際際滷

際際滷Share a Scribd company logo
9th International Conference on Quantum Interaction, 2015
by Catarina Moreira and Andreas Wichert
(Instituto Superior T辿cnico, University of Lisbon, Portugal)
Motivation
Quantum probability and interference effects play an important
role in explaining several inconsistencies in decision-making.
Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
Motivation
Current models of the literature have the following problems:
1. Require a manual parameter tuning to perform predictions;
2. Hard to scale for more complex decision scenarios;
Research Question
Can we build a general quantum
probabilistic model to make
predictions in scenarios with high
levels of uncertainty?
Bayesian Networks
Directed acyclic graph structure in which each node represents a
random variable and each edge represents a direct influence
from source node to the target node.
	
 油
B Pr(	
 油E	
 油=	
 油T	
 油)	
 油=	
 油0.002	
 油
Pr(	
 油E	
 油=	
 油F	
 油)	
 油=	
 油0.998	
 油
Pr(	
 油B	
 油=	
 油T	
 油)	
 油=	
 油0.001	
 油
Pr(	
 油B	
 油=	
 油F	
 油)	
 油=	
 油0.999	
 油
B	
 油E	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油Pr(A=T|B,E)	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油Pr(A=F|B,E)	
 油
T	
 油T	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.95 	
 油	
 油	
 油	
 油	
 油	
 油0.05	
 油
T	
 油F	
 油	
 油	
 油	
 油	
 油 	
 油0.94 	
 油	
 油	
 油	
 油	
 油	
 油0.06	
 油
F	
 油T	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.29 	
 油	
 油	
 油	
 油	
 油	
 油0.71	
 油
F	
 油F	
 油	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.01 	
 油	
 油	
 油	
 油	
 油	
 油0.99	
 油
E
A
Bayesian Networks
Inference is performed in two steps:
1. Computation of the Full Joint Probability Distribution
2. Computation of the Marginal Probability
	
 油
Full Joint Probability
Distribution:	
 油
Marginal Probability:	
 油
Bayesian Networks
Inference is performed in two steps:
1. Computation of the Full Joint Probability Distribution
2. Computation of the Marginal Probability
	
 油
Full Joint Probability
Distribution:	
 油
Marginal Probability:	
 油
Bayes Assumption
Inference in Bayesian Networks
1. Compute the Full Joint Probability Distribution
B E A Pr( A, B, E )
T T T 0.001 x 0.002 x 0.95 = 0.00000190
T T F 0.001 x 0.002 x 0.05 = 0.00000010
T F T 0.001 x 0.998 x 0.94 = 0.00093812
T F F 0.001 x 0.998 x 0.06 = 0.00005988
F T T 0.999 x 0.002 x 0.29 = 0.00057942
F T F 0.999 x 0.002 x 0.71 = 0.00141858
F F T 0.999 x 0.998 x 0.01 = 0.00997002
F F F 0.999 x 0.998 x 0.99 = 0.98703198
B
Pr(	
 油E	
 油=	
 油T	
 油)	
 油=	
 油0.002	
 油
Pr(	
 油E	
 油=	
 油F	
 油)	
 油=	
 油0.998	
 油
Pr(	
 油B	
 油=	
 油T	
 油)	
 油=	
 油0.001	
 油
Pr(	
 油B	
 油=	
 油F	
 油)	
 油=	
 油0.999	
 油
B	
 油E	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油A=T|B,E	
 油)	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油A=F|B,E	
 油)	
 油
T	
 油T	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.95 	
 油	
 油	
 油	
 油	
 油	
 油0.05	
 油
T	
 油F	
 油	
 油	
 油	
 油	
 油 	
 油0.94 	
 油	
 油	
 油	
 油	
 油	
 油0.06	
 油
F	
 油T	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.29 	
 油	
 油	
 油	
 油	
 油	
 油0.71	
 油
F	
 油F	
 油	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.01 	
 油	
 油	
 油	
 油	
 油	
 油0.99	
 油
E
A
Inference in Bayesian Networks
2. Compute Marginal Probability
B E A Pr( A, B, E )
T T T 0.001 x 0.002 x 0.95 = 0.00000190
T T F 0.001 x 0.002 x 0.05 = 0.00000010
T F T 0.001 x 0.998 x 0.94 = 0.00093812
T F F 0.001 x 0.998 x 0.06 = 0.00005988
F T T 0.999 x 0.002 x 0.29 = 0.00057942
F T F 0.999 x 0.002 x 0.71 = 0.00141858
F F T 0.999 x 0.998 x 0.01 = 0.00997002
F F F 0.999 x 0.998 x 0.99 = 0.98703198
+	
 油
+	
 油
Research Question
	
 油
How can we move from a classical
Bayesian Network to a Quantum-
Like paradigm?
Quantum-Like Bayesian Networks
General idea:
- Under unobserved events, the Quantum-Like Bayesian
Network can use interference effects;
- Under known events, no interference is used, since there is no
uncertainty.
Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
Interference Effects
Convert classical probabilities are converted into quantum
amplitudes through Borns rule: squared magnitude quantum
amplitudes.
For two dichotomous random variables:
- Classical Law of Total Probability:
- Quantum Law of Total Probability:
Interference Effects
Quantum Law of Total Probability:
If we expand this term we obtain:
Interference Effects
Quantum Law of Total Probability for 2 random variables:
If we expand this term we obtain: Classical Probability
Quantum Interference
Quantum-Like Bayesian Networks
Convert classical probabilities are converted into quantum
amplitudes through Borns rule: squared magnitude quantum
amplitudes.
- Classical Full Joint Probability Distribution:
- Quantum Full Joint Probability Distribution:
Quantum-Like Bayesian Networks
Convert classical probabilities are converted into quantum
amplitudes through Borns rule: squared magnitude quantum
amplitudes.
- Classical Marginal Probability Distribution:
- Quantum Marginal Probability Distribution:
Quantum-Like Bayesian Networks
- Quantum marginal probability;
- Extension of the Quantum-Like Approach (Khrennikov, 2009) for
N random variables;
Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
Case Study
	
 油
We studied the implications of the
proposed Quantum-Like Bayesian
Network in the literature
Quantum-Like Bayesian Networks
J. Pearl. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers Inc.
Pr(	
 油E	
 油=	
 油T	
 油)	
 油=	
 油0.002	
 油
Pr(	
 油E	
 油=	
 油F	
 油)	
 油=	
 油0.998	
 油
Pr(	
 油B	
 油=	
 油T	
 油)	
 油=	
 油0.001	
 油
Pr(	
 油B	
 油=	
 油F	
 油)	
 油=	
 油0.999	
 油
B	
 油E	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油Pr(A=T|B,E)	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油Pr(A=F|B,E)	
 油
T	
 油T	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.90 	
 油	
 油	
 油	
 油	
 油	
 油0.10	
 油
T	
 油F	
 油	
 油	
 油	
 油	
 油 	
 油0.30 	
 油	
 油	
 油	
 油	
 油	
 油0.70	
 油
F	
 油T	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.20 	
 油	
 油	
 油	
 油	
 油	
 油0.80	
 油
F	
 油F	
 油	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.01 	
 油	
 油	
 油	
 油	
 油	
 油0.99	
 油
E
A
J
B
M
	
 油	
 油	
 油	
 油A	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油M=T	
 油|A	
 油)	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油M=F	
 油|	
 油A	
 油)	
 油
	
 油	
 油	
 油	
 油T	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油0.70 	
 油	
 油	
 油	
 油	
 油	
 油0.30	
 油	
 油	
 油	
 油	
 油	
 油
	
 油	
 油	
 油	
 油F	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油0.01 	
 油	
 油	
 油	
 油	
 油	
 油0.99	
 油
	
 油	
 油	
 油	
 油A	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油J=T	
 油|A	
 油)	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油J=F	
 油|	
 油A	
 油)	
 油
	
 油	
 油	
 油	
 油T	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油0.90 	
 油	
 油	
 油	
 油	
 油	
 油0.10	
 油	
 油	
 油	
 油	
 油	
 油
	
 油	
 油	
 油	
 油F	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油0.05 	
 油	
 油	
 油	
 油	
 油	
 油0.95	
 油
Quantum-Like Bayesian Networks
What happens if we try to compute the probability of A = t, given
that we observed J = t?
Classical Probability:
Quantum Probability:
Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
Quantum-Like Bayesian Networks
What happens if we try to compute the probability of A = t, given
that we observed J = t?
Classical Probability:
Quantum Probability:
Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
Will generate
16 parameters
Problem!
The number of parameters grows exponentially LARGE!
The final probabilities can be ANYTHING in some range!
Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
Problem!
Quantum parameters are very sensitive.
Small changes can lead to completely different probability values
or can stabilize in a certain value!
Research Question
	
 油
How can we deal automatically with
an exponential number of quantum
parameters?
The Synchronicity Principle
Synchronicity is an acausal
principle and can be defined by a
meaningful coincidence which
appears between a mental state
and an event occurring in the
external world.
(Carl G. Jung, 1951)
The Synchronicity Principle
Natural laws are statistical truths. They are only valid when
dealing with macrophysical quantities.
In the realm of very small quantities prediction becomes
uncertain.
The connection of events may be other than causal, and
requires an acausal principle of explanation.
Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
Research Question
	
 油
How can we use the Synchronicity
Principle in the Quantum-Like
Bayesian Network and estimate
quantum parameters?
Semantic Networks
Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
Synchronicity Principle: defined by a meaningful coincidence
between events.
Semantic Networks can help finding events that share a semantic
meaning.
Quantum-Like Bayesian Network +
Semantic Network
Synchronicity
Pr(	
 油E	
 油=	
 油T	
 油)	
 油=	
 油0.002	
 油
Pr(	
 油E	
 油=	
 油F	
 油)	
 油=	
 油0.998	
 油
Pr(	
 油B	
 油=	
 油T	
 油)	
 油=	
 油0.001	
 油
Pr(	
 油B	
 油=	
 油F	
 油)	
 油=	
 油0.999	
 油
B	
 油E	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油Pr(A=T|B,E)	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油Pr(A=F|B,E)	
 油
T	
 油T	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.90 	
 油	
 油	
 油	
 油	
 油	
 油0.10	
 油
T	
 油F	
 油	
 油	
 油	
 油	
 油 	
 油0.30 	
 油	
 油	
 油	
 油	
 油	
 油0.70	
 油
F	
 油T	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.20 	
 油	
 油	
 油	
 油	
 油	
 油0.80	
 油
F	
 油F	
 油	
 油	
 油	
 油	
 油	
 油	
 油 	
 油0.01 	
 油	
 油	
 油	
 油	
 油	
 油0.99	
 油
E
A
J
B
M
	
 油	
 油	
 油	
 油A	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油M=T	
 油|A	
 油)	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油M=F	
 油|	
 油A	
 油)	
 油
	
 油	
 油	
 油	
 油T	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油0.70 	
 油	
 油	
 油	
 油	
 油	
 油0.30	
 油	
 油	
 油	
 油	
 油	
 油
	
 油	
 油	
 油	
 油F	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油0.01 	
 油	
 油	
 油	
 油	
 油	
 油0.99	
 油
	
 油	
 油	
 油	
 油A	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油J=T	
 油|A	
 油)	
 油	
 油	
 油	
 油	
 油	
 油Pr(	
 油J=F	
 油|	
 油A	
 油)	
 油
	
 油	
 油	
 油	
 油T	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油0.90 	
 油	
 油	
 油	
 油	
 油	
 油0.10	
 油	
 油	
 油	
 油	
 油	
 油
	
 油	
 油	
 油	
 油F	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油	
 油0.05 	
 油	
 油	
 油	
 油	
 油	
 油0.95	
 油
Synchronicity
Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
The Synchronicity Heuristic
The interference term is given as a sum of pairs of random
variables.
Heuristic: parameters are calculated by computing different vector
representations for each pair of random variables.
Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
The Synchronicity Heuristic
Since, in quantum cognition, the quantum parameters are seen as
inner products, we represent each pair of random variables in 2-
dimenional vectors.
We need to represent both assignments of the binary random
variables
Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
The Synchronicity Heuristic
Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
Using the semantic network, variables that did not share any
dependence could be connected through their semantic meaning.
Variables that occur during the inference process should be more
correlated than variables that do not occur. We use a quantum step
phase angle of /4 (Yukalov & Sornette, 2010).
The Synchronicity Heuristic
慮	
 油 慮	
 油
Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
Variables that occur during the inference process should be more
correlated than variables that do not occur.
Research Question
	
 油
How can an acausal connectionist
theory affect quantum probabilistic
inferences?
Classical vs Acausal Quantum
Inferences
High levels of uncertainty during the inference process, lead to
complete different results from classical theory.
Classical vs Acausal Quantum
Inferences
More evidence leads to lower uncertainty, which leads to an
approximation to the classical inference.
Conclusions
1. Applied the mathematical formalisms of quantum theory to
develop a Quantum-Like Bayesian Network;
2. Used a Semantic Network to find acausal relationships;
3. An heuristic was created to estimate quantum parameters;
4. Quantum probability is stronger with high levels of uncertainty;
5. With less uncertainty, the Quantum-Like network collapses to its
classical counterpart;
Some Concluding Reflections
Can we validate this model for more complex decision
problems?
Can we propose an experiment?

More Related Content

Similar to The Relation Between Acausality and Interference in Quantum-Like Bayesian Networks (20)

Bayes network
Bayes networkBayes network
Bayes network
Dr. C.V. Suresh Babu
際際滷s econometrics-2018-graduate-3
際際滷s econometrics-2018-graduate-3際際滷s econometrics-2018-graduate-3
際際滷s econometrics-2018-graduate-3
Arthur Charpentier
Cs221 lecture3-fall11
Cs221 lecture3-fall11Cs221 lecture3-fall11
Cs221 lecture3-fall11
darwinrlo
Machine learning with quantum computers
Machine learning with quantum computersMachine learning with quantum computers
Machine learning with quantum computers
Speck&Tech
Quantum Noise and Error Correction
Quantum Noise and Error CorrectionQuantum Noise and Error Correction
Quantum Noise and Error Correction
Daniel Bulhosa Sol坦rzano
Math Exam Help
Math Exam HelpMath Exam Help
Math Exam Help
Live Exam Helper
Quantum computing meghaditya
Quantum computing meghadityaQuantum computing meghaditya
Quantum computing meghaditya
Meghaditya Roy Chaudhury
Basen Network
Basen NetworkBasen Network
Basen Network
guestf7d226
Report
ReportReport
Report
EKTEL Telecommunication (P) Limited
Network and risk spillovers: a multivariate GARCH perspective
Network and risk spillovers: a multivariate GARCH perspectiveNetwork and risk spillovers: a multivariate GARCH perspective
Network and risk spillovers: a multivariate GARCH perspective
SYRTO Project
A Framework to Adjust Dependency Measure Estimates for Chance
A Framework to Adjust Dependency Measure Estimates for Chance      A Framework to Adjust Dependency Measure Estimates for Chance
A Framework to Adjust Dependency Measure Estimates for Chance
Simone Romano
Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]
JULIO GONZALEZ SANZ
CAP06.ppt quantum physic for students in
CAP06.ppt quantum physic for students inCAP06.ppt quantum physic for students in
CAP06.ppt quantum physic for students in
IlmanFahmi8
Quantum Matrices Using Quantum Gates
Quantum Matrices Using Quantum GatesQuantum Matrices Using Quantum Gates
Quantum Matrices Using Quantum Gates
Manu Mitra
Crimson Publishers-Quantum Matrices Using Quantum Gates
Crimson Publishers-Quantum Matrices Using Quantum GatesCrimson Publishers-Quantum Matrices Using Quantum Gates
Crimson Publishers-Quantum Matrices Using Quantum Gates
Crimsonpublishers-Electronics
Cointegration and Long-Horizon Forecasting
Cointegration and Long-Horizon ForecastingCointegration and Long-Horizon Forecasting
Cointegration and Long-Horizon Forecasting
忰惆 悒愕悋惺
Frequency magnitude distribution
Frequency magnitude distributionFrequency magnitude distribution
Frequency magnitude distribution
einsteinxxx
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language ModelsAnomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Cynthia Freeman
Speaker recognition systems
Speaker recognition systemsSpeaker recognition systems
Speaker recognition systems
Namratha Dcruz
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
Aminullah Assagaf
際際滷s econometrics-2018-graduate-3
際際滷s econometrics-2018-graduate-3際際滷s econometrics-2018-graduate-3
際際滷s econometrics-2018-graduate-3
Arthur Charpentier
Cs221 lecture3-fall11
Cs221 lecture3-fall11Cs221 lecture3-fall11
Cs221 lecture3-fall11
darwinrlo
Machine learning with quantum computers
Machine learning with quantum computersMachine learning with quantum computers
Machine learning with quantum computers
Speck&Tech
Basen Network
Basen NetworkBasen Network
Basen Network
guestf7d226
Network and risk spillovers: a multivariate GARCH perspective
Network and risk spillovers: a multivariate GARCH perspectiveNetwork and risk spillovers: a multivariate GARCH perspective
Network and risk spillovers: a multivariate GARCH perspective
SYRTO Project
A Framework to Adjust Dependency Measure Estimates for Chance
A Framework to Adjust Dependency Measure Estimates for Chance      A Framework to Adjust Dependency Measure Estimates for Chance
A Framework to Adjust Dependency Measure Estimates for Chance
Simone Romano
Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]Introduction to bayesian_networks[1]
Introduction to bayesian_networks[1]
JULIO GONZALEZ SANZ
CAP06.ppt quantum physic for students in
CAP06.ppt quantum physic for students inCAP06.ppt quantum physic for students in
CAP06.ppt quantum physic for students in
IlmanFahmi8
Quantum Matrices Using Quantum Gates
Quantum Matrices Using Quantum GatesQuantum Matrices Using Quantum Gates
Quantum Matrices Using Quantum Gates
Manu Mitra
Crimson Publishers-Quantum Matrices Using Quantum Gates
Crimson Publishers-Quantum Matrices Using Quantum GatesCrimson Publishers-Quantum Matrices Using Quantum Gates
Crimson Publishers-Quantum Matrices Using Quantum Gates
Crimsonpublishers-Electronics
Cointegration and Long-Horizon Forecasting
Cointegration and Long-Horizon ForecastingCointegration and Long-Horizon Forecasting
Cointegration and Long-Horizon Forecasting
忰惆 悒愕悋惺
Frequency magnitude distribution
Frequency magnitude distributionFrequency magnitude distribution
Frequency magnitude distribution
einsteinxxx
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language ModelsAnomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Cynthia Freeman
Speaker recognition systems
Speaker recognition systemsSpeaker recognition systems
Speaker recognition systems
Namratha Dcruz
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
1 Aminullah Assagaf_Estimation-of-domain-of-attraction-for-the-fract_2021_Non...
Aminullah Assagaf

Recently uploaded (20)

NIGHTHAWK: A MARS CHOPPER MISSION TO EXPLORE NOCTIS LABYRINTHUS GIANT VOLCAN...
NIGHTHAWK: A MARS CHOPPER MISSION TO EXPLORE NOCTIS LABYRINTHUS GIANT VOLCAN...NIGHTHAWK: A MARS CHOPPER MISSION TO EXPLORE NOCTIS LABYRINTHUS GIANT VOLCAN...
NIGHTHAWK: A MARS CHOPPER MISSION TO EXPLORE NOCTIS LABYRINTHUS GIANT VOLCAN...
S辿rgio Sacani
Fundamentals of ALD: tutorial, at ALD for Industry, Dresden, by Puurunen 2025...
Fundamentals of ALD: tutorial, at ALD for Industry, Dresden, by Puurunen 2025...Fundamentals of ALD: tutorial, at ALD for Industry, Dresden, by Puurunen 2025...
Fundamentals of ALD: tutorial, at ALD for Industry, Dresden, by Puurunen 2025...
Riikka Puurunen
Anatomy of breast key factor from bd chaurasia
Anatomy of breast key factor from bd chaurasiaAnatomy of breast key factor from bd chaurasia
Anatomy of breast key factor from bd chaurasia
saifsalmani2858
Year-5-Spring-Term-Block-2 - Fractions-Fluency.pptx
Year-5-Spring-Term-Block-2 - Fractions-Fluency.pptxYear-5-Spring-Term-Block-2 - Fractions-Fluency.pptx
Year-5-Spring-Term-Block-2 - Fractions-Fluency.pptx
alisonyan53
Greenhouse Effect & Global Warming PPTXS
Greenhouse Effect & Global Warming PPTXSGreenhouse Effect & Global Warming PPTXS
Greenhouse Effect & Global Warming PPTXS
Anna Marie Urrutia
Fermentation kinetics - Ranjeet Kumar.pptx
Fermentation kinetics - Ranjeet Kumar.pptxFermentation kinetics - Ranjeet Kumar.pptx
Fermentation kinetics - Ranjeet Kumar.pptx
Ranjeettaram
Science7_Week 3(A) 4TH QUARTER topic.pptx
Science7_Week 3(A) 4TH QUARTER topic.pptxScience7_Week 3(A) 4TH QUARTER topic.pptx
Science7_Week 3(A) 4TH QUARTER topic.pptx
AizaRazonado
Science, Technology and Society_PPT Chapter 3.pptx
Science, Technology and Society_PPT Chapter 3.pptxScience, Technology and Society_PPT Chapter 3.pptx
Science, Technology and Society_PPT Chapter 3.pptx
JamaicaRoseHipolito
PHYSICAL SCIENCES P1 MARCH EXAM 2025.pdf
PHYSICAL SCIENCES P1 MARCH EXAM 2025.pdfPHYSICAL SCIENCES P1 MARCH EXAM 2025.pdf
PHYSICAL SCIENCES P1 MARCH EXAM 2025.pdf
SIHLANGULE NONTSHIKIZA
SCH4U - Charlie Glaspell-Elser - Silicon In Semiconducting
SCH4U - Charlie Glaspell-Elser - Silicon In SemiconductingSCH4U - Charlie Glaspell-Elser - Silicon In Semiconducting
SCH4U - Charlie Glaspell-Elser - Silicon In Semiconducting
Charlie Glaspell-Elser
Outreach, Science Communication and Dissemination
Outreach, Science Communication and DisseminationOutreach, Science Communication and Dissemination
Outreach, Science Communication and Dissemination
Mathias Magdowski
Identifying the different Human Body Systems.ppt
Identifying the different Human Body Systems.pptIdentifying the different Human Body Systems.ppt
Identifying the different Human Body Systems.ppt
ELMIRAGIEDIZON1
Membrane Transport (lecture 10) (Medicinal Chemistry).ppt
Membrane Transport (lecture 10) (Medicinal Chemistry).pptMembrane Transport (lecture 10) (Medicinal Chemistry).ppt
Membrane Transport (lecture 10) (Medicinal Chemistry).ppt
mohali16729
Balanced_Counselling_Strategy_Family_Planning.pptx
Balanced_Counselling_Strategy_Family_Planning.pptxBalanced_Counselling_Strategy_Family_Planning.pptx
Balanced_Counselling_Strategy_Family_Planning.pptx
AnushaAkhil1
MYSTERYHU FORMULAE FORMIDABLE COMBINATIONS.pptx
MYSTERYHU  FORMULAE  FORMIDABLE  COMBINATIONS.pptxMYSTERYHU  FORMULAE  FORMIDABLE  COMBINATIONS.pptx
MYSTERYHU FORMULAE FORMIDABLE COMBINATIONS.pptx
EFRUZHUCANCERTHERAPY
general chemistry chaper three. Solutionspptx
general chemistry chaper three. Solutionspptxgeneral chemistry chaper three. Solutionspptx
general chemistry chaper three. Solutionspptx
dagneaddisu1
material selection for marin products 2.pptx
material selection for marin products 2.pptxmaterial selection for marin products 2.pptx
material selection for marin products 2.pptx
eliya971130
LABORATORY-AQUIRED INFECTION [Autosaved].pptx
LABORATORY-AQUIRED INFECTION [Autosaved].pptxLABORATORY-AQUIRED INFECTION [Autosaved].pptx
LABORATORY-AQUIRED INFECTION [Autosaved].pptx
rickrock2610
Research methodology Introduction PDF.pptx
Research methodology Introduction PDF.pptxResearch methodology Introduction PDF.pptx
Research methodology Introduction PDF.pptx
Suadzuhair1
Louis-Pasteurs-Theory-of-Spontaneous-Generation.pptx
Louis-Pasteurs-Theory-of-Spontaneous-Generation.pptxLouis-Pasteurs-Theory-of-Spontaneous-Generation.pptx
Louis-Pasteurs-Theory-of-Spontaneous-Generation.pptx
yotsubatoryu12
NIGHTHAWK: A MARS CHOPPER MISSION TO EXPLORE NOCTIS LABYRINTHUS GIANT VOLCAN...
NIGHTHAWK: A MARS CHOPPER MISSION TO EXPLORE NOCTIS LABYRINTHUS GIANT VOLCAN...NIGHTHAWK: A MARS CHOPPER MISSION TO EXPLORE NOCTIS LABYRINTHUS GIANT VOLCAN...
NIGHTHAWK: A MARS CHOPPER MISSION TO EXPLORE NOCTIS LABYRINTHUS GIANT VOLCAN...
S辿rgio Sacani
Fundamentals of ALD: tutorial, at ALD for Industry, Dresden, by Puurunen 2025...
Fundamentals of ALD: tutorial, at ALD for Industry, Dresden, by Puurunen 2025...Fundamentals of ALD: tutorial, at ALD for Industry, Dresden, by Puurunen 2025...
Fundamentals of ALD: tutorial, at ALD for Industry, Dresden, by Puurunen 2025...
Riikka Puurunen
Anatomy of breast key factor from bd chaurasia
Anatomy of breast key factor from bd chaurasiaAnatomy of breast key factor from bd chaurasia
Anatomy of breast key factor from bd chaurasia
saifsalmani2858
Year-5-Spring-Term-Block-2 - Fractions-Fluency.pptx
Year-5-Spring-Term-Block-2 - Fractions-Fluency.pptxYear-5-Spring-Term-Block-2 - Fractions-Fluency.pptx
Year-5-Spring-Term-Block-2 - Fractions-Fluency.pptx
alisonyan53
Greenhouse Effect & Global Warming PPTXS
Greenhouse Effect & Global Warming PPTXSGreenhouse Effect & Global Warming PPTXS
Greenhouse Effect & Global Warming PPTXS
Anna Marie Urrutia
Fermentation kinetics - Ranjeet Kumar.pptx
Fermentation kinetics - Ranjeet Kumar.pptxFermentation kinetics - Ranjeet Kumar.pptx
Fermentation kinetics - Ranjeet Kumar.pptx
Ranjeettaram
Science7_Week 3(A) 4TH QUARTER topic.pptx
Science7_Week 3(A) 4TH QUARTER topic.pptxScience7_Week 3(A) 4TH QUARTER topic.pptx
Science7_Week 3(A) 4TH QUARTER topic.pptx
AizaRazonado
Science, Technology and Society_PPT Chapter 3.pptx
Science, Technology and Society_PPT Chapter 3.pptxScience, Technology and Society_PPT Chapter 3.pptx
Science, Technology and Society_PPT Chapter 3.pptx
JamaicaRoseHipolito
PHYSICAL SCIENCES P1 MARCH EXAM 2025.pdf
PHYSICAL SCIENCES P1 MARCH EXAM 2025.pdfPHYSICAL SCIENCES P1 MARCH EXAM 2025.pdf
PHYSICAL SCIENCES P1 MARCH EXAM 2025.pdf
SIHLANGULE NONTSHIKIZA
SCH4U - Charlie Glaspell-Elser - Silicon In Semiconducting
SCH4U - Charlie Glaspell-Elser - Silicon In SemiconductingSCH4U - Charlie Glaspell-Elser - Silicon In Semiconducting
SCH4U - Charlie Glaspell-Elser - Silicon In Semiconducting
Charlie Glaspell-Elser
Outreach, Science Communication and Dissemination
Outreach, Science Communication and DisseminationOutreach, Science Communication and Dissemination
Outreach, Science Communication and Dissemination
Mathias Magdowski
Identifying the different Human Body Systems.ppt
Identifying the different Human Body Systems.pptIdentifying the different Human Body Systems.ppt
Identifying the different Human Body Systems.ppt
ELMIRAGIEDIZON1
Membrane Transport (lecture 10) (Medicinal Chemistry).ppt
Membrane Transport (lecture 10) (Medicinal Chemistry).pptMembrane Transport (lecture 10) (Medicinal Chemistry).ppt
Membrane Transport (lecture 10) (Medicinal Chemistry).ppt
mohali16729
Balanced_Counselling_Strategy_Family_Planning.pptx
Balanced_Counselling_Strategy_Family_Planning.pptxBalanced_Counselling_Strategy_Family_Planning.pptx
Balanced_Counselling_Strategy_Family_Planning.pptx
AnushaAkhil1
MYSTERYHU FORMULAE FORMIDABLE COMBINATIONS.pptx
MYSTERYHU  FORMULAE  FORMIDABLE  COMBINATIONS.pptxMYSTERYHU  FORMULAE  FORMIDABLE  COMBINATIONS.pptx
MYSTERYHU FORMULAE FORMIDABLE COMBINATIONS.pptx
EFRUZHUCANCERTHERAPY
general chemistry chaper three. Solutionspptx
general chemistry chaper three. Solutionspptxgeneral chemistry chaper three. Solutionspptx
general chemistry chaper three. Solutionspptx
dagneaddisu1
material selection for marin products 2.pptx
material selection for marin products 2.pptxmaterial selection for marin products 2.pptx
material selection for marin products 2.pptx
eliya971130
LABORATORY-AQUIRED INFECTION [Autosaved].pptx
LABORATORY-AQUIRED INFECTION [Autosaved].pptxLABORATORY-AQUIRED INFECTION [Autosaved].pptx
LABORATORY-AQUIRED INFECTION [Autosaved].pptx
rickrock2610
Research methodology Introduction PDF.pptx
Research methodology Introduction PDF.pptxResearch methodology Introduction PDF.pptx
Research methodology Introduction PDF.pptx
Suadzuhair1
Louis-Pasteurs-Theory-of-Spontaneous-Generation.pptx
Louis-Pasteurs-Theory-of-Spontaneous-Generation.pptxLouis-Pasteurs-Theory-of-Spontaneous-Generation.pptx
Louis-Pasteurs-Theory-of-Spontaneous-Generation.pptx
yotsubatoryu12

The Relation Between Acausality and Interference in Quantum-Like Bayesian Networks

  • 1. 9th International Conference on Quantum Interaction, 2015 by Catarina Moreira and Andreas Wichert (Instituto Superior T辿cnico, University of Lisbon, Portugal)
  • 2. Motivation Quantum probability and interference effects play an important role in explaining several inconsistencies in decision-making. Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
  • 3. Motivation Current models of the literature have the following problems: 1. Require a manual parameter tuning to perform predictions; 2. Hard to scale for more complex decision scenarios;
  • 4. Research Question Can we build a general quantum probabilistic model to make predictions in scenarios with high levels of uncertainty?
  • 5. Bayesian Networks Directed acyclic graph structure in which each node represents a random variable and each edge represents a direct influence from source node to the target node. 油 B Pr( 油E 油= 油T 油) 油= 油0.002 油 Pr( 油E 油= 油F 油) 油= 油0.998 油 Pr( 油B 油= 油T 油) 油= 油0.001 油 Pr( 油B 油= 油F 油) 油= 油0.999 油 B 油E 油 油 油 油 油 油 油 油 油Pr(A=T|B,E) 油 油 油 油 油 油 油 油 油 油 油 油Pr(A=F|B,E) 油 T 油T 油 油 油 油 油 油 油0.95 油 油 油 油 油 油0.05 油 T 油F 油 油 油 油 油 油0.94 油 油 油 油 油 油0.06 油 F 油T 油 油 油 油 油 油 油0.29 油 油 油 油 油 油0.71 油 F 油F 油 油 油 油 油 油 油 油0.01 油 油 油 油 油 油0.99 油 E A
  • 6. Bayesian Networks Inference is performed in two steps: 1. Computation of the Full Joint Probability Distribution 2. Computation of the Marginal Probability 油 Full Joint Probability Distribution: 油 Marginal Probability: 油
  • 7. Bayesian Networks Inference is performed in two steps: 1. Computation of the Full Joint Probability Distribution 2. Computation of the Marginal Probability 油 Full Joint Probability Distribution: 油 Marginal Probability: 油 Bayes Assumption
  • 8. Inference in Bayesian Networks 1. Compute the Full Joint Probability Distribution B E A Pr( A, B, E ) T T T 0.001 x 0.002 x 0.95 = 0.00000190 T T F 0.001 x 0.002 x 0.05 = 0.00000010 T F T 0.001 x 0.998 x 0.94 = 0.00093812 T F F 0.001 x 0.998 x 0.06 = 0.00005988 F T T 0.999 x 0.002 x 0.29 = 0.00057942 F T F 0.999 x 0.002 x 0.71 = 0.00141858 F F T 0.999 x 0.998 x 0.01 = 0.00997002 F F F 0.999 x 0.998 x 0.99 = 0.98703198 B Pr( 油E 油= 油T 油) 油= 油0.002 油 Pr( 油E 油= 油F 油) 油= 油0.998 油 Pr( 油B 油= 油T 油) 油= 油0.001 油 Pr( 油B 油= 油F 油) 油= 油0.999 油 B 油E 油 油 油 油 油 油 油 油 油Pr( 油A=T|B,E 油) 油 油 油 油 油 油 油 油Pr( 油A=F|B,E 油) 油 T 油T 油 油 油 油 油 油 油0.95 油 油 油 油 油 油0.05 油 T 油F 油 油 油 油 油 油0.94 油 油 油 油 油 油0.06 油 F 油T 油 油 油 油 油 油 油0.29 油 油 油 油 油 油0.71 油 F 油F 油 油 油 油 油 油 油 油0.01 油 油 油 油 油 油0.99 油 E A
  • 9. Inference in Bayesian Networks 2. Compute Marginal Probability B E A Pr( A, B, E ) T T T 0.001 x 0.002 x 0.95 = 0.00000190 T T F 0.001 x 0.002 x 0.05 = 0.00000010 T F T 0.001 x 0.998 x 0.94 = 0.00093812 T F F 0.001 x 0.998 x 0.06 = 0.00005988 F T T 0.999 x 0.002 x 0.29 = 0.00057942 F T F 0.999 x 0.002 x 0.71 = 0.00141858 F F T 0.999 x 0.998 x 0.01 = 0.00997002 F F F 0.999 x 0.998 x 0.99 = 0.98703198 + 油 + 油
  • 10. Research Question 油 How can we move from a classical Bayesian Network to a Quantum- Like paradigm?
  • 11. Quantum-Like Bayesian Networks General idea: - Under unobserved events, the Quantum-Like Bayesian Network can use interference effects; - Under known events, no interference is used, since there is no uncertainty. Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
  • 12. Interference Effects Convert classical probabilities are converted into quantum amplitudes through Borns rule: squared magnitude quantum amplitudes. For two dichotomous random variables: - Classical Law of Total Probability: - Quantum Law of Total Probability:
  • 13. Interference Effects Quantum Law of Total Probability: If we expand this term we obtain:
  • 14. Interference Effects Quantum Law of Total Probability for 2 random variables: If we expand this term we obtain: Classical Probability Quantum Interference
  • 15. Quantum-Like Bayesian Networks Convert classical probabilities are converted into quantum amplitudes through Borns rule: squared magnitude quantum amplitudes. - Classical Full Joint Probability Distribution: - Quantum Full Joint Probability Distribution:
  • 16. Quantum-Like Bayesian Networks Convert classical probabilities are converted into quantum amplitudes through Borns rule: squared magnitude quantum amplitudes. - Classical Marginal Probability Distribution: - Quantum Marginal Probability Distribution:
  • 17. Quantum-Like Bayesian Networks - Quantum marginal probability; - Extension of the Quantum-Like Approach (Khrennikov, 2009) for N random variables; Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
  • 18. Case Study 油 We studied the implications of the proposed Quantum-Like Bayesian Network in the literature
  • 19. Quantum-Like Bayesian Networks J. Pearl. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers Inc. Pr( 油E 油= 油T 油) 油= 油0.002 油 Pr( 油E 油= 油F 油) 油= 油0.998 油 Pr( 油B 油= 油T 油) 油= 油0.001 油 Pr( 油B 油= 油F 油) 油= 油0.999 油 B 油E 油 油 油 油 油 油 油 油 油Pr(A=T|B,E) 油 油 油 油 油 油 油 油 油 油 油 油Pr(A=F|B,E) 油 T 油T 油 油 油 油 油 油 油0.90 油 油 油 油 油 油0.10 油 T 油F 油 油 油 油 油 油0.30 油 油 油 油 油 油0.70 油 F 油T 油 油 油 油 油 油 油0.20 油 油 油 油 油 油0.80 油 F 油F 油 油 油 油 油 油 油 油0.01 油 油 油 油 油 油0.99 油 E A J B M 油 油 油 油A 油 油 油 油 油 油Pr( 油M=T 油|A 油) 油 油 油 油 油 油Pr( 油M=F 油| 油A 油) 油 油 油 油 油T 油 油 油 油 油 油 油 油 油0.70 油 油 油 油 油 油0.30 油 油 油 油 油 油 油 油 油 油F 油 油 油 油 油 油 油 油 油0.01 油 油 油 油 油 油0.99 油 油 油 油 油A 油 油 油 油 油 油Pr( 油J=T 油|A 油) 油 油 油 油 油 油Pr( 油J=F 油| 油A 油) 油 油 油 油 油T 油 油 油 油 油 油 油 油 油0.90 油 油 油 油 油 油0.10 油 油 油 油 油 油 油 油 油 油F 油 油 油 油 油 油 油 油 油0.05 油 油 油 油 油 油0.95 油
  • 20. Quantum-Like Bayesian Networks What happens if we try to compute the probability of A = t, given that we observed J = t? Classical Probability: Quantum Probability: Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
  • 21. Quantum-Like Bayesian Networks What happens if we try to compute the probability of A = t, given that we observed J = t? Classical Probability: Quantum Probability: Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85 Will generate 16 parameters
  • 22. Problem! The number of parameters grows exponentially LARGE! The final probabilities can be ANYTHING in some range! Moreira & Wichert (2014), Interference Effects in Quantum Belief Networks, Applied Soft Computing, 25, 64-85
  • 23. Problem! Quantum parameters are very sensitive. Small changes can lead to completely different probability values or can stabilize in a certain value!
  • 24. Research Question 油 How can we deal automatically with an exponential number of quantum parameters?
  • 25. The Synchronicity Principle Synchronicity is an acausal principle and can be defined by a meaningful coincidence which appears between a mental state and an event occurring in the external world. (Carl G. Jung, 1951)
  • 26. The Synchronicity Principle Natural laws are statistical truths. They are only valid when dealing with macrophysical quantities. In the realm of very small quantities prediction becomes uncertain. The connection of events may be other than causal, and requires an acausal principle of explanation. Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
  • 27. Research Question 油 How can we use the Synchronicity Principle in the Quantum-Like Bayesian Network and estimate quantum parameters?
  • 28. Semantic Networks Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133 Synchronicity Principle: defined by a meaningful coincidence between events. Semantic Networks can help finding events that share a semantic meaning.
  • 29. Quantum-Like Bayesian Network + Semantic Network Synchronicity Pr( 油E 油= 油T 油) 油= 油0.002 油 Pr( 油E 油= 油F 油) 油= 油0.998 油 Pr( 油B 油= 油T 油) 油= 油0.001 油 Pr( 油B 油= 油F 油) 油= 油0.999 油 B 油E 油 油 油 油 油 油 油 油 油Pr(A=T|B,E) 油 油 油 油 油 油 油 油 油 油 油 油Pr(A=F|B,E) 油 T 油T 油 油 油 油 油 油 油0.90 油 油 油 油 油 油0.10 油 T 油F 油 油 油 油 油 油0.30 油 油 油 油 油 油0.70 油 F 油T 油 油 油 油 油 油 油0.20 油 油 油 油 油 油0.80 油 F 油F 油 油 油 油 油 油 油 油0.01 油 油 油 油 油 油0.99 油 E A J B M 油 油 油 油A 油 油 油 油 油 油Pr( 油M=T 油|A 油) 油 油 油 油 油 油Pr( 油M=F 油| 油A 油) 油 油 油 油 油T 油 油 油 油 油 油 油 油 油0.70 油 油 油 油 油 油0.30 油 油 油 油 油 油 油 油 油 油F 油 油 油 油 油 油 油 油 油0.01 油 油 油 油 油 油0.99 油 油 油 油 油A 油 油 油 油 油 油Pr( 油J=T 油|A 油) 油 油 油 油 油 油Pr( 油J=F 油| 油A 油) 油 油 油 油 油T 油 油 油 油 油 油 油 油 油0.90 油 油 油 油 油 油0.10 油 油 油 油 油 油 油 油 油 油F 油 油 油 油 油 油 油 油 油0.05 油 油 油 油 油 油0.95 油 Synchronicity Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
  • 30. The Synchronicity Heuristic The interference term is given as a sum of pairs of random variables. Heuristic: parameters are calculated by computing different vector representations for each pair of random variables. Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
  • 31. The Synchronicity Heuristic Since, in quantum cognition, the quantum parameters are seen as inner products, we represent each pair of random variables in 2- dimenional vectors. We need to represent both assignments of the binary random variables Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133
  • 32. The Synchronicity Heuristic Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133 Using the semantic network, variables that did not share any dependence could be connected through their semantic meaning. Variables that occur during the inference process should be more correlated than variables that do not occur. We use a quantum step phase angle of /4 (Yukalov & Sornette, 2010).
  • 33. The Synchronicity Heuristic 慮 油 慮 油 Moreira & Wichert (2015), The Synchronicity Principle Under Quantum Probabilistic Inferences, NeuroQuantology, 13, 111-133 Variables that occur during the inference process should be more correlated than variables that do not occur.
  • 34. Research Question 油 How can an acausal connectionist theory affect quantum probabilistic inferences?
  • 35. Classical vs Acausal Quantum Inferences High levels of uncertainty during the inference process, lead to complete different results from classical theory.
  • 36. Classical vs Acausal Quantum Inferences More evidence leads to lower uncertainty, which leads to an approximation to the classical inference.
  • 37. Conclusions 1. Applied the mathematical formalisms of quantum theory to develop a Quantum-Like Bayesian Network; 2. Used a Semantic Network to find acausal relationships; 3. An heuristic was created to estimate quantum parameters; 4. Quantum probability is stronger with high levels of uncertainty; 5. With less uncertainty, the Quantum-Like network collapses to its classical counterpart;
  • 38. Some Concluding Reflections Can we validate this model for more complex decision problems? Can we propose an experiment?