... ...
... ...
.. .. ... .. .. .. ... ..
... ...
? ?
2 3
3 2
1 6
1 2 5
2 7
6 7 9
? 5 9
?
¨¦ ¨´
¨¦ ¨´ ¨º ¨² = ¨º ¨² ? = ¨º ¨² ? ? ¨º ¨² ? ?
A AT
14. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
* Khi A = AT th¨¬ A ???c g?i l¨¤ ma tr?n ??i x?ng.
V¨ª d?:
1 2 3
2 0 5
3 5 1
¨¦ ¨´
= = ¨º ¨² ¨º ¨²
¨º? - ¨²?
A AT
15. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
* Khi A = -AT th¨¬ A ???c g?i l¨¤ ma tr?n ph?n ??i
x?ng.
V¨ª d?:
¨¦ 0 1 4 ¨´ ¨¦ 0 - 1 - 4
¨´
= ¨º- 1 0 - 3 ¨² ? T
= ¨º 1 0 3
¨² ¨º ¨² ¨º ¨²
¨º?- 4 3 0 ¨²? ¨º? 4 - 3 0
¨²?
= -
A A
T
A A
16. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
C¨¢c ph¨¦p to¨¢n tr¨ºn ma tr?n:
1. Ph¨¦p c?ng hai ma tr?n:
¨¦? a + b = a + b
ij ¨´? ¨¦? ¨´? ¨¦? ¨´? m ? n ij m ? n ij ij m ?
n (c?ng theo t?ng v? tr¨ª t??ng ?ng)
V¨ª d?:
0
1 2 3
3 5 2 4
4 2 1 5
1+ 0=11
2+3=55
¨¦ ¨´ ¨¦ ¨´ ¨¦ ¨´
¨º- ¨² ¨º ¨² ¨º ¨² ¨º ¨² + ¨º - ¨² = ¨º -1 1
¨²
¨º? - ¨²? ¨º? ¨²? ¨º? 5 3
¨²?
17. ??i S? Tuy?n T¨ªnh ?
¡ì1: Ma Tr?n
C¨¢c t¨ªnh ch?t: Gi? s? A,B,C,O l¨¤ c¨¢c ma
tr?n c¨´ng c?p, khi ?¨®:
i )
A + B = B +
A
ii )
A + O = A + O =
A
iii ) A + ( B + C ) = ( A + B )
+
C
18. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
C¨¢c ph¨¦p to¨¢n tr¨ºn ma tr?n:
2. Ph¨¦p nh?n m?t s? v?i m?t ma tr?n:
l ¨¦? a ¨´? = ¨¦? l . a , l ? R.
ij ¨´? m ? n ij m ?
n (c¨¢c ph?n t? c?a ma tr?n ??u ???c nh?n cho l )
V¨ª d?:
3
¨¦ - 2
0
¨´ ¨¦ ¨´
¨º ¨º 7 4 5
¨² ¨² = ¨º ¨² ¨º ¨²
¨º? 0 - 2 1
¨²? ¨º? ¨²?
2.3=66
2.(-2)=-4
-2
-0
14
2.0=0
8 10
0 -4 2
19. T¨ªnh ?
¡ì1: Ma Tr?n
Tuy?n ??i S? C¨¢c t¨ªnh ch?t: "a ,b ?R,"A, B
l¨¤ hai ma tr?n
c¨´ng c?p, khi ?¨®
i ) a ( A + B )
= a A +
a
B
ii ) ( a + b )
A = a A +
b
A
iii ) a ( b A ) =
( ab
)
A
iv ) 1
A =
A
Sinh vi¨ºn t? ki?m tra.
21. ??i S? Tuy?n T¨ªnh ? ¡ì1: Ma Tr?n
C¨¢c ph¨¦p to¨¢n tr¨ºn ma tr?n:
3. Ph¨¦p nh?n hai ma tr?n: Cho hai ma tr?n
m? p ; p?n , A B
[ ] ? ? ? = m p p n ij m n A B c
Khi ?¨® ma tr?n g?i l¨¤ t¨ªch c?a
hai ma tr?n A, B. Trong ?¨®:
1 1 2 2 ... , 1, ; 1, . ij i j i j ip pj c = a b + a b + + a b "i = m j = n
i1 a i2 a ip a H¨¤ng th? i c?a ma tr?n A.
1 j b 2 j b pj b C?t th? j c?a ma tr?n B.
ij c
Nh? v?y = h¨¤ng th? i c?a ma tr?n A nh?n t??ng ?ng
v?i c?t th? j c?a ma tr?n B r?i c?ng l?i.
26. T¨ªnh ?
¡ì1: Ma Tr?n
Tuy?n ??i S? C¨¢c t¨ªnh ch?t: Ta gi? s? c¨¢c ma tr?n c¨® c?p
ph¨´ h?p ?? t?n t?i ma tr?n t¨ªch
i A BC =
AB C
ii A B + C = AB +
AC
iii A + B C = AC +
BC
iv " k ? R k AB = kA B =
A kB
v AI = A IA =
A
) ( ) ( )
) ( )
) ( )
) , ( ) ( ) ( )
) ( )
27. T¨ªnh ?
¡ì1: Ma Tr?n
Tuy?n ??i S? C¨¢c t¨ªnh ch?t:
T T T
i ) ( A + B )
= A +
B
ii ) ( kA ) T = kA T
,
" k ?
R
iii ) ( AB )
T =
B T A
T
Sinh vi¨ºn t? ki?m tra.
28. T¨ªnh ?
¡ì1: Ma Tr?n
Tuy?n ??i S? ?a th?c c?a ma tr?n :
Cho ?a th?c
0 1 ( ) n n ...
n n P x = a x + a x - + + a
v¨¤ ma tr?n vu?ng
Khi ?¨®:
A = [aij ]n
1
P ( A ) = a A n + a A n - 1
+ ...
+ a I
n 0 1 n n n I
(trong ?¨® l¨¤ ma tr?n ??n v? c¨´ng c?p v?i ma tr?n A)
29. T¨ªnh ?
¡ì1: Ma Tr?n
Tuy?n ??i S? V¨ª d?:
Cho 2
P2 (x) = x -3x + 5
v¨¤ ma tr?n 1 2
A ¨¦ ¨´
= ¨º ? 0 - 3
¨² ?
Khi ?¨®: 2
P ( A ) = A - 3 A+ 5
I
2 2
2
1 2 1 2 1 0
¨¦ ¨´ ¨¦ ¨´ ¨¦ ¨´
= ¨º ¨² - 3 ¨º ¨² + 5
¨º ¨² ? 0 - 3 ? ? 0 - 3 ? ? 0 1
?