從行為特質進行細緻顧客分群, 發掘更多消費者行為商機, 進行商機探索.
Find more business opportunities from behavioral micro-segmentation.We provide more marketing clues for marketing guys to do some business action or consumer insight.
「活用您的Big Data,實現線上服務行銷的精準推薦」
5.24 @ 六福皇宮 13:30-14:10 - Track: Big Data for Cloud Service
主講者:陳育杰 / Etu 資深協理
《議題簡介》
在這個資訊氾濫的時代,每個人都希望可以只接收或看到自己感興趣的內容,不論是新聞、商品訊息、甚至是廣告。也因此,對於所有的企業來說,如何針對你的客戶做到更精準的推薦,變得是一個越來越重要且無可避免的一個課題,更正確的說,精準行銷的核心正是來自於精準的...... 推薦。Amazon 的推薦機制(Recommendation)對於新客戶轉化率的提升與舊客戶每筆訂單金額的提高,一直是所有電子商務公司的一個典範。而精準推薦並不是只可以用在線上的服務,今天不論是虛擬或實體的通路,如何隨時提供客戶感興趣的推薦清單,以維持客戶忠誠度並提高銷售金額,都是企業成長獲利的一大關鍵。在這個演講當中,Etu 團隊將為你介紹如何運用 Big Data 處理與分析的技術,讓企業可以很方便的來分析線上與實體的客戶和商品的購買或瀏覽的關聯性,並輕易地建構出對客戶有效的推薦清單。
2012.05.24 於 「Big Data Taiwan 2012」的 Keynote 講稿。
主講者:Etu 副總經理/ 蔣居裕
《議題簡介》
無論是企業區域網路,還是開放的網際網路,在巨大的結構化與非結構化資料的背後,其實充滿著各種行為意圖,以及人、事、物、時、地的多維度關聯。商業的日益競爭,已經來到了一個除了講求行銷創意,還要擁有巨量資料處理與分析技術,才能出奇制勝的時代。有人形容 Big Data 的價值挖掘,就像是在攪拌混凝土,若在尚未完成前就中斷,將導致前功盡棄,全無可用的窘境。對 Big Data 的意圖與關聯探索,必須是 End-to-End 全程的照料,方得實現。本議程將舉例說明這個有序到永續的過程,讓聽者更能領略意圖與關聯充滿的世界。
Digital Marketing Trend Presentation - The Gamification RevolutionBin Hu
?
Keynote Speech at 10th China Daily Chemical Industry Forum
What is the new digital marketing trend in China? What are the key drivers behind gamification revolution? What's the next wave of this trend?
2012.05.24 於 「Big Data Taiwan 2012」的 Keynote 講稿。
主講者:Etu 副總經理/ 蔣居裕
《議題簡介》
無論是企業區域網路,還是開放的網際網路,在巨大的結構化與非結構化資料的背後,其實充滿著各種行為意圖,以及人、事、物、時、地的多維度關聯。商業的日益競爭,已經來到了一個除了講求行銷創意,還要擁有巨量資料處理與分析技術,才能出奇制勝的時代。有人形容 Big Data 的價值挖掘,就像是在攪拌混凝土,若在尚未完成前就中斷,將導致前功盡棄,全無可用的窘境。對 Big Data 的意圖與關聯探索,必須是 End-to-End 全程的照料,方得實現。本議程將舉例說明這個有序到永續的過程,讓聽者更能領略意圖與關聯充滿的世界。
Digital Marketing Trend Presentation - The Gamification RevolutionBin Hu
?
Keynote Speech at 10th China Daily Chemical Industry Forum
What is the new digital marketing trend in China? What are the key drivers behind gamification revolution? What's the next wave of this trend?
商業價值主張設計:價值地圖 Value proposition design canvas -CanvasPaul (士杰) Dai (戴)
?
The document outlines steps for creating a value map, including stepping into a customer's shoes to understand their perspective, mapping how products and services create value for customers, and exercises to assess fit between problems and solutions, products and markets, and business models. It is divided into sections on customer profiling, value creation mapping, and fit assessment exercises.
An immersive workshop at General Assembly, SF. I typically teach this workshop at General Assembly, San Francisco. To see a list of my upcoming classes, visit https://generalassemb.ly/instructors/seth-familian/4813
I also teach this workshop as a private lunch-and-learn or half-day immersive session for corporate clients. To learn more about pricing and availability, please contact me at http://familian1.com
#3: 今天議程從投信互聯數據的廣泛探索, 到全通路的虛實整合行銷, 再到全面解構金融顧客的行銷需求
我們最終還是要發掘更多可能創造業績的機會,要透過細化消費分群發掘更多商機, 提高精準行銷.
我們就以說到銀行,你會想到什麼?開戶、刷本、換外幣還是辦理貸款?攤開雙手,都能算出自己一年到過多少次銀行。
未來金融服務體驗都會轉到手機上,因此強大的行動應用開發、社群媒體、大數據分析,消費者體驗,這是發展金融創新最重要的 4 個基礎。
Segmentation 2.0 or Segmentation in the Age of Big Data
In today’s age of Big Data, a multitude of new types of data are readily available. These include:
Activity-based data, e.g. web site tracking information, purchase histories, call center data, mobile data, response to incentives
Social network profiles, e.g. work history, group membership,
Social influence and sentiment data, e.g. product and company associations (e.g. likes or follows), online comments and reviews, customer service records
This data explosion enables the definition of increasingly finer segments. These?micro-segments?enable ever finer targeting of content, offers, products and services, which can deliver real and substantial returns.
Now It’s Your Turn
The use of micro-segments based on past customer behavior—such as observing product / service purchases over a period of time, price changes, response to incentives, location and many other factors—allows for diminished turnaround times and easy to invoke programs. And with new solutions that employ sophisticated analytics, machine learning and visualization, market segmentation in the age of Big Data is easy to implement, while producing truly actionable results.
國內外,幾乎所有經營零售消費市場的企業,都會做分群。
geographic?(e.g. region, population growth or density),?demographic?(e.g. age, gender, education, income),?psychographic?(e.g. values, attitudes, lifestyles), and?behavioral?(e.g. usage patterns, price sensitivity).
但你在做
哪些都買什麼但精準群體智慧
分析人喜歡的商品關聯,在這個館比較喜歡的類別
消費零售公司都會做分群,也做RFM分析。在國際市場中 Pandora, Netflix, Amazon
#8: 除了交易結果的RFM分析,在數位生活中,你可以從行為中仔細分析發現更多交易前的潛行為,例如:最近客戶擔心國際經濟狀況,如美國聯準會延後公告QE停止決策,希臘倒債議題,原物料下跌,讓客戶更常晚上先查看歐美股匯市及評論,並先解約定存備好銀彈,準備搶搭股市及原物料大跌的獲利機會。
Behavioral segmentation divides the customer base into groups based on the way they respond to promotions, price changes, channels they use to communicate, etc. Based on behavioral segmentation, consumers can be grouped aligned with any of various business strategies such as:
Product Usage: Rather than offering one’s product as a direct replacement for a similar or competitive product, it may be useful to segment customers based on benefits that she seeks for in a product thereby intensifying its relevance.
Buying Pattern: This includes recency, frequency and monetary (RFM) value of purchase, channel used, day/time of purchase, etc.
Decision Makers: This involves understanding people behind decision making process - is the customer influenced by online reviews/opinions or does she rely on feedback from friends within social networks or act on opinions within the family?
Decision Attributes: The criteria can include price, preference to self service, quality of product, service quality, approachability, events in customer lifecycle, etc.
Customer Attitude: This may include customer’s readiness to purchase, risk appetite (early adopter, early majority, late majority), brand loyalty, etc.