際際滷

際際滷Share a Scribd company logo
190531 ???
Introduction to SLAM
?? : ???, Introduction to SLAM, SLAM KR, https://www.youtube.com/watch?v=_i8PaekcguA
Introduction
2
- Example : Pepper robot
- ??? ??? ???? ???? ? ?? ?? ?? ??
- ??? ???? ??? ? ??? ?? ??? ???? ??
- ??? ??? ???? ???? ? ?? ?? ?? ??
- ??? ???? ???? ? ??? ?? ?? ??? ?
- Localization
- Mapping
Simultaneous Localization and Mapping
3
- Visual localization
- ??? ??? ???? ?? (?? ?? x)
- GPS? ? ???? ?? ??
- Ex)
- Mapping
- ??? ?? ?? ????? ?? ?? ???? ? ?? ??
- ?? ??? ?? ??? ??
- Ex)
Indoor environment
Private area
Downtown
Disaster area
Cesar Cadena, Past, Present, and Future of Simultaneous Localization And Mapping: Towards the
Robust-Perception Age, IEEE Transactions on Robotics 32 (6) pp 1309-1332, 2016
Earlier Inspirations
4
- Bayesian Filtering based SLAM
- prototype of traditional Bayesian filtering based SLAM
framework emerged in 1900s.
- ex) EKF SLAM, FastSLAM
- Visual Odometry
- The process of estimating the ego-motion of a robot
using only the input of a single or multiple cameras
attached to it
- ex) stereo VO, monocular VO
- Structure from motion
- Investigating the problem of recovering relative camera
poses and 3D structure from a set of camera images
- Off-line version of visual SLAM
??? ?? ?? ??
5
- ??? ??, QR ??, GPS ??
- ???? ??? ??, QR??? ?? ? ?? ??? ????)
- GPS ??? ? ?? ?? ?? ?? ( ??, ?? ??, ?? ?? ?)
- ??? ? ??? ????? ??
- ???? ??? ??
- ???? ?? ??? ?? ??
- ?? ???, ?? ???, ?? ???
- ??? ? ???, ???, ???, IMU ??
- ??? ?? ???? ???? ??
- ??? ?? ???? ?? ?? ?? ??
- ???? ??? ??
- Visual SLAM
- ??? ??? ?? ??? ?? ?? ? ?? ?? ??
?? ???
6
- ? ?? ???? ??? ????? ??? ??
- ?? ?? ????? ??? ? ??? ??(disparity)? ??
- ??
- ?? ???? ?? ??
- ???? ?? ???? ??
- ???? ??? ???? ???? ?? ??? ?? 3?? ???? ??
- ??
- Disparity? ??? ? ??? ???? depth? ? ? ??(Baseline? ??)
- ??? Scale ??? ? ? ??
?? ???
7
- ??? ??? ? ?? ???? ???? ????? ??? ??
- ??? ?? ?? ??? ??
- ??
- ?? ??? ?? ?? ??? ?? ?? ??
- Dense? ? ?? ??
- Baseline : ? ??? ??? ??? ??
- ?????? ??? ? ??? ?? ??
- ??
- ???? ?? ????? ??? ??
- ?? ??? ??
?? ???
8
- ??? ??? ?? ?? ??? ??? ????? ??? ?? ??
- ??
- ??? ??? ?? ? ??? ??
- Dense? ? ??
- ?? ????? ???? ?? ???
- Kinect V1, Kinect V2
- Xtion Pro Live
- Intel RealSense
- Google Tango
- ??
- ?? ?? ??
- ?? ???
- ??, ??? ??? ?? ?? ?? ??
- ?? ?? ???? ???
Lidar ??
9
- ??? ??? ????? ??? ??? ??
- ?? ?? ?? ? ?? ???? ??
- ??
- 2D ???/3D ???
- Spinning/Solide-state
- ?? ??
- Velodyne
- Robosense
- Ouster
- SOSLab
???? Visual SLAM ?????
10
- Sensor input
- Visual odometry
- Backend optimization
- Loop closure detection
- Mapping
Sensor
input
Visual
odometry
Loop
closing
Backend
optimization
Mapping
???? Visual SLAM ?????
11
Sensor
input
Visual
odometry
Loop
closing
Backend
optimization
Mapping
?????? ???? ???? ???? ??? ???? ???(feature point)? ????. ???
?? ??? ?? ??? ?? ???.
- Harris corner : ??? ??? ?? ???? ??? ??
- SIFT : ????? ????? ?? ??? ???? ??
- SURF : SIFT? ?? ??? ???.
- FAST : ??? ?? ??
?? ?? ?? ?? ????
???? Visual SLAM ?????
? ??? ???, ?? ?? ?? BRISK, BRIEF, ORB ? ?? ????? ????, ???? ????
?? ?? ?? ???(descriptor)? ?? ??. ? ??? ? ??? ???? ?? ?? ?? ?? ???
???? ??(matching)? ? ? ?? ??.
?? ??
- ?????? ??(mahalanobis distance) : ??? ?? ??? ??
- ????? ??? ??? SSD(Sum of Squared Differences) : ??
??
???? Visual SLAM ?????
???? ?? ?????? ???(outlier)? ????. ???? ???? ? ???? ???
????? ??? ?? ? ? ??.
??? ?? ????
- RANSAC(RANdom Sample Consensus)
- MSAC(M-estimator Sample And Consensus)
??? ??
??? ??? ??? ?? RANSAC ??
Visual Odometry
14
- Frontend
- ??? ??? ??? ??? ???
- ???? ??? ?? ???? ??? ??
- ?? ? ??
- ???? 3?? ?? ? ??? ???? ??? ??
- Drift error
- Visual odometry?? ???? ??? ???? ??? ???
- ???
- Backend optimization? loop closure detection
Backend Optimization
15
- Sensor noise
- ??? ???? ???? ?? ??
- ??? ??? ?? ??? ?
- ?? ??? ???? ??? ??? ??
- Backend ???
- ???? ?? ?????? ?? ???? ??? ???? ??(state estimation)
- Frontend?? ??? Drift ??? ??
- Frontend??? Backend? ??? ? ???? ???? ?? ?? ??
- Backend ???? ??
- ?? ??(Kalman filter, particle filter)
- ??? ??? ??(bundle adjustment, pose graph optimization)
Loop Closure Detection
16
- ?? ??? ??? ??? ???? ??
- QR ?? ??
- ???? ??? ??
- ??? ??? ??
- ??? ?? ???? ??
- Backend??? ?? ??? ?? ??? ??? ?? ??? ?? ??? ??
- Drift ??? ???? ????? ??? ?? ??
T. Sattler, ^Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions, ̄ 2017.
Mapping
17
- ?? ?? ??? ??
- ?? ????? ?? ??? ??
- ?? ?? ??
- 2?? ??? ??
- ???? ??
- 6DOF??? 3?? ??? ??
- Map representation
- Pointcloud
- Voxel
- Surfel
- Occupancy grid map
- ? ?? ??? ?? ??
- Sparse, dense, semi-dense map
Modern State of the Art Systems
18
- Sparse SLAM
- Only use a small selected subset of the pixels (features) from a monocular color camera
- Fast and real time on CPU but it produces a sparse map (point clouds)
- Landmark-based or feature-based representations
- ORB SLAM
- One of the SOTA frameworks in the sparse SLAM category
- Complete SLAM system for monocular camera
- Real-time on standard CPUs in a wide variety of environments
- small hand-held indoors
- drones flying in industrial environments
- cars driving around a city
Modern State of the Art Systems
19
- Dense SLAM
- Use most or all of the pixels in each received frame
- Or use depth images from a depth camera
- It produces a dense map but GPU acceleration is necessary from the real-time operation
- Volumetric model or surfel(Surface Element)-based representations
- InfiniTam
- One of the SOTA frameworks in the Dense SLAM category
- Multi-platform framework for real-time, large-scale depth fusion and tracking
- Densely reconstructed 3D scene
Modern State of the Art Systems
20
- Direct method (semi-dense SLAM)
- Make use of pixel intensities directly
- Enable using all information in the image
- It produces a semi-dense map
- Higher accuracy and robustness in particular even in environments with little keypoints
- LSD SLAM
- Highly cited SLAM framework in the direct method SLAM category
- Large-scale, consistent maps of the environment
- Accurate pose estimation based on direct image alignment
Modern State of the Art Systems
21
- Lidar SLAM
- Make use of the Lidar sensor input for the localization and mapping
- Autonomous driving purpose-oriented in outdoor environment
- LOAM
- One of the SOTA frameworks in the Lidar SLAM category
- Very low drift error using the edge and planar features
- Low computation complexity
SLAM ??? ??? ??
22
- Motion model
- ??? ??? ??? ????? ??
- Sensor model
- ????? ???? ??? ?????? ??
Motion Model
23
- ??? x_k-1 ???? ??? ?? u_k? ??? ? ??? ??? ?? x_k
- Motion model? ??? ??
- x_k = f(x_k-1, u_k, w_k)
- f( ) : motion model? ???? ??
- u_k : ?? ?? ?? ?? ??? ??
- w_k : motion model? ?? ???
- Example
- ???? ???? ?? ??? ??
Sensor Model
24
- ??? x_k ???? ?? ???? y_k? ? ? ????? z_k,j? ???? ?? ??
- Sensor Model? ??? ??
- z_k,j = h(y_j, x_k, v_k,j)
- h( ) : sensor model? ???? ??
- z_k,j : ???
- v_k,j : sensor model? ?? ???
- Example
- ???? ???? ?? ??? ??
SLAM? ?? ?? ??
25
- ?? ??? ?? ??
- x_k = f(x_k-1, u_k, w_k)
- z_k,j = h(y_j, x_k, v_k,j)
- ???? ??????
- ?? SLAM ??? Extended Kalman filter? ??
- EKF SLAM? ??
- ??? ????? ??
- ??? ??, ??? ??? ??? ???? ??
- Graph ??? SLAM ??? ??? ??
- Large scale? ??
H. Strasdat, ^Visual SLAM: Why Filter?, ̄ 2012.
?????
26
Ad

Recommended

Lidar
Lidar
aksh rana
?
Next Generation V2X Technology
Next Generation V2X Technology
Malik Saad
?
Maglev
Maglev
Sanjay Nayak
?
11. Future of Drones
11. Future of Drones
Devender Singh Bohra
?
Stepper motor
Stepper motor
Ankit Basera
?
Super resolution-review
Super resolution-review
Woojin Jeong
?
皆晦粥珂秘壇 及2嫗 皆晦粥珂の児粥
皆晦粥珂秘壇 及2嫗 皆晦粥珂の児粥
yohei okawa
?
Hybrid electric vehicles
Hybrid electric vehicles
simplysoumya
?
?? Visual SLAM - 5? ???? ???
?? Visual SLAM - 5? ???? ???
jdo
?
?? ?? SLAM ???? ??
?? ?? SLAM ???? ??
jdo
?
Introductory Level of SLAM Seminar
Introductory Level of SLAM Seminar
Dong-Won Shin
?
Slam algorithms
Slam algorithms
jdo
?
SLAM-?????? ????
SLAM-?????? ????
jdo
?
イラストで僥ぶ繁垢岑嬬古 9
イラストで僥ぶ繁垢岑嬬古 9
Tadahiro Taniguchi
?
^Introduction to Simultaneous Localization and Mapping (SLAM), ̄ a Presentatio...
^Introduction to Simultaneous Localization and Mapping (SLAM), ̄ a Presentatio...
Edge AI and Vision Alliance
?
3肝圷皆晦粥珂は豊でもできるよ。そう、意掛2と意顎姻岳鉛艶京看岳3ならね。
3肝圷皆晦粥珂は豊でもできるよ。そう、意掛2と意顎姻岳鉛艶京看岳3ならね。
ROBOTIS Japan
?
??? (???? GPS??????? ?? ????)
??? (???? GPS??????? ?? ????)
if kakao
?
卞強ロボットのナビゲ`ション
卞強ロボットのナビゲ`ション
Ryuichi Ueda
?
Cartographer と Autoware を喘いた徭舵恠佩
Cartographer と Autoware を喘いた徭舵恠佩
Yoshitaka HARA
?
???? GIS ?? (1)
???? GIS ?? (1)
Byeong-Hyeok Yu
?
鳩楕ロボティクス及12指
鳩楕ロボティクス及12指
Ryuichi Ueda
?
Cartographer を喘いた 3D SLAM
Cartographer を喘いた 3D SLAM
Yoshitaka HARA
?
???? GIS ?? (4)
???? GIS ?? (4)
Byeong-Hyeok Yu
?
20190825 vins mono
20190825 vins mono
Takuya Minagawa
?
SSII2019二鮫: 鮫颪よび LiDAR を喘いた徭嘛瀰个哩vする嗜
SSII2019二鮫: 鮫颪よび LiDAR を喘いた徭嘛瀰个哩vする嗜
SSII
?
Deep High Resolution Representation Learning for Human Pose Estimation
Deep High Resolution Representation Learning for Human Pose Estimation
harmonylab
?
???????? - ????GIS ????? - QGIS ??????
???????? - ????GIS ????? - QGIS ??????
MinPa Lee
?
SSII2021 [OS3-01] O笋筬h廠の互瞳|y泣蛤函誼と徭咼皀妊觧室g
SSII2021 [OS3-01] O笋筬h廠の互瞳|y泣蛤函誼と徭咼皀妊觧室g
SSII
?
??-??? ?? ?? ?? SLAM? ??? ?? ? ??? ??? ?? ??
??-??? ?? ?? ?? SLAM? ??? ?? ? ??? ??? ?? ??
jdo
?
[A-GIST ??] Crowdsourced 3D Mapping: A combined Multi-View Geometry and Self-...
[A-GIST ??] Crowdsourced 3D Mapping: A combined Multi-View Geometry and Self-...
Jehong Lee
?

More Related Content

What's hot (20)

?? Visual SLAM - 5? ???? ???
?? Visual SLAM - 5? ???? ???
jdo
?
?? ?? SLAM ???? ??
?? ?? SLAM ???? ??
jdo
?
Introductory Level of SLAM Seminar
Introductory Level of SLAM Seminar
Dong-Won Shin
?
Slam algorithms
Slam algorithms
jdo
?
SLAM-?????? ????
SLAM-?????? ????
jdo
?
イラストで僥ぶ繁垢岑嬬古 9
イラストで僥ぶ繁垢岑嬬古 9
Tadahiro Taniguchi
?
^Introduction to Simultaneous Localization and Mapping (SLAM), ̄ a Presentatio...
^Introduction to Simultaneous Localization and Mapping (SLAM), ̄ a Presentatio...
Edge AI and Vision Alliance
?
3肝圷皆晦粥珂は豊でもできるよ。そう、意掛2と意顎姻岳鉛艶京看岳3ならね。
3肝圷皆晦粥珂は豊でもできるよ。そう、意掛2と意顎姻岳鉛艶京看岳3ならね。
ROBOTIS Japan
?
??? (???? GPS??????? ?? ????)
??? (???? GPS??????? ?? ????)
if kakao
?
卞強ロボットのナビゲ`ション
卞強ロボットのナビゲ`ション
Ryuichi Ueda
?
Cartographer と Autoware を喘いた徭舵恠佩
Cartographer と Autoware を喘いた徭舵恠佩
Yoshitaka HARA
?
???? GIS ?? (1)
???? GIS ?? (1)
Byeong-Hyeok Yu
?
鳩楕ロボティクス及12指
鳩楕ロボティクス及12指
Ryuichi Ueda
?
Cartographer を喘いた 3D SLAM
Cartographer を喘いた 3D SLAM
Yoshitaka HARA
?
???? GIS ?? (4)
???? GIS ?? (4)
Byeong-Hyeok Yu
?
20190825 vins mono
20190825 vins mono
Takuya Minagawa
?
SSII2019二鮫: 鮫颪よび LiDAR を喘いた徭嘛瀰个哩vする嗜
SSII2019二鮫: 鮫颪よび LiDAR を喘いた徭嘛瀰个哩vする嗜
SSII
?
Deep High Resolution Representation Learning for Human Pose Estimation
Deep High Resolution Representation Learning for Human Pose Estimation
harmonylab
?
???????? - ????GIS ????? - QGIS ??????
???????? - ????GIS ????? - QGIS ??????
MinPa Lee
?
SSII2021 [OS3-01] O笋筬h廠の互瞳|y泣蛤函誼と徭咼皀妊觧室g
SSII2021 [OS3-01] O笋筬h廠の互瞳|y泣蛤函誼と徭咼皀妊觧室g
SSII
?
?? Visual SLAM - 5? ???? ???
?? Visual SLAM - 5? ???? ???
jdo
?
?? ?? SLAM ???? ??
?? ?? SLAM ???? ??
jdo
?
Introductory Level of SLAM Seminar
Introductory Level of SLAM Seminar
Dong-Won Shin
?
Slam algorithms
Slam algorithms
jdo
?
SLAM-?????? ????
SLAM-?????? ????
jdo
?
イラストで僥ぶ繁垢岑嬬古 9
イラストで僥ぶ繁垢岑嬬古 9
Tadahiro Taniguchi
?
^Introduction to Simultaneous Localization and Mapping (SLAM), ̄ a Presentatio...
^Introduction to Simultaneous Localization and Mapping (SLAM), ̄ a Presentatio...
Edge AI and Vision Alliance
?
3肝圷皆晦粥珂は豊でもできるよ。そう、意掛2と意顎姻岳鉛艶京看岳3ならね。
3肝圷皆晦粥珂は豊でもできるよ。そう、意掛2と意顎姻岳鉛艶京看岳3ならね。
ROBOTIS Japan
?
??? (???? GPS??????? ?? ????)
??? (???? GPS??????? ?? ????)
if kakao
?
卞強ロボットのナビゲ`ション
卞強ロボットのナビゲ`ション
Ryuichi Ueda
?
Cartographer と Autoware を喘いた徭舵恠佩
Cartographer と Autoware を喘いた徭舵恠佩
Yoshitaka HARA
?
鳩楕ロボティクス及12指
鳩楕ロボティクス及12指
Ryuichi Ueda
?
Cartographer を喘いた 3D SLAM
Cartographer を喘いた 3D SLAM
Yoshitaka HARA
?
SSII2019二鮫: 鮫颪よび LiDAR を喘いた徭嘛瀰个哩vする嗜
SSII2019二鮫: 鮫颪よび LiDAR を喘いた徭嘛瀰个哩vする嗜
SSII
?
Deep High Resolution Representation Learning for Human Pose Estimation
Deep High Resolution Representation Learning for Human Pose Estimation
harmonylab
?
???????? - ????GIS ????? - QGIS ??????
???????? - ????GIS ????? - QGIS ??????
MinPa Lee
?
SSII2021 [OS3-01] O笋筬h廠の互瞳|y泣蛤函誼と徭咼皀妊觧室g
SSII2021 [OS3-01] O笋筬h廠の互瞳|y泣蛤函誼と徭咼皀妊觧室g
SSII
?

Similar to ?? Visual SLAM 14? - 2? Introduction to slam (20)

??-??? ?? ?? ?? SLAM? ??? ?? ? ??? ??? ?? ??
??-??? ?? ?? ?? SLAM? ??? ?? ? ??? ??? ?? ??
jdo
?
[A-GIST ??] Crowdsourced 3D Mapping: A combined Multi-View Geometry and Self-...
[A-GIST ??] Crowdsourced 3D Mapping: A combined Multi-View Geometry and Self-...
Jehong Lee
?
??-??????
??-??????
jdo
?
? 17? ???(BOAZ) ???? ???? - [AutoCar?] : ???? ?? ?? ??? ?? ?? ?? ??
? 17? ???(BOAZ) ???? ???? - [AutoCar?] : ???? ?? ?? ??? ?? ?? ?? ??
BOAZ Bigdata
?
?2? ?? ???? ??? (?10?? ROS? ??? SLAM? ?????)
?2? ?? ???? ??? (?10?? ROS? ??? SLAM? ?????)
Yoonseok Pyo
?
?3? ?? ???? ??? (?9??) : ROS? ??? SLAM? ?????
?3? ?? ???? ??? (?9??) : ROS? ??? SLAM? ?????
Yoonseok Pyo
?
Stabilization Method of Trajectory Data with Planar Characteristic using Plan...
Stabilization Method of Trajectory Data with Planar Characteristic using Plan...
Stryx
?
Survey on Monocular Depth Estimation
Survey on Monocular Depth Estimation
?? ?
?
Learning Less is More - 6D Camera Localization via 3D Surface Regression
Learning Less is More - 6D Camera Localization via 3D Surface Regression
Brian Younggun Cho
?
Summary in recent advances in deep learning for object detection
Summary in recent advances in deep learning for object detection
?? ?
?
Summary in recent advances in deep learning for object detection
Summary in recent advances in deep learning for object detection
?? ?
?
NNKproject Korean version
NNKproject Korean version
nao takatoshi
?
Pose Graph based SLAM
Pose Graph based SLAM
EdwardIm1
?
Game using position information
Game using position information
Seowoo Han
?
august report in korean
august report in korean
nao takatoshi
?
??-??, ??? ??_7_?? ????? ?? ??
??-??, ??? ??_7_?? ????? ?? ??
wycha
?
Super map idesktop??????
Super map idesktop??????
?? ???
?
Graphics 14? 1?? ??? ???.pptx
Graphics 14? 1?? ??? ???.pptx
HolyTak
?
??????????????????????360????
??????????????????????360????
NAVER D2
?
[234] ?????? ????????? ????? ?????? ?????? ???? daqri helmet ???????
[234] ?????? ????????? ????? ?????? ?????? ???? daqri helmet ???????
NAVER D2
?
??-??? ?? ?? ?? SLAM? ??? ?? ? ??? ??? ?? ??
??-??? ?? ?? ?? SLAM? ??? ?? ? ??? ??? ?? ??
jdo
?
[A-GIST ??] Crowdsourced 3D Mapping: A combined Multi-View Geometry and Self-...
[A-GIST ??] Crowdsourced 3D Mapping: A combined Multi-View Geometry and Self-...
Jehong Lee
?
??-??????
??-??????
jdo
?
? 17? ???(BOAZ) ???? ???? - [AutoCar?] : ???? ?? ?? ??? ?? ?? ?? ??
? 17? ???(BOAZ) ???? ???? - [AutoCar?] : ???? ?? ?? ??? ?? ?? ?? ??
BOAZ Bigdata
?
?2? ?? ???? ??? (?10?? ROS? ??? SLAM? ?????)
?2? ?? ???? ??? (?10?? ROS? ??? SLAM? ?????)
Yoonseok Pyo
?
?3? ?? ???? ??? (?9??) : ROS? ??? SLAM? ?????
?3? ?? ???? ??? (?9??) : ROS? ??? SLAM? ?????
Yoonseok Pyo
?
Stabilization Method of Trajectory Data with Planar Characteristic using Plan...
Stabilization Method of Trajectory Data with Planar Characteristic using Plan...
Stryx
?
Survey on Monocular Depth Estimation
Survey on Monocular Depth Estimation
?? ?
?
Learning Less is More - 6D Camera Localization via 3D Surface Regression
Learning Less is More - 6D Camera Localization via 3D Surface Regression
Brian Younggun Cho
?
Summary in recent advances in deep learning for object detection
Summary in recent advances in deep learning for object detection
?? ?
?
Summary in recent advances in deep learning for object detection
Summary in recent advances in deep learning for object detection
?? ?
?
NNKproject Korean version
NNKproject Korean version
nao takatoshi
?
Pose Graph based SLAM
Pose Graph based SLAM
EdwardIm1
?
Game using position information
Game using position information
Seowoo Han
?
august report in korean
august report in korean
nao takatoshi
?
??-??, ??? ??_7_?? ????? ?? ??
??-??, ??? ??_7_?? ????? ?? ??
wycha
?
Super map idesktop??????
Super map idesktop??????
?? ???
?
Graphics 14? 1?? ??? ???.pptx
Graphics 14? 1?? ??? ???.pptx
HolyTak
?
??????????????????????360????
??????????????????????360????
NAVER D2
?
[234] ?????? ????????? ????? ?????? ?????? ???? daqri helmet ???????
[234] ?????? ????????? ????? ?????? ?????? ???? daqri helmet ???????
NAVER D2
?
Ad

More from jdo (20)

[?????? ????] 10. ??? ???? ?? 1 - 2. ??? ???
[?????? ????] 10. ??? ???? ?? 1 - 2. ??? ???
jdo
?
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
jdo
?
[?????? ????] 8. ??? ??? ???? 5 - Others
[?????? ????] 8. ??? ??? ???? 5 - Others
jdo
?
[?????? ????] 8. ??? ??? ???? 4 - ResNet
[?????? ????] 8. ??? ??? ???? 4 - ResNet
jdo
?
[?????? ????] 8. ??? ??? ???? 3 - GoogLeNet
[?????? ????] 8. ??? ??? ???? 3 - GoogLeNet
jdo
?
[?????? ????] 8. ??? ??? ???? 2 - ZFNet, VGG-16
[?????? ????] 8. ??? ??? ???? 2 - ZFNet, VGG-16
jdo
?
[?????? ????] 8. ??? ??? ???? 1 - ????
[?????? ????] 8. ??? ??? ???? 1 - ????
jdo
?
[?????? ????] 7. ??? ??? 2
[?????? ????] 7. ??? ??? 2
jdo
?
[?????? ????] 7. ??? ??? 1
[?????? ????] 7. ??? ??? 1
jdo
?
[?????? ????] 6. ??? 2
[?????? ????] 6. ??? 2
jdo
?
[?????? ????] 6. ??? 1
[?????? ????] 6. ??? 1
jdo
?
[?????? ????] 5. ??? 2 - ??? ???? ??? ??
[?????? ????] 5. ??? 2 - ??? ???? ??? ??
jdo
?
[???? ?? ??] ?? ???
[???? ?? ??] ?? ???
jdo
?
[?????? ????] 5. ???
[?????? ????] 5. ???
jdo
?
[???? ?? ??] ??
[???? ?? ??] ??
jdo
?
[?????? ????] 4. ???
[?????? ????] 4. ???
jdo
?
[?????? ????] 3. ?? ??? : ?? ??? ??
[?????? ????] 3. ?? ??? : ?? ??? ??
jdo
?
[?????? ????] 3. ?? ?? : ?? ??? ??
[?????? ????] 3. ?? ?? : ?? ??? ??
jdo
?
Titanic kaggle competition
Titanic kaggle competition
jdo
?
1 2. ??? ????? ?? ???
1 2. ??? ????? ?? ???
jdo
?
[?????? ????] 10. ??? ???? ?? 1 - 2. ??? ???
[?????? ????] 10. ??? ???? ?? 1 - 2. ??? ???
jdo
?
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
jdo
?
[?????? ????] 8. ??? ??? ???? 5 - Others
[?????? ????] 8. ??? ??? ???? 5 - Others
jdo
?
[?????? ????] 8. ??? ??? ???? 4 - ResNet
[?????? ????] 8. ??? ??? ???? 4 - ResNet
jdo
?
[?????? ????] 8. ??? ??? ???? 3 - GoogLeNet
[?????? ????] 8. ??? ??? ???? 3 - GoogLeNet
jdo
?
[?????? ????] 8. ??? ??? ???? 2 - ZFNet, VGG-16
[?????? ????] 8. ??? ??? ???? 2 - ZFNet, VGG-16
jdo
?
[?????? ????] 8. ??? ??? ???? 1 - ????
[?????? ????] 8. ??? ??? ???? 1 - ????
jdo
?
[?????? ????] 7. ??? ??? 2
[?????? ????] 7. ??? ??? 2
jdo
?
[?????? ????] 7. ??? ??? 1
[?????? ????] 7. ??? ??? 1
jdo
?
[?????? ????] 6. ??? 2
[?????? ????] 6. ??? 2
jdo
?
[?????? ????] 6. ??? 1
[?????? ????] 6. ??? 1
jdo
?
[?????? ????] 5. ??? 2 - ??? ???? ??? ??
[?????? ????] 5. ??? 2 - ??? ???? ??? ??
jdo
?
[???? ?? ??] ?? ???
[???? ?? ??] ?? ???
jdo
?
[?????? ????] 5. ???
[?????? ????] 5. ???
jdo
?
[???? ?? ??] ??
[???? ?? ??] ??
jdo
?
[?????? ????] 4. ???
[?????? ????] 4. ???
jdo
?
[?????? ????] 3. ?? ??? : ?? ??? ??
[?????? ????] 3. ?? ??? : ?? ??? ??
jdo
?
[?????? ????] 3. ?? ?? : ?? ??? ??
[?????? ????] 3. ?? ?? : ?? ??? ??
jdo
?
Titanic kaggle competition
Titanic kaggle competition
jdo
?
1 2. ??? ????? ?? ???
1 2. ??? ????? ?? ???
jdo
?
Ad

?? Visual SLAM 14? - 2? Introduction to slam

  • 1. 190531 ??? Introduction to SLAM ?? : ???, Introduction to SLAM, SLAM KR, https://www.youtube.com/watch?v=_i8PaekcguA
  • 2. Introduction 2 - Example : Pepper robot - ??? ??? ???? ???? ? ?? ?? ?? ?? - ??? ???? ??? ? ??? ?? ??? ???? ?? - ??? ??? ???? ???? ? ?? ?? ?? ?? - ??? ???? ???? ? ??? ?? ?? ??? ? - Localization - Mapping
  • 3. Simultaneous Localization and Mapping 3 - Visual localization - ??? ??? ???? ?? (?? ?? x) - GPS? ? ???? ?? ?? - Ex) - Mapping - ??? ?? ?? ????? ?? ?? ???? ? ?? ?? - ?? ??? ?? ??? ?? - Ex) Indoor environment Private area Downtown Disaster area Cesar Cadena, Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age, IEEE Transactions on Robotics 32 (6) pp 1309-1332, 2016
  • 4. Earlier Inspirations 4 - Bayesian Filtering based SLAM - prototype of traditional Bayesian filtering based SLAM framework emerged in 1900s. - ex) EKF SLAM, FastSLAM - Visual Odometry - The process of estimating the ego-motion of a robot using only the input of a single or multiple cameras attached to it - ex) stereo VO, monocular VO - Structure from motion - Investigating the problem of recovering relative camera poses and 3D structure from a set of camera images - Off-line version of visual SLAM
  • 5. ??? ?? ?? ?? 5 - ??? ??, QR ??, GPS ?? - ???? ??? ??, QR??? ?? ? ?? ??? ????) - GPS ??? ? ?? ?? ?? ?? ( ??, ?? ??, ?? ?? ?) - ??? ? ??? ????? ?? - ???? ??? ?? - ???? ?? ??? ?? ?? - ?? ???, ?? ???, ?? ??? - ??? ? ???, ???, ???, IMU ?? - ??? ?? ???? ???? ?? - ??? ?? ???? ?? ?? ?? ?? - ???? ??? ?? - Visual SLAM - ??? ??? ?? ??? ?? ?? ? ?? ?? ??
  • 6. ?? ??? 6 - ? ?? ???? ??? ????? ??? ?? - ?? ?? ????? ??? ? ??? ??(disparity)? ?? - ?? - ?? ???? ?? ?? - ???? ?? ???? ?? - ???? ??? ???? ???? ?? ??? ?? 3?? ???? ?? - ?? - Disparity? ??? ? ??? ???? depth? ? ? ??(Baseline? ??) - ??? Scale ??? ? ? ??
  • 7. ?? ??? 7 - ??? ??? ? ?? ???? ???? ????? ??? ?? - ??? ?? ?? ??? ?? - ?? - ?? ??? ?? ?? ??? ?? ?? ?? - Dense? ? ?? ?? - Baseline : ? ??? ??? ??? ?? - ?????? ??? ? ??? ?? ?? - ?? - ???? ?? ????? ??? ?? - ?? ??? ??
  • 8. ?? ??? 8 - ??? ??? ?? ?? ??? ??? ????? ??? ?? ?? - ?? - ??? ??? ?? ? ??? ?? - Dense? ? ?? - ?? ????? ???? ?? ??? - Kinect V1, Kinect V2 - Xtion Pro Live - Intel RealSense - Google Tango - ?? - ?? ?? ?? - ?? ??? - ??, ??? ??? ?? ?? ?? ?? - ?? ?? ???? ???
  • 9. Lidar ?? 9 - ??? ??? ????? ??? ??? ?? - ?? ?? ?? ? ?? ???? ?? - ?? - 2D ???/3D ??? - Spinning/Solide-state - ?? ?? - Velodyne - Robosense - Ouster - SOSLab
  • 10. ???? Visual SLAM ????? 10 - Sensor input - Visual odometry - Backend optimization - Loop closure detection - Mapping Sensor input Visual odometry Loop closing Backend optimization Mapping
  • 11. ???? Visual SLAM ????? 11 Sensor input Visual odometry Loop closing Backend optimization Mapping ?????? ???? ???? ???? ??? ???? ???(feature point)? ????. ??? ?? ??? ?? ??? ?? ???. - Harris corner : ??? ??? ?? ???? ??? ?? - SIFT : ????? ????? ?? ??? ???? ?? - SURF : SIFT? ?? ??? ???. - FAST : ??? ?? ?? ?? ?? ?? ?? ????
  • 12. ???? Visual SLAM ????? ? ??? ???, ?? ?? ?? BRISK, BRIEF, ORB ? ?? ????? ????, ???? ???? ?? ?? ?? ???(descriptor)? ?? ??. ? ??? ? ??? ???? ?? ?? ?? ?? ??? ???? ??(matching)? ? ? ?? ??. ?? ?? - ?????? ??(mahalanobis distance) : ??? ?? ??? ?? - ????? ??? ??? SSD(Sum of Squared Differences) : ?? ??
  • 13. ???? Visual SLAM ????? ???? ?? ?????? ???(outlier)? ????. ???? ???? ? ???? ??? ????? ??? ?? ? ? ??. ??? ?? ???? - RANSAC(RANdom Sample Consensus) - MSAC(M-estimator Sample And Consensus) ??? ?? ??? ??? ??? ?? RANSAC ??
  • 14. Visual Odometry 14 - Frontend - ??? ??? ??? ??? ??? - ???? ??? ?? ???? ??? ?? - ?? ? ?? - ???? 3?? ?? ? ??? ???? ??? ?? - Drift error - Visual odometry?? ???? ??? ???? ??? ??? - ??? - Backend optimization? loop closure detection
  • 15. Backend Optimization 15 - Sensor noise - ??? ???? ???? ?? ?? - ??? ??? ?? ??? ? - ?? ??? ???? ??? ??? ?? - Backend ??? - ???? ?? ?????? ?? ???? ??? ???? ??(state estimation) - Frontend?? ??? Drift ??? ?? - Frontend??? Backend? ??? ? ???? ???? ?? ?? ?? - Backend ???? ?? - ?? ??(Kalman filter, particle filter) - ??? ??? ??(bundle adjustment, pose graph optimization)
  • 16. Loop Closure Detection 16 - ?? ??? ??? ??? ???? ?? - QR ?? ?? - ???? ??? ?? - ??? ??? ?? - ??? ?? ???? ?? - Backend??? ?? ??? ?? ??? ??? ?? ??? ?? ??? ?? - Drift ??? ???? ????? ??? ?? ?? T. Sattler, ^Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions, ̄ 2017.
  • 17. Mapping 17 - ?? ?? ??? ?? - ?? ????? ?? ??? ?? - ?? ?? ?? - 2?? ??? ?? - ???? ?? - 6DOF??? 3?? ??? ?? - Map representation - Pointcloud - Voxel - Surfel - Occupancy grid map - ? ?? ??? ?? ?? - Sparse, dense, semi-dense map
  • 18. Modern State of the Art Systems 18 - Sparse SLAM - Only use a small selected subset of the pixels (features) from a monocular color camera - Fast and real time on CPU but it produces a sparse map (point clouds) - Landmark-based or feature-based representations - ORB SLAM - One of the SOTA frameworks in the sparse SLAM category - Complete SLAM system for monocular camera - Real-time on standard CPUs in a wide variety of environments - small hand-held indoors - drones flying in industrial environments - cars driving around a city
  • 19. Modern State of the Art Systems 19 - Dense SLAM - Use most or all of the pixels in each received frame - Or use depth images from a depth camera - It produces a dense map but GPU acceleration is necessary from the real-time operation - Volumetric model or surfel(Surface Element)-based representations - InfiniTam - One of the SOTA frameworks in the Dense SLAM category - Multi-platform framework for real-time, large-scale depth fusion and tracking - Densely reconstructed 3D scene
  • 20. Modern State of the Art Systems 20 - Direct method (semi-dense SLAM) - Make use of pixel intensities directly - Enable using all information in the image - It produces a semi-dense map - Higher accuracy and robustness in particular even in environments with little keypoints - LSD SLAM - Highly cited SLAM framework in the direct method SLAM category - Large-scale, consistent maps of the environment - Accurate pose estimation based on direct image alignment
  • 21. Modern State of the Art Systems 21 - Lidar SLAM - Make use of the Lidar sensor input for the localization and mapping - Autonomous driving purpose-oriented in outdoor environment - LOAM - One of the SOTA frameworks in the Lidar SLAM category - Very low drift error using the edge and planar features - Low computation complexity
  • 22. SLAM ??? ??? ?? 22 - Motion model - ??? ??? ??? ????? ?? - Sensor model - ????? ???? ??? ?????? ??
  • 23. Motion Model 23 - ??? x_k-1 ???? ??? ?? u_k? ??? ? ??? ??? ?? x_k - Motion model? ??? ?? - x_k = f(x_k-1, u_k, w_k) - f( ) : motion model? ???? ?? - u_k : ?? ?? ?? ?? ??? ?? - w_k : motion model? ?? ??? - Example - ???? ???? ?? ??? ??
  • 24. Sensor Model 24 - ??? x_k ???? ?? ???? y_k? ? ? ????? z_k,j? ???? ?? ?? - Sensor Model? ??? ?? - z_k,j = h(y_j, x_k, v_k,j) - h( ) : sensor model? ???? ?? - z_k,j : ??? - v_k,j : sensor model? ?? ??? - Example - ???? ???? ?? ??? ??
  • 25. SLAM? ?? ?? ?? 25 - ?? ??? ?? ?? - x_k = f(x_k-1, u_k, w_k) - z_k,j = h(y_j, x_k, v_k,j) - ???? ?????? - ?? SLAM ??? Extended Kalman filter? ?? - EKF SLAM? ?? - ??? ????? ?? - ??? ??, ??? ??? ??? ???? ?? - Graph ??? SLAM ??? ??? ?? - Large scale? ?? H. Strasdat, ^Visual SLAM: Why Filter?, ̄ 2012.