際際滷

際際滷Share a Scribd company logo
弌于仂舒亳于舒仆亳亠 弍亠仍从舒 (folding)
Principles that govern the folding of protein chain Anfinsen, C. (1973) Science 181, 223-
230.
the native conformation is determined by the totality of inter-atomic
interactions and hence by the amino acid sequences, in a given environment.
(solvent, pH, ionic strength, chemicals,etc)
仂弍仍亠仄舒 于仂舒亳于舒仆亳 弍亠仍从舒
∃ぱ仆从亳亳 弍亠仍从仂于 仂仗亠亟亠仍ム 亳从仍ム亳亠仍仆仂 亳 3D
从仂亶, 从仂仆仂仄舒亳亠亶
∃仂仗仂: 仄仂亢仆仂 仍亳 仗亠亟从舒亰舒 3D 从 弍亠仍从舒,
亳仂亟 亳亰 亟舒仆仆仂亶 舒仄亳仆仂从亳仍仂仆仂亶 仗仂仍亠亟仂于舒亠仍仆仂亳?
∃于亠: 于 仂弍亠仄 仍舒亠  仆亠!
 仂 仄亠仂亟, 从仂仂亠 仗仂亰于仂仍ム 舒亰亠亳 舒亳仆仂 3D
从, 弍于舒ム 仗仂仍亠亰仆.
弌于仂舒亳于舒仆亳亠  仗仂亠仄 仂 舒从 仍仂亢仆仂?
 亳仆亠亶仆亠 仄仂仍亠从仍 弍亠仍从仂于 仂亠仆 弍仂 于仂舒亳于舒ム 于
仗亠亟仂仗亠亟亠仍仆仆亠 3D 从.
 弌于仂亶于舒 仍ミ頴笑覚 弍亠仍从舒 仂仗亠亟亠仍ム 亠亞仂 3D 从仂亶.
 亠仍从亳 仄仂亞 亟亠仆舒亳仂于舒 仗仂亟 于仂亰亟亠亶于亳亠仄 亳仄亳亠从亳 于亠亠于 亳仍亳
亠仗仍仂, 仆仂 亰舒亠仄 仂仆亳 于仂舒亳于舒ム 于仆仂于 于 亳仂亟仆 从.
丐舒从 仗仂亠仄 亢亠 舒从 仍仂亢仆仂 舒亰亠亳 于仂舒亳于舒仆亳亠?
 弌从舒 弍亠仍从舒 仄仂亢亠 弍 仂仗亠亟亠仍亠仆舒 从仗亠亳仄亠仆舒仍仆仂 (X-Rays or NMR)
仆仂 舒 仗仂亠亟舒 仆亠 于亠亞亟舒 于仂亰仄仂亢仆舒 亳 仆亠 于亠亞亟舒 亟舒 仂仂亳亠 亠亰仍舒.
 3D 从舒 仗仂仍亠亟仂于舒亠仍仆仂亳 仂仗亠亟亠仍磳 仗仂仍亠亟仂于舒亠仍仆仂
亟仂仗亳仄 亞仍仂于 仗仂于仂仂舒, 于 从仂仂仂亶 从舒亢亟亶 亞仂仍 束仂仂亳損 亳亰 2-
仗仍舒仆舒仆 亞仍仂于.
 亅舒 仗仂弍仍亠仄舒 仄仂亢亠 弍 亠亠仆舒 仗仄 亟亳从亠亳亰舒亳亳 (仗亳 仆亠从仂仂仂亶
仗仂亠亠 仂仆仂亳) 仗仄 仂亞舒仆亳亠仆亳 从仂仍亳亠于舒 于仂亰仄仂亢仆 仗亠亶 亟仂亳亢亠仆亳
从舒亢亟仂亶 亳亰 仂亠从 (从仂仂亟亳仆舒 舒仂仄仂于).
仍亳  于舒 仆亠 从
仂亟仂亟 于 仗亠亟从舒亰舒仆亳亳
从
 亠亟从舒亰舒仆亳亠 1D:
 于仂亳仆亠 从
亟仂仗仆仂 亟仍 舒于仂亳亠仍
 舒仆仄亠仄弍舒仆舒仍仆亠 仗亳舒仍亳
 亠亟从舒仆亳亠 2D:
 从仂仆舒从 仄亠亢亟 舒仄亳仆仂从亳仍仂舒仄亳/仆亳礆亳 弍亠舒.
 亠亟从舒亰舒仆亳亠 3D:
仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于
 舒仗仂亰仆舒于舒仆亳亠 仂仍亟舒 (e.g. via threading)
 ab initio 仗亠亟从舒亰舒仆亳亠 (e.g. via 仄仂仍亠从仍仆舒 亟亳仆舒仄亳从舒)
舒亟舒亳
 弌舒于仆亠仆亳亠 于亠 亳亰于亠仆 从 亟亞  亟亞仂仄
 仍舒亳亳从舒亳 亳 仂亞舒仆亳亰舒亳 于亠 亳亰于亠仆 从
 仂亳从 仂弍亳 从仆 舒弍仍仂仆仂于 亳 仄仂亳于仂于
 仗亠亟亠仍亠仆亳亠 于仂仍ム亳仂仆仆 舒仂礌亳亶 仄亠亢亟 从舒仄亳 弍亠仍从仂于
 仂从亳仆亞  亳亰亠仆亳亠 于亰舒亳仄仂亟亠亶于亳 仄亠亢亟 从舒仄亳
 亠亟从舒亰舒仆亳亠 从 仆舒 仂仆仂于亠 仗仂仍亠亟仂于舒亠仍仆仂亳
 亳亰舒亶仆 仆仂于 仍亠从舒于
舒亠仄?
 亠于亶 舒亞 从 仗亠亟从舒亰舒仆亳 亠亳仆仂亶 从
 亟亳仆 亳亰 仂仆仂于仆 仍亠仄亠仆仂于 于 舒仗仂亰仆舒于舒仆亳亳 仂仍亟舒 (亟仍
仄仂亟亠仍亳仂于舒仆亳 亟舒仍亠从亳 于 于仂仍ム亳仂仆仆仂仄 仗仍舒仆亠 弍亠仍从仂于)
亠亟从舒亰舒仆亳亠 于仂亳仆仂亶 从
http://www.new-science-press.com/
Table II of Williams, R.W. et al.: Biochimica
et Biophysica Acta 1987, 916:200-204.
 仗亠亟从舒亰舒仆亳亠 亟仍 从舒亢亟仂亶 舒仄亳仆仂从亳仍仂 于 于弍舒仆仆仂仄 仂从仆亠 仂亠亟仆亳
舒仄亳仆仂从亳仍仂 (13-21)
 从仂亳仆亞, 仂弍亠仆亳亠 仄仂亟亠仍亳 亳 仗亠亟从舒亰舒仆亳亠 2D 从 (仄舒仗仗亳仂于舒仆亳亠
仍亠仄亠仆舒 于仂亳仆仂亶 从 仆舒 仂从仆仂)
亠亟从舒亰舒仆亳亠 于仂亳仆仂亶 从
亠仂亟
I. Chou-Fasman / GOR 仄亠仂亟
II. 仂亟亠仍亳 仆亠亶仂仆仆 亠亠亶
III. 亠仂亟 束弍仍亳亢舒亶亠亞仂 仂亠亟舒損
亠仂亟 Chou-Fasman
(1974)
 舒亰舒弍仂舒仆 Chou & Fasman 于 1974 -1978
 舒亰舒  亳亰于亠仆亠 3D 从 亞仍仂弍仍仆 弍亠仍从仂于
 丼舒仂 舒仄亳仆仂从亳仍仂 于 留-仗亳舒仍
 丼舒仂 舒仄亳仆仂从亳仍仂 于 硫-仍亳舒
 丼舒仂 舒仄亳仆仂从亳仍仂 于 硫-仗仂于仂仂舒
 舒于亳仍舒 仂弍舒亰仂于舒仆亳 留-仗亳舒仍亠亶 亳 硫-仍亳仂于
 仆仂于舒仆 仆舒 舒于仂亳仄, 亞仍仂弍仍仆 弍亠仍从舒  仆舒舒仍仆舒
弍舒亰舒 15 弍亠仍从仂于
亠仂亟 Chou-Fasman
(1974)
舒亰于亳亳亠 Chou-Fasman
1. 亳于仂亠仆亳亠 从舒亢亟仂亶 舒仄亳仆仂从亳仍仂亠 仂仗亠亟亠仍亠仆仆仂亞仂 仗仍舒
仗舒舒仄亠仂于
2. 亟亠仆亳亳从舒亳 a-helix 亳 b-sheet. 丕亟仍亳仆亠仆亳亠 亳 仂弍仍舒亠亶 于
仂弍仂亳 仆舒仗舒于仍亠仆亳.
3. 亳 仗亠亠从亳亳  舒于仆亠仆亳亠 P(H) 亳 P(E) 亳 从仂亳仆亞.
1. 亠仂仆仂亳
P留(H)=[(#H in helix)/(#H)]/(fraction helix {all})
T S P T A E L M R S T G
P(H) 69 77 57 69 142 151 121 145 98 77 69 57
P(E) 147 75 55 147 83 37 130 105 93 75 147 75
P(turn) 114 143 152 114 66 74 59 60 95 143 114 156
舒亰于亳亳亠 Chou-Fasman
仂亳从 a-仗亳舒仍亳
2. 仂亳从 仂弍仍舒亠亶, 亞亟亠 4 亳亰 6 舒仄亳仆仂从亳仍仂 亳仄亠ム P(H) >100 ( 磲仂 a-
仗亳舒仍亳)
T S P T A E L M R S T G
P(H) 69 77 57 69 142 151 121 145 98 77 69 57
T S P T A E L M R S T G
P(H) 69 77 57 69 142 151 121 145 98 77 69 57
丕亟仍亳仆亠仆亳亠 磲舒 a-仗亳舒仍亳
3. 舒亳亠仆亳亠 仂弍仍舒亳 磲舒, 仗仂从舒 4 舒仄亳仆仂从亳仍仂 亳仄亠ム 亠亟仆亠亠 P(H)
>100.
T S P T A E L M R S T G
P(H) 69 77 57 69 142 151 121 145 98 77 69 57
仂亳从 硫-仍亳舒
4. 仂亳从 仂弍仍舒亠亶, 亞亟亠 3 亳亰 5 舒仄亳仆仂从亳仍仂 亳仄亠ム P(E) >100 磲仂 硫-仍亳舒
5. 丕亟仍亳仆亠仆亳亠 磲舒 亟仂 亠 仗仂, 仗仂从舒 4 仂亠亟仆亳 舒仄亳仆仂从亳仍仂 亳仄亠ム
亠亟仆亠亠 P(E) > 100
6. 仍亳 score 仂弍仍舒亳 > 105 亳 亠亟仆亠亠 P(E) > 亠亟仆亠亠 P(H), 亰仆舒亳 舒
仂弍仍舒 - 硫-仍亳
T S P T A E L M R S T G
P(H) 69 77 57 69 142 151 121 145 98 77 69 57
P(E) 147 75 55 147 83 37 130 105 93 75 147 75
GCG Programs
 PepPlot
 Plot on parallel panels
 -cff option, text output
 PeptideStructure
 text output (Most useful for detail)
 PlotStructure
 two outputs
 squiggles protein-like
 parallel panels
GOR III (Garnier-Osguthorpe-Robson. Gibrat J.F., J.Mol.Biol, 1987)
仂亟亠仍亳 仆亠亶仂仆仆 亠亠亶
- 舒亳仆仆仂亠 仂弍亠仆亳亠
- 弌亠 从 (e.g. a-仗亳舒仍亳, 仆亠 a-仗亳舒仍亳)
- 弍亠仆亳亠 舒仗仂亰仆舒于舒 舒弍仍仂仆, 从 于 亳亰于亠仆 弍亠仍从舒
亅亠从亳于仆仂 ~ 70 75%
Rost B. Sander C. Prediction of Protein Secondary Structure at
Better then 70% Accuracy. J.Mol.Biol., 1993, vol. 232. 584-599.NPS@ 亠于亠
弌亠于亳 亳 舒仍亞仂亳仄
Eva
亠亟从舒亰舒仆亳亠 于仂亳仆仂亶 从
亠亟从舒亰舒仆亳亠 于仂亳仆仂亶 从
Predict Protein (Mega) - secondary structure ( PHDsec, and PROFsec)
PSI-pred (PSI-BLAST profiles used for prediction; David Jones, Warwick)
PHD - Rost & Sander, EMBL, Germany
ASPSSP server Raghava, INDIA
DSC - King & Sternberg (this server)
PREDATOR - Frischman & Argos (EMBL)
ZPRED server Zvelebil et al., Ludwig, U.K.
nnPredict Cohen et al., UCSF, USA.
BMERC PSA Server Boston University, USA
SSP (Nearest-neighbor) Solovyev and Salamov, Baylor College, USA.
 JPRED Consensus prediction (Cuff & Barton, EBI)
 NPS@
亠亟从舒亰舒仆亳亠 于仂亳仆仂亶 从
亠亟从舒亰舒仆亳亠 于仂亳仆仂亶 从
亠亟从舒亰舒仆亳亠 仆从亳亳
亠 仂亟仆舒 于舒亢仆舒 亰舒亟舒舒 仗仂亠仂仄亳从亳  舒仆舒仍亳亰 亳
仗亠亟从舒亰舒仆亳亠 仆从亳亳 弍亠仍从舒. 亰于亠仆仂, 仂 仆从亳
弍亠仍从舒 仂仗亠亟亠仍磳 亠亞仂 舒从亳于仆仄亳 舒亶舒仄亳, 仗仂仂仄
仆舒从仂仗仍亠仆亳亠 亳 亳亠仄舒亳亰舒亳 亳仆仂仄舒亳亳 仂弍 舒从亳于仆
舒亶舒 弍亠仍从仂于 亠亰于舒亶仆仂 舒从舒仍仆舒. . 于舒仆亳亠仆从仂,
. 亳亞仂仂于亳亠仄 亳 弌. 亳仆仂仄 舒亰舒弍仂舒仆舒
从仂仄仗ム亠仆舒 弍舒亰舒 亟舒仆仆 PDBSite, 从仂仂舒 仂亟亠亢亳
亳仆仂仄舒亳 仂 弍仂仍亠亠 亠仄 12 舒 舒从亳于仆 舒亶仂于
弍亠仍从仂于. 仂仆亳从仂仄 亳仆仂仄舒亳亳 仍亢舒 仂仂仂
亟仂从仄亠仆亳仂于舒仆仆亠 仗仂舒仆于亠仆仆亠 从
弍亠仍从仂于.
 仗舒仆仂亠 于舒于仆亳于舒仆亳亠;
 仄仆仂亢亠于亠仆仆仂亠 于舒于仆亳于舒仆亳亠;
 仗仂亳从 亞仂仄仂仍仂亞仂于, threading;
 从仆仂亠 于舒于仆亳于舒仆亳亠.
仆仂于仆亠 仄亠仂亟 于
弍亳仂亳仆仂仄舒亳从亠:
CASP
Critical Assessment of Techniques for Protein Structure Prediction
CASP1 (1994) CASP2 CASP3 CASP4 CASP5..CASP9 (2010)
 Comparative modeling (CM)
 Fold-recognition (FR)
 CAFASP meta-server ver. 3
 New folds (NF)
 Ten most wanted sec. struct. contacts, protein-protein docking,
and disordered predictions.
About CASP: CASP is a blind study/experiment that aims at establishing the current state of the art
in protein structure prediction; identifying what progress has been made; and highlighting where
future effort may be most productively focused (Every two years).
This blind study is held over an ~8 month time period and ends in a meeting held every two years,
in Asilomar, CA, starting from 1994. For the procedure of the experiment, CASP participants are first
provided target sequences (around May) via the Protein Structure Prediction Center at Lawrence
Livermore National Laboratory. The participants have a few months to determine the template
structure, alignment, model structure and evaluate their results.
The sequence targets are categorized by homology and difficulty for predicting their structure. The
fairly simple targets have med. sequence homology (>30% seq. identity) are considered comparative
modeling (CM) predictions; the med. difficulty targets have med.-to-low sequence homology (~10-
30% seq. identity) are considered fold-recognition (FR) predictions; and the difficult targets have low
seq. homology and usually require an ab initio methods are considered new folds (NF).
During the prediction time (~May-Oct.), researchers (structural biologist in x-ray or NMR) work on
solving the experimental structure of each of the target sequences and they hold back the structure
coordinate information from the predictors. By Nov., all participants submit their models (as
coordinates) to the Livermore Center and the researchers (who solve the target structure) finalize and
post their results. Finally, in Dec., all participants and the CASP organizers meet to evaluate the
results of the experiment comparing each model with the experimental structure and discussing the
methodologies used.
The goal of CAFASP is to evaluate the performance of fully automatic structure prediction servers
available to the community. In contrast to the normal CASP procedure, CAFASP aims to answer the
question of how well servers do without any intervention of experts, i.e. how well ANY user using
only automated methods can predict protein structure. CAFASP assesses the performance of methods
without the user intervention allowed in CASP.
CASP
CASP 仂亠, 亠亰仍舒
亠亟从舒亰舒仆亳亠 于仂舒亳于舒仆亳 弍亠仍从舒 vs
仗亠亟从舒亰舒仆亳亠 从
亠从舒亰舒仆亳亠 仗仂亠舒 仂仍亟亳仆亞舒 弍亠仍从舒 于磶舒仆仂  仗仂亠仂仄 仗亳仂弍亠亠仆亳
弍亠仍从仂仄 亠亞仂 3D 仂仄, 仂亠舒仆亳亶  亳亰亳从仂-亳仄亳亠从亳亠 仗亳仆亳仗.
亠亟从舒亰舒仆亳亠 从  亳仗仂仍亰ム 仍ミ英亠 舒亳亳亠从亳亠,
亠仂亠亳亠从亳亠 亳 仄仗亳亳亠从亳亠 亟舒仆仆亠.
4 仗仂亟仂亟舒:
仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 (Homology Modeling)
舒仗仂亰仆舒于舒仆亳亠 仂仍亟舒 (Sequence-Structure Threading (secondary structure
prediction)):
 Dynamic programming
 Knowledge-based potentials
亠亟从舒亰舒仆亳亠 Ab initio
Docking and Drug Design
 仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 (homology
modeling)
 Ab initio 仗亠亟从舒亰舒仆亳亠
 舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 Threading'
 仂从亳仆亞
丐亠仆亳从亳 仂仍亟亳仆亞舒 弍亠仍从舒
弌舒于仆亳亠仍仆仂亠 仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于
仍 仗仂仍亠亟仂于舒亠仍仆仂亠亶  亞仂仄仂仍仂亞亳仆仂 > 25-30%
亳仗仂仍亰仂于舒 亳亰于亠仆 PDB 从 从舒从 仂仗舒于仆仂亶 仗仆从
亟仍 仂亰亟舒仆亳 3D 仄仂亟亠仍亳 从 仆亠亳亰于亠仆仂亶
仗仂仍亠亟仂于舒亠仍仆仂亳.
亢仆仂 亳仗仂仍亰仂于舒 从仂仂亟亳仆舒 仂仆仂于仆仂亶 亠仗亳
(N-C留-C) 亞仂仄仂仍仂亞亳仆仂亶 从 从舒从 舒弍仍仂仆 亟仍 仄仂亟亠仍亳
70% 亳 弍仂仍亠亠 亞仂仄仂仍仂亞亳仆仂亳  仂亠仆 于仂从仂亠 从舒亠于仂
仄仂亟亠仍亳, 亟舒亢亠 仗仂仍仂亢亠仆亳 弍仂从仂于 亠仗亠亶 仄仂亞 弍
仗亠亟从舒亰舒仆  于仂从仂亶 仂仆仂.
40%-65% - 亠亟仆 仂仆仂 仗亠亟从舒亰舒仆亳. 仂亞 弍
亠亰仆亠 仂亳弍从亳 亟舒亢亠 于 仗仂仍仂亢亠仆亳亳 仂仆仂于仆仂亶 亠仗亳, 仂仂弍亠仆仆仂 于
仂弍仍舒 仗亠亠仍亳亰亞亳弍仂于.
亠从舒于亠仆仆亠 亠亟于舒, 舒亰舒弍仂舒仆仆亠  亳仗仂仍亰仂于舒仆亳亠仄
仆亠于亠仆 仗亠亟舒于仍亠仆亳亶 仂 从亠 弍亠仍从舒, 仄仂亞 弍
仂从亳仆 亳仍亳 仂弍仍舒亟舒 仆亠仆仆仄亳 仗仂弍仂仆仄亳 亠从舒仄亳.
仍 亠从亳于仆仂亳 仂亞仂 仄亠仂亟舒 亠弍亠 仗仂 仄亠仆亠亶 仄亠亠
3,000 仆亳从舒仍仆, 仂于亠亠仆仆仂 仂仆仂 仂仗亠亟亠仍仆仆
从. 舒 从仂仆亠 2001 亞仂亟舒 亳仄亠仍仂 仂仍从仂 1,000
仆亳从舒仍仆 从 亠亟亳 16973 于 PDB. 2008 亞仂亟  53000
从 于 PDB, homo sapience ~1500.
1. 仂仍亠亟仂于舒亠仍仆仂-亠仍  仗亠于亳仆舒 从舒
弍亠仍从舒, 3D 从 从仂仂仂亞仂 仍亠亟亠 仂仗亠亟亠仍亳
2. 丿舒弍仍仂仆  弍亠仍仂从,  3D 从舒 仆舒
3. 舒于仆亳于舒仆亳亠 仗仂仍亠亟仂于舒亠仍仆仂亠亶 1 亳 2
弌舒于仆亳亠仍仆仂亠 仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于
亠仍舒亠仍仆仂 舒从亢亠 亳仄亠
亳仂亳仄亳亠从 亳 从仆 亳仆仂仄舒亳
(仍亳亠舒舒)
仂仗仂仍仆亳亠仍仆亠 仗仂仍亠亟仂于舒亠仍仆仂亳
亞仂仄仂仍仂亞仂于  亳亰于亠仆仂亶 从仂亶
仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于
1. Fragment-based modeling:
舒于仆亳于舒仆亳亠  亠仍 亳亟亠仆亳亳从舒亳亳 从仆仂-
仗仂仂礌仆 仂弍仍舒亠亶 (SCR): 舒) 仂弍仍舒亳 弍亠亰 于舒于仂从-
亟亠仍亠亳亶 亳 于) 仂弍仍舒亳  亠从仂 仂仗亠亟亠仍磳仄仂亶 于仂亳仆仂亶
从仂亶. VR  仂弍仍舒亳 仄亠亢亟 SCR. Composer (Sybil),
Homology (InsightII)
2. Restraint-based modeling:
仗仂仍亠仆亳亠 score-仆从亳亳 仗仄 从仂仄弍亳仆亳仂于舒仆亳
束仂亞舒仆亳亠仆亳亶損 - 舒仂礌亳亶 仄亠亢亟 弌留, 仂亳仂仆仆
亞仍仂于 亳 .亟. 亠仆从舒 亠亰仍舒仂于 MD 亟舒仆仆仂亶 score-
仆从亳亠亶. Modeller
Swiss-PDBViewer
 仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于
 亠亟从舒亰舒仆亳亠 Ab initio
 舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 Threading'
 仂从亳仆亞
亠亟从舒亰舒仆亳亠 Ab initio
亳仄亠仆磳, 从仂亞亟舒 仆亠亳亰于亠仆 亞仂仄仂仍仂亞亳, 仆亠 从,
从仂仂 仄仂亢仆仂 弍仍仂 弍 亳仗仂仍亰仂于舒 从舒从 舒弍仍仂仆
 仂仍从仂 仂亟仆舒 仗仂仍亠亟仂于舒亠仍仆仂. 亠亟从舒亰舒仆亳亠 3D
仂仆仂于舒仆仂 仆舒 束弍舒亰仂于損 仗亳仆亳仗舒, 舒从亳, 从舒从 仆亠亞亠亳亠从亳亠
亳 舒亳亳亠从亳亠 亰舒从仂仆 亳 仗舒于亳仍舒.
亅仂  亳仄仍亳 亳亰亳亠从亳 亳仍 亳 仗仂亠仂于, 从仂仂亠
仄仂亞 仗亳于亠亳 舒亰于仆亶 弍亠仍仂从 于 仆舒亳于仆 (舒弍亳仍仆,
仗亳于ム 于 仗亳仂亟亠) 从仂仆仂仄舒亳 仆舒 从仂仄仗ム亠亠
弌舒弍亳仍仆仂  仂从亳 亰亠仆亳 亠仄仂亟亳仆舒仄亳从亳: 仆舒亳于仆舒
从仂仆仂仄舒亳 弍亠仍从舒 亠 亠亞仂 亞仍仂弍舒仍仆亶 仄亳仆亳仄仄 于仂弍仂亟仆仂亶
仆亠亞亳亳. 亠仍仂从 亟仂仍亢亠仆 于仂舒亳于舒 舒从 舒仄仂仂亠仍仆仂.
亠亟从舒亰舒仆亳亠 Ab initio
亅仍亠从仂舒亳亠从亳亠
舒仆-亠-舒舒仍
仂亟仂仂亟仆亠 于磶亳
亅仆亠亞亳 仂亳仂仆仆 于磶亠亶
亠亟从舒亰舒仆亳亠 Ab initio - 于仂舒亳于舒仆亳亠
仂仍仆亶 舒 仆亠亞亳亶  仂亠仆 亰舒舒仆亶  仂从亳
亰亠仆亳 于亳仍亠仆亳亶 仗仂亠.
仂仂仄 亠弍亠 舒亰舒弍仂从舒 仆亠从亳 于亳亳亠从亳
仆亠亞亠亳亠从亳 仆从亳亶, 从仂仂亠 弍 仆舒亟亢仆仂
舒亰仍亳舒仍亳 束仗舒于亳仍仆ツ 亳 束仆亠仗舒于亳仍仆ツ 从
亳 仍亠 束仗仂仆亳仄舒仍亳損 弍 亳仍, 从仂仂亠 仗舒于仍ム
于仂舒亳于舒仆亳亠仄 弍亠仍从舒.
Folding
139 仄亳仆亳仄仄仂于
丐亠舒仗亠仗亳亟 舒仍舒仆亳仆舒
个仂仍亟亳仆亞. 亠亟从舒亰舒仆亳亠 Ab initio
Protein Folding: A Perspective from Theory and Experiment
Christopher M. Dobson,* Andrej S ali, and Martin Karplus*
亠亟从舒亰舒仆亳亠 Ab initio
弌舒于仆亠仆亳亠 舒仆仂亶 亳 从仗亠亳仄亠仆舒仍仆仂亶 仄仂亟亠仍亳 亟仍 弍亠仍从舒 仄亳仂亞仍仂弍亳仆舒 亳
亳仗仂仍亰仂于舒仆亳亠仄 refined potential function. 舒亳舒仆仆舒 从舒 磦仍磳 3D
从仂亶, 仗仂仍亠仆仆仂亶 于 亠亰仍舒亠 3- 舒亰仆 舒仂于  亟舒仍仆亠亶亠亶
从仍舒亠亳亰舒亳亠亶 亳 于弍仂仂仄 从  仆舒亳仄亠仆亠亶 仆亠亞亳亠亶. 弍亠亠 于亠仄
亳仄仍亳亳 仆舒 从仍舒亠亠 亳亰 16 仄舒亳仆 CM-5 massively parallel computer 仂舒于亳仍仂 60
舒仂于, 于 亠亠仆亳亳 从仂仂 弍仍仂 亞亠仆亠亳仂于舒仆仂 仗仂磲从舒 5 仄亳仍仍亳仂仆仂于 从. RMS
仂舒于仍磳 6.2 .
舒舒亟仂从 亠于亠仆舒仍
亠仄, 亰舒 从仂仂仂亠 弍亠仍仂从 从亳于舒亠,
(仗亳仆亳仄舒亠 从仂仆亠仆仂亠 3D 仂仂礌亳亠) 仆舒
仄仆仂亞仂 仗仂磲从仂于 仄亠仆亠 于亠仄亠仆亳 仗亠亠弍仂舒
于亠 于仂亰仄仂亢仆 从仂仆亳亞舒亳亶.
仂仗亳仄, 于 弍亠仍从亠 100 舒仂仄仂于, 从舒亢亟亶 亳亰 从仂仂 仗亳仆亳仄舒亠 3 仗仂仍仂亢亠仆亳:
3 100
= 5  10 47
从仂仆仂仄舒亳亶.
舒亳弍亠亶亠亠 亟于亳亢亠仆亳亠  10- 15
. 亠亠弍仂 于亠 从仂仆仂仄舒亳亶 亰舒亶仄
5  10 32
 亳仍亳 1.6  10 25
仍亠 (于仂亰舒 亠仍亠仆仆仂亶 ~ 13,75  109
)
 Homology Modeling
 Ab initio prediction
 Fold Recognition or Threading'
舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 (Threading)
舒仗仂仄亳仆舒亠 仄亠仂亟 仄仂亟亠仍亳仂于舒仆亳 亞仂仄仂仍仂亞仂于, 仆仂 仆亠 亠弍亠
从  于仂从仂亶 亠仗亠仆 亳亟亠仆亳仆仂亳.
仆亠亠ム舒 仆舒 仗仂仍亠亟仂于舒亠仍仆仂 束仗仂磪亳于舒亠晛
亠亠亰 于亠 于仂亰仄仂亢仆亠 仗仂亰亳亳亳 仂仆仂于仆仂亶 亠仗亳 于仂 于亠 亳亰于亠仆
弍亠仍从仂于 从舒 于 PDB, 亳 亟仍 从舒亢亟仂亶 亳亠舒亳亳
舒亳于舒亠 亠 于仂弍仂亟仆舒 仆亠亞亳.
弌从舒, 从仂仂舒 亟舒 仍亳亶 仗仂从舒亰舒亠仍 仆亠亞亳亳
仗亳仆亳仄舒亠 亰舒 束舒弍仍仂仆損 亳 亟舒仍仆亠亶亳亶 仗仂亠 仆舒仗仂仄亳仆舒亠
仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于
Threading 仆亠 仄仂亢亠 弍 仗亳仄亠仆仆 亟仍 亠 弍亠仍从仂于, 亟仍
从仂仂 于 弍舒亰亠 PDB 仆亠 仗仂仂亢亳 从.
亰 束Methods in Molecular Biology, vol 143, Methods and ProtocolMethods and Protocols.
Protein Structure Prediction, 亠dited by David M. Webster損
Profiles-3D scoring function: 仂亠仆从舒
仍仂从舒仍仆仂亞仂 从仆仂亞仂
于舒于仆亳于舒仆亳 (从仍舒亟从亳) 从舒亢亟仂亶
舒仄亳仆仂从亳仍仂 于 仗仂仍亠亟仂于舒亠仍仆仂-
亳 弍亠亰 亠舒 仗仂仗舒仆仂亞仂 于亰舒亳仄仂亟亠亶-
于亳 舒仄亳仆仂从亳仍仂+从仍仂仆仆仂 从
H/E/L 从舒仄+仗仂仍仆仂
(solvent exposure)
舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 (Threading)
亳仆仂从 亳亰 R. Lathrop et al, Analysis and Algorithms for Protein Sequence-Structure Alignment in
Computational Methods in Molecular Biology, Salzberg et al. editors, 1998.
舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 (Threading)
Fold Recognition  The Fold
PDB
Groups
clustered
by a
common
resemblanc
e
Genome Sequencing
Homology
Structure
Conservation
Calculated
Folds
弌从仂仍从仂
于亠亞仂
仂仍亟仂于?
仂仍亳亠于仂 仂仍亟仂于 ~ 4000
 亳亰 930 仂仍亟仂于 ~ 90% 亠仄亠亶于 弍亠仍从仂于
Fold Recognition  仆亠亟仂舒从亳
亅仂 仄亠仂亟 亠亟从仂 仗亳于仂亟亳 从 仂仄 从舒亠于 从仆仂亞仂
于舒于仆亳于舒仆亳, 从仂仂仂亠 仗亠亟仂舒于仍磳 仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于.
弌亠于亠
PredictProtein Server
ModBase (a database of three-dimensional protein models
calculated by comparative modeling(
3D PSSM & ModBase
3D-PSSM 仗亠亟从舒亰舒仆亳亠 3D 从 仗仂 仗仂仍亠亟仂于舒亠仍仆仂亳 亳 于亠仂仆仂
仂亶 从
ModBase  弍舒亰舒 亟舒仆仆 3D 从, 仗仂仂亠仆仆 仆舒 仂仆仂于亠 舒于仆亳亠仍仆仂亞仂
仄仂亟亠仍亳仂于舒仆亳

More Related Content

Similar to Vvedenie v bioinformatiku_4 (20)

从 弍亠仍从仂于
从 弍亠仍从仂于从 弍亠仍从仂于
从 弍亠仍从仂于
Konstantin German
Biodb 2011-01-everything
Biodb 2011-01-everythingBiodb 2011-01-everything
Biodb 2011-01-everything
Nikolay Vyahhi
亳仂仍仂亞亳亠从亳亠 弍舒亰 亟舒仆仆 #1
亳仂仍仂亞亳亠从亳亠 弍舒亰 亟舒仆仆 #1亳仂仍仂亞亳亠从亳亠 弍舒亰 亟舒仆仆 #1
亳仂仍仂亞亳亠从亳亠 弍舒亰 亟舒仆仆 #1
Nikolay Vyahhi
亳仂亳亰亳从舒2011- 7
亳仂亳亰亳从舒2011- 7亳仂亳亰亳从舒2011- 7
亳仂亳亰亳从舒2011- 7
nemelev
仗 仗亳仄亠仆亠仆亳 亟舒仆仆 亠从于亠仆亳仂于舒仆亳 仆舒 仗仍舒仂仄亠 Illumina 于 亞亠仆亠亳从亠 舒亠仆亳亶
仗 仗亳仄亠仆亠仆亳 亟舒仆仆 亠从于亠仆亳仂于舒仆亳 仆舒 仗仍舒仂仄亠 Illumina 于 亞亠仆亠亳从亠 舒亠仆亳亶仗 仗亳仄亠仆亠仆亳 亟舒仆仆 亠从于亠仆亳仂于舒仆亳 仆舒 仗仍舒仂仄亠 Illumina 于 亞亠仆亠亳从亠 舒亠仆亳亶
仗 仗亳仄亠仆亠仆亳 亟舒仆仆 亠从于亠仆亳仂于舒仆亳 仆舒 仗仍舒仂仄亠 Illumina 于 亞亠仆亠亳从亠 舒亠仆亳亶
Ilya Klabukov
从仂仄仗ム亠仆亶 舒仆舒仍亳亰 亟舒仆仆 亞亠仆仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳 仗仂 亠仆仂仍仂亞亳亳 Ch ip seq
从仂仄仗ム亠仆亶 舒仆舒仍亳亰 亟舒仆仆 亞亠仆仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳 仗仂 亠仆仂仍仂亞亳亳 Ch ip seq从仂仄仗ム亠仆亶 舒仆舒仍亳亰 亟舒仆仆 亞亠仆仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳 仗仂 亠仆仂仍仂亞亳亳 Ch ip seq
从仂仄仗ム亠仆亶 舒仆舒仍亳亰 亟舒仆仆 亞亠仆仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳 仗仂 亠仆仂仍仂亞亳亳 Ch ip seq
Ek_Kul
于仂亳仆舒 从舒 亟仆从
于仂亳仆舒 从舒 亟仆从于仂亳仆舒 从舒 亟仆从
于仂亳仆舒 从舒 亟仆从
Konstantin German
亳仂亳仆仂仄舒亳从舒亳仆亠仆亠.沿沿岳恰
亳仂亳仆仂仄舒亳从舒亳仆亠仆亠.沿沿岳恰亳仂亳仆仂仄舒亳从舒亳仆亠仆亠.沿沿岳恰
亳仂亳仆仂仄舒亳从舒亳仆亠仆亠.沿沿岳恰
ssuser0527111
Graph genome
Graph genome Graph genome
Graph genome
BioinformaticsInstitute
3 弍亟舒亠于于仗 2014_pax_grid_弍亠亰_舒仆亳仄舒亳亳
3 弍亟舒亠于于仗 2014_pax_grid_弍亠亰_舒仆亳仄舒亳亳3 弍亟舒亠于于仗 2014_pax_grid_弍亠亰_舒仆亳仄舒亳亳
3 弍亟舒亠于于仗 2014_pax_grid_弍亠亰_舒仆亳仄舒亳亳
Vladimir Burdaev
弍亳仂亳仆亠亰 弍亠仍从仂于
弍亳仂亳仆亠亰 弍亠仍从仂于弍亳仂亳仆亠亰 弍亠仍从仂于
弍亳仂亳仆亠亰 弍亠仍从仂于
ssobxdoc
亠仆亠亳亠从舒 亳仆亢亠仆亠亳 亠亞仂亟仆
亠仆亠亳亠从舒 亳仆亢亠仆亠亳 亠亞仂亟仆亠仆亠亳亠从舒 亳仆亢亠仆亠亳 亠亞仂亟仆
亠仆亠亳亠从舒 亳仆亢亠仆亠亳 亠亞仂亟仆
Ilya Klabukov
JetPoint meeting @JetBrains on bioinformatics
JetPoint meeting @JetBrains on bioinformaticsJetPoint meeting @JetBrains on bioinformatics
JetPoint meeting @JetBrains on bioinformatics
olegshpynov
V. Duplij, S. Duplij. Triander - A new program for the visual analysis of the...
V. Duplij, S. Duplij. Triander - A new program for the visual analysis of the...V. Duplij, S. Duplij. Triander - A new program for the visual analysis of the...
V. Duplij, S. Duplij. Triander - A new program for the visual analysis of the...
Steven Duplij (Stepan Douplii)
弌弍仂从舒 亞亠仆仂仄舒: 仄亳 亳 亠舒仍仆仂. 仂从仍舒亟 仆舒 仗仍亠仆舒仆仂仄 亰舒亠亟舒仆亳亳 III 亠仂亳亶...
弌弍仂从舒 亞亠仆仂仄舒: 仄亳 亳 亠舒仍仆仂. 仂从仍舒亟 仆舒 仗仍亠仆舒仆仂仄 亰舒亠亟舒仆亳亳 III 亠仂亳亶...弌弍仂从舒 亞亠仆仂仄舒: 仄亳 亳 亠舒仍仆仂. 仂从仍舒亟 仆舒 仗仍亠仆舒仆仂仄 亰舒亠亟舒仆亳亳 III 亠仂亳亶...
弌弍仂从舒 亞亠仆仂仄舒: 仄亳 亳 亠舒仍仆仂. 仂从仍舒亟 仆舒 仗仍亠仆舒仆仂仄 亰舒亠亟舒仆亳亳 III 亠仂亳亶...
Fedor Tsarev
ミ頴湖姉黍 弍舒舒弍舒仆仂于 舒.. 85 仍亠
ミ頴湖姉黍 弍舒舒弍舒仆仂于 舒..   85 仍亠ミ頴湖姉黍 弍舒舒弍舒仆仂于 舒..   85 仍亠
ミ頴湖姉黍 弍舒舒弍舒仆仂于 舒.. 85 仍亠
亞仂 舒从仂于
Biodb 2011-01-everything
Biodb 2011-01-everythingBiodb 2011-01-everything
Biodb 2011-01-everything
Nikolay Vyahhi
亳仂仍仂亞亳亠从亳亠 弍舒亰 亟舒仆仆 #1
亳仂仍仂亞亳亠从亳亠 弍舒亰 亟舒仆仆 #1亳仂仍仂亞亳亠从亳亠 弍舒亰 亟舒仆仆 #1
亳仂仍仂亞亳亠从亳亠 弍舒亰 亟舒仆仆 #1
Nikolay Vyahhi
亳仂亳亰亳从舒2011- 7
亳仂亳亰亳从舒2011- 7亳仂亳亰亳从舒2011- 7
亳仂亳亰亳从舒2011- 7
nemelev
仗 仗亳仄亠仆亠仆亳 亟舒仆仆 亠从于亠仆亳仂于舒仆亳 仆舒 仗仍舒仂仄亠 Illumina 于 亞亠仆亠亳从亠 舒亠仆亳亶
仗 仗亳仄亠仆亠仆亳 亟舒仆仆 亠从于亠仆亳仂于舒仆亳 仆舒 仗仍舒仂仄亠 Illumina 于 亞亠仆亠亳从亠 舒亠仆亳亶仗 仗亳仄亠仆亠仆亳 亟舒仆仆 亠从于亠仆亳仂于舒仆亳 仆舒 仗仍舒仂仄亠 Illumina 于 亞亠仆亠亳从亠 舒亠仆亳亶
仗 仗亳仄亠仆亠仆亳 亟舒仆仆 亠从于亠仆亳仂于舒仆亳 仆舒 仗仍舒仂仄亠 Illumina 于 亞亠仆亠亳从亠 舒亠仆亳亶
Ilya Klabukov
从仂仄仗ム亠仆亶 舒仆舒仍亳亰 亟舒仆仆 亞亠仆仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳 仗仂 亠仆仂仍仂亞亳亳 Ch ip seq
从仂仄仗ム亠仆亶 舒仆舒仍亳亰 亟舒仆仆 亞亠仆仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳 仗仂 亠仆仂仍仂亞亳亳 Ch ip seq从仂仄仗ム亠仆亶 舒仆舒仍亳亰 亟舒仆仆 亞亠仆仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳 仗仂 亠仆仂仍仂亞亳亳 Ch ip seq
从仂仄仗ム亠仆亶 舒仆舒仍亳亰 亟舒仆仆 亞亠仆仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳 仗仂 亠仆仂仍仂亞亳亳 Ch ip seq
Ek_Kul
于仂亳仆舒 从舒 亟仆从
于仂亳仆舒 从舒 亟仆从于仂亳仆舒 从舒 亟仆从
于仂亳仆舒 从舒 亟仆从
Konstantin German
亳仂亳仆仂仄舒亳从舒亳仆亠仆亠.沿沿岳恰
亳仂亳仆仂仄舒亳从舒亳仆亠仆亠.沿沿岳恰亳仂亳仆仂仄舒亳从舒亳仆亠仆亠.沿沿岳恰
亳仂亳仆仂仄舒亳从舒亳仆亠仆亠.沿沿岳恰
ssuser0527111
3 弍亟舒亠于于仗 2014_pax_grid_弍亠亰_舒仆亳仄舒亳亳
3 弍亟舒亠于于仗 2014_pax_grid_弍亠亰_舒仆亳仄舒亳亳3 弍亟舒亠于于仗 2014_pax_grid_弍亠亰_舒仆亳仄舒亳亳
3 弍亟舒亠于于仗 2014_pax_grid_弍亠亰_舒仆亳仄舒亳亳
Vladimir Burdaev
弍亳仂亳仆亠亰 弍亠仍从仂于
弍亳仂亳仆亠亰 弍亠仍从仂于弍亳仂亳仆亠亰 弍亠仍从仂于
弍亳仂亳仆亠亰 弍亠仍从仂于
ssobxdoc
亠仆亠亳亠从舒 亳仆亢亠仆亠亳 亠亞仂亟仆
亠仆亠亳亠从舒 亳仆亢亠仆亠亳 亠亞仂亟仆亠仆亠亳亠从舒 亳仆亢亠仆亠亳 亠亞仂亟仆
亠仆亠亳亠从舒 亳仆亢亠仆亠亳 亠亞仂亟仆
Ilya Klabukov
JetPoint meeting @JetBrains on bioinformatics
JetPoint meeting @JetBrains on bioinformaticsJetPoint meeting @JetBrains on bioinformatics
JetPoint meeting @JetBrains on bioinformatics
olegshpynov
V. Duplij, S. Duplij. Triander - A new program for the visual analysis of the...
V. Duplij, S. Duplij. Triander - A new program for the visual analysis of the...V. Duplij, S. Duplij. Triander - A new program for the visual analysis of the...
V. Duplij, S. Duplij. Triander - A new program for the visual analysis of the...
Steven Duplij (Stepan Douplii)
弌弍仂从舒 亞亠仆仂仄舒: 仄亳 亳 亠舒仍仆仂. 仂从仍舒亟 仆舒 仗仍亠仆舒仆仂仄 亰舒亠亟舒仆亳亳 III 亠仂亳亶...
弌弍仂从舒 亞亠仆仂仄舒: 仄亳 亳 亠舒仍仆仂. 仂从仍舒亟 仆舒 仗仍亠仆舒仆仂仄 亰舒亠亟舒仆亳亳 III 亠仂亳亶...弌弍仂从舒 亞亠仆仂仄舒: 仄亳 亳 亠舒仍仆仂. 仂从仍舒亟 仆舒 仗仍亠仆舒仆仂仄 亰舒亠亟舒仆亳亳 III 亠仂亳亶...
弌弍仂从舒 亞亠仆仂仄舒: 仄亳 亳 亠舒仍仆仂. 仂从仍舒亟 仆舒 仗仍亠仆舒仆仂仄 亰舒亠亟舒仆亳亳 III 亠仂亳亶...
Fedor Tsarev
ミ頴湖姉黍 弍舒舒弍舒仆仂于 舒.. 85 仍亠
ミ頴湖姉黍 弍舒舒弍舒仆仂于 舒..   85 仍亠ミ頴湖姉黍 弍舒舒弍舒仆仂于 舒..   85 仍亠
ミ頴湖姉黍 弍舒舒弍舒仆仂于 舒.. 85 仍亠
亞仂 舒从仂于

More from BioinformaticsInstitute (20)

Nanopores sequencing
Nanopores sequencingNanopores sequencing
Nanopores sequencing
BioinformaticsInstitute
A superglue for string comparison
A superglue for string comparisonA superglue for string comparison
A superglue for string comparison
BioinformaticsInstitute
Comparative Genomics and de Bruijn graphs
Comparative Genomics and de Bruijn graphsComparative Genomics and de Bruijn graphs
Comparative Genomics and de Bruijn graphs
BioinformaticsInstitute
亳仂亳仆仂仄舒亳亠从亳亶 舒仆舒仍亳亰 亟舒仆仆 仗仂仍仆仂从亰仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳: 舒仆舒仍亳亰 从舒亠...
 亳仂亳仆仂仄舒亳亠从亳亶 舒仆舒仍亳亰 亟舒仆仆 仗仂仍仆仂从亰仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳: 舒仆舒仍亳亰 从舒亠... 亳仂亳仆仂仄舒亳亠从亳亶 舒仆舒仍亳亰 亟舒仆仆 仗仂仍仆仂从亰仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳: 舒仆舒仍亳亰 从舒亠...
亳仂亳仆仂仄舒亳亠从亳亶 舒仆舒仍亳亰 亟舒仆仆 仗仂仍仆仂从亰仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳: 舒仆舒仍亳亰 从舒亠...
BioinformaticsInstitute
仗亠亠亟 于 仗仂仍仂亠. 亠仂亟 亞亠仆亠亳亠从仂亶 亟亳舒亞仆仂亳从亳 亟亠于仆亠亶 亟仆从
仗亠亠亟 于 仗仂仍仂亠. 亠仂亟 亞亠仆亠亳亠从仂亶 亟亳舒亞仆仂亳从亳 亟亠于仆亠亶 亟仆从仗亠亠亟 于 仗仂仍仂亠. 亠仂亟 亞亠仆亠亳亠从仂亶 亟亳舒亞仆仂亳从亳 亟亠于仆亠亶 亟仆从
仗亠亠亟 于 仗仂仍仂亠. 亠仂亟 亞亠仆亠亳亠从仂亶 亟亳舒亞仆仂亳从亳 亟亠于仆亠亶 亟仆从
BioinformaticsInstitute
Knime & bioinformatics
Knime & bioinformaticsKnime & bioinformatics
Knime & bioinformatics
BioinformaticsInstitute
"舒亠仄 弍亳仂仍仂亞舒仄 仗亠从仂仄仗ム亠", 仍亠从舒仆亟 亠亟亠
"舒亠仄 弍亳仂仍仂亞舒仄 仗亠从仂仄仗ム亠", 仍亠从舒仆亟 亠亟亠"舒亠仄 弍亳仂仍仂亞舒仄 仗亠从仂仄仗ム亠", 仍亠从舒仆亟 亠亟亠
"舒亠仄 弍亳仂仍仂亞舒仄 仗亠从仂仄仗ム亠", 仍亠从舒仆亟 亠亟亠
BioinformaticsInstitute
仄仄仆仂亠舒仗亳 舒从仂于 仂仗仂仍亠亶: 于亰亞仍磲 仂 仂仂仆 亳亠仄仆仂亶 弍亳仂仍仂亞亳亳. 舒从亳仄 ...
仄仄仆仂亠舒仗亳 舒从仂于 仂仗仂仍亠亶: 于亰亞仍磲 仂 仂仂仆 亳亠仄仆仂亶 弍亳仂仍仂亞亳亳. 舒从亳仄 ...仄仄仆仂亠舒仗亳 舒从仂于 仂仗仂仍亠亶: 于亰亞仍磲 仂 仂仂仆 亳亠仄仆仂亶 弍亳仂仍仂亞亳亳. 舒从亳仄 ...
仄仄仆仂亠舒仗亳 舒从仂于 仂仗仂仍亠亶: 于亰亞仍磲 仂 仂仂仆 亳亠仄仆仂亶 弍亳仂仍仂亞亳亳. 舒从亳仄 ...
BioinformaticsInstitute
舒从 101 (舒亳 丿仂于舒, 仂 )
舒从 101 (舒亳 丿仂于舒, 仂 )舒从 101 (舒亳 丿仂于舒, 仂 )
舒从 101 (舒亳 丿仂于舒, 仂 )
BioinformaticsInstitute
仍ム亳仗仂亠仆仆仂 101
仍ム亳仗仂亠仆仆仂 101仍ム亳仗仂亠仆仆仂 101
仍ム亳仗仂亠仆仆仂 101
BioinformaticsInstitute
弌亠从于亠仆亳仂于舒仆亳亠 从舒从 亳仆仄亠仆 亳仍亠亟仂于舒仆亳 仍仂亢仆 亠仆仂亳仗仂于 亠仍仂于亠从舒: 仂 亞亠仆...
弌亠从于亠仆亳仂于舒仆亳亠 从舒从 亳仆仄亠仆 亳仍亠亟仂于舒仆亳 仍仂亢仆 亠仆仂亳仗仂于 亠仍仂于亠从舒: 仂 亞亠仆...弌亠从于亠仆亳仂于舒仆亳亠 从舒从 亳仆仄亠仆 亳仍亠亟仂于舒仆亳 仍仂亢仆 亠仆仂亳仗仂于 亠仍仂于亠从舒: 仂 亞亠仆...
弌亠从于亠仆亳仂于舒仆亳亠 从舒从 亳仆仄亠仆 亳仍亠亟仂于舒仆亳 仍仂亢仆 亠仆仂亳仗仂于 亠仍仂于亠从舒: 仂 亞亠仆...
BioinformaticsInstitute
仆于亠亳亳亳 于 弍亳仂亳仆仂仄舒亳从 亳 弍亳仂亠 (仆亟亠亶 舒仆舒亠于)
仆于亠亳亳亳 于 弍亳仂亳仆仂仄舒亳从 亳 弍亳仂亠 (仆亟亠亶 舒仆舒亠于)仆于亠亳亳亳 于 弍亳仂亳仆仂仄舒亳从 亳 弍亳仂亠 (仆亟亠亶 舒仆舒亠于)
仆于亠亳亳亳 于 弍亳仂亳仆仂仄舒亳从 亳 弍亳仂亠 (仆亟亠亶 舒仆舒亠于)
BioinformaticsInstitute
Biodb 2011-05
Biodb 2011-05Biodb 2011-05
Biodb 2011-05
BioinformaticsInstitute
Comparative Genomics and de Bruijn graphs
Comparative Genomics and de Bruijn graphsComparative Genomics and de Bruijn graphs
Comparative Genomics and de Bruijn graphs
BioinformaticsInstitute
亳仂亳仆仂仄舒亳亠从亳亶 舒仆舒仍亳亰 亟舒仆仆 仗仂仍仆仂从亰仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳: 舒仆舒仍亳亰 从舒亠...
 亳仂亳仆仂仄舒亳亠从亳亶 舒仆舒仍亳亰 亟舒仆仆 仗仂仍仆仂从亰仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳: 舒仆舒仍亳亰 从舒亠... 亳仂亳仆仂仄舒亳亠从亳亶 舒仆舒仍亳亰 亟舒仆仆 仗仂仍仆仂从亰仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳: 舒仆舒仍亳亰 从舒亠...
亳仂亳仆仂仄舒亳亠从亳亶 舒仆舒仍亳亰 亟舒仆仆 仗仂仍仆仂从亰仂仄仆仂亞仂 亠从于亠仆亳仂于舒仆亳: 舒仆舒仍亳亰 从舒亠...
BioinformaticsInstitute
仗亠亠亟 于 仗仂仍仂亠. 亠仂亟 亞亠仆亠亳亠从仂亶 亟亳舒亞仆仂亳从亳 亟亠于仆亠亶 亟仆从
仗亠亠亟 于 仗仂仍仂亠. 亠仂亟 亞亠仆亠亳亠从仂亶 亟亳舒亞仆仂亳从亳 亟亠于仆亠亶 亟仆从仗亠亠亟 于 仗仂仍仂亠. 亠仂亟 亞亠仆亠亳亠从仂亶 亟亳舒亞仆仂亳从亳 亟亠于仆亠亶 亟仆从
仗亠亠亟 于 仗仂仍仂亠. 亠仂亟 亞亠仆亠亳亠从仂亶 亟亳舒亞仆仂亳从亳 亟亠于仆亠亶 亟仆从
BioinformaticsInstitute
"舒亠仄 弍亳仂仍仂亞舒仄 仗亠从仂仄仗ム亠", 仍亠从舒仆亟 亠亟亠
"舒亠仄 弍亳仂仍仂亞舒仄 仗亠从仂仄仗ム亠", 仍亠从舒仆亟 亠亟亠"舒亠仄 弍亳仂仍仂亞舒仄 仗亠从仂仄仗ム亠", 仍亠从舒仆亟 亠亟亠
"舒亠仄 弍亳仂仍仂亞舒仄 仗亠从仂仄仗ム亠", 仍亠从舒仆亟 亠亟亠
BioinformaticsInstitute
仄仄仆仂亠舒仗亳 舒从仂于 仂仗仂仍亠亶: 于亰亞仍磲 仂 仂仂仆 亳亠仄仆仂亶 弍亳仂仍仂亞亳亳. 舒从亳仄 ...
仄仄仆仂亠舒仗亳 舒从仂于 仂仗仂仍亠亶: 于亰亞仍磲 仂 仂仂仆 亳亠仄仆仂亶 弍亳仂仍仂亞亳亳. 舒从亳仄 ...仄仄仆仂亠舒仗亳 舒从仂于 仂仗仂仍亠亶: 于亰亞仍磲 仂 仂仂仆 亳亠仄仆仂亶 弍亳仂仍仂亞亳亳. 舒从亳仄 ...
仄仄仆仂亠舒仗亳 舒从仂于 仂仗仂仍亠亶: 于亰亞仍磲 仂 仂仂仆 亳亠仄仆仂亶 弍亳仂仍仂亞亳亳. 舒从亳仄 ...
BioinformaticsInstitute
舒从 101 (舒亳 丿仂于舒, 仂 )
舒从 101 (舒亳 丿仂于舒, 仂 )舒从 101 (舒亳 丿仂于舒, 仂 )
舒从 101 (舒亳 丿仂于舒, 仂 )
BioinformaticsInstitute
弌亠从于亠仆亳仂于舒仆亳亠 从舒从 亳仆仄亠仆 亳仍亠亟仂于舒仆亳 仍仂亢仆 亠仆仂亳仗仂于 亠仍仂于亠从舒: 仂 亞亠仆...
弌亠从于亠仆亳仂于舒仆亳亠 从舒从 亳仆仄亠仆 亳仍亠亟仂于舒仆亳 仍仂亢仆 亠仆仂亳仗仂于 亠仍仂于亠从舒: 仂 亞亠仆...弌亠从于亠仆亳仂于舒仆亳亠 从舒从 亳仆仄亠仆 亳仍亠亟仂于舒仆亳 仍仂亢仆 亠仆仂亳仗仂于 亠仍仂于亠从舒: 仂 亞亠仆...
弌亠从于亠仆亳仂于舒仆亳亠 从舒从 亳仆仄亠仆 亳仍亠亟仂于舒仆亳 仍仂亢仆 亠仆仂亳仗仂于 亠仍仂于亠从舒: 仂 亞亠仆...
BioinformaticsInstitute
仆于亠亳亳亳 于 弍亳仂亳仆仂仄舒亳从 亳 弍亳仂亠 (仆亟亠亶 舒仆舒亠于)
仆于亠亳亳亳 于 弍亳仂亳仆仂仄舒亳从 亳 弍亳仂亠 (仆亟亠亶 舒仆舒亠于)仆于亠亳亳亳 于 弍亳仂亳仆仂仄舒亳从 亳 弍亳仂亠 (仆亟亠亶 舒仆舒亠于)
仆于亠亳亳亳 于 弍亳仂亳仆仂仄舒亳从 亳 弍亳仂亠 (仆亟亠亶 舒仆舒亠于)
BioinformaticsInstitute

Vvedenie v bioinformatiku_4

  • 1. 弌于仂舒亳于舒仆亳亠 弍亠仍从舒 (folding) Principles that govern the folding of protein chain Anfinsen, C. (1973) Science 181, 223- 230. the native conformation is determined by the totality of inter-atomic interactions and hence by the amino acid sequences, in a given environment. (solvent, pH, ionic strength, chemicals,etc)
  • 2. 仂弍仍亠仄舒 于仂舒亳于舒仆亳 弍亠仍从舒 ∃ぱ仆从亳亳 弍亠仍从仂于 仂仗亠亟亠仍ム 亳从仍ム亳亠仍仆仂 亳 3D 从仂亶, 从仂仆仂仄舒亳亠亶 ∃仂仗仂: 仄仂亢仆仂 仍亳 仗亠亟从舒亰舒 3D 从 弍亠仍从舒, 亳仂亟 亳亰 亟舒仆仆仂亶 舒仄亳仆仂从亳仍仂仆仂亶 仗仂仍亠亟仂于舒亠仍仆仂亳? ∃于亠: 于 仂弍亠仄 仍舒亠 仆亠! 仂 仄亠仂亟, 从仂仂亠 仗仂亰于仂仍ム 舒亰亠亳 舒亳仆仂 3D 从, 弍于舒ム 仗仂仍亠亰仆.
  • 3. 弌于仂舒亳于舒仆亳亠 仗仂亠仄 仂 舒从 仍仂亢仆仂? 亳仆亠亶仆亠 仄仂仍亠从仍 弍亠仍从仂于 仂亠仆 弍仂 于仂舒亳于舒ム 于 仗亠亟仂仗亠亟亠仍仆仆亠 3D 从. 弌于仂亶于舒 仍ミ頴笑覚 弍亠仍从舒 仂仗亠亟亠仍ム 亠亞仂 3D 从仂亶. 亠仍从亳 仄仂亞 亟亠仆舒亳仂于舒 仗仂亟 于仂亰亟亠亶于亳亠仄 亳仄亳亠从亳 于亠亠于 亳仍亳 亠仗仍仂, 仆仂 亰舒亠仄 仂仆亳 于仂舒亳于舒ム 于仆仂于 于 亳仂亟仆 从. 丐舒从 仗仂亠仄 亢亠 舒从 仍仂亢仆仂 舒亰亠亳 于仂舒亳于舒仆亳亠? 弌从舒 弍亠仍从舒 仄仂亢亠 弍 仂仗亠亟亠仍亠仆舒 从仗亠亳仄亠仆舒仍仆仂 (X-Rays or NMR) 仆仂 舒 仗仂亠亟舒 仆亠 于亠亞亟舒 于仂亰仄仂亢仆舒 亳 仆亠 于亠亞亟舒 亟舒 仂仂亳亠 亠亰仍舒. 3D 从舒 仗仂仍亠亟仂于舒亠仍仆仂亳 仂仗亠亟亠仍磳 仗仂仍亠亟仂于舒亠仍仆仂 亟仂仗亳仄 亞仍仂于 仗仂于仂仂舒, 于 从仂仂仂亶 从舒亢亟亶 亞仂仍 束仂仂亳損 亳亰 2- 仗仍舒仆舒仆 亞仍仂于. 亅舒 仗仂弍仍亠仄舒 仄仂亢亠 弍 亠亠仆舒 仗仄 亟亳从亠亳亰舒亳亳 (仗亳 仆亠从仂仂仂亶 仗仂亠亠 仂仆仂亳) 仗仄 仂亞舒仆亳亠仆亳 从仂仍亳亠于舒 于仂亰仄仂亢仆 仗亠亶 亟仂亳亢亠仆亳 从舒亢亟仂亶 亳亰 仂亠从 (从仂仂亟亳仆舒 舒仂仄仂于).
  • 4. 仍亳 于舒 仆亠 从
  • 5. 仂亟仂亟 于 仗亠亟从舒亰舒仆亳亳 从 亠亟从舒亰舒仆亳亠 1D: 于仂亳仆亠 从 亟仂仗仆仂 亟仍 舒于仂亳亠仍 舒仆仄亠仄弍舒仆舒仍仆亠 仗亳舒仍亳 亠亟从舒仆亳亠 2D: 从仂仆舒从 仄亠亢亟 舒仄亳仆仂从亳仍仂舒仄亳/仆亳礆亳 弍亠舒. 亠亟从舒亰舒仆亳亠 3D: 仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 舒仗仂亰仆舒于舒仆亳亠 仂仍亟舒 (e.g. via threading) ab initio 仗亠亟从舒亰舒仆亳亠 (e.g. via 仄仂仍亠从仍仆舒 亟亳仆舒仄亳从舒)
  • 6. 舒亟舒亳 弌舒于仆亠仆亳亠 于亠 亳亰于亠仆 从 亟亞 亟亞仂仄 仍舒亳亳从舒亳 亳 仂亞舒仆亳亰舒亳 于亠 亳亰于亠仆 从 仂亳从 仂弍亳 从仆 舒弍仍仂仆仂于 亳 仄仂亳于仂于 仗亠亟亠仍亠仆亳亠 于仂仍ム亳仂仆仆 舒仂礌亳亶 仄亠亢亟 从舒仄亳 弍亠仍从仂于 仂从亳仆亞 亳亰亠仆亳亠 于亰舒亳仄仂亟亠亶于亳 仄亠亢亟 从舒仄亳 亠亟从舒亰舒仆亳亠 从 仆舒 仂仆仂于亠 仗仂仍亠亟仂于舒亠仍仆仂亳 亳亰舒亶仆 仆仂于 仍亠从舒于
  • 7. 舒亠仄? 亠于亶 舒亞 从 仗亠亟从舒亰舒仆亳 亠亳仆仂亶 从 亟亳仆 亳亰 仂仆仂于仆 仍亠仄亠仆仂于 于 舒仗仂亰仆舒于舒仆亳亳 仂仍亟舒 (亟仍 仄仂亟亠仍亳仂于舒仆亳 亟舒仍亠从亳 于 于仂仍ム亳仂仆仆仂仄 仗仍舒仆亠 弍亠仍从仂于)
  • 8. 亠亟从舒亰舒仆亳亠 于仂亳仆仂亶 从 http://www.new-science-press.com/ Table II of Williams, R.W. et al.: Biochimica et Biophysica Acta 1987, 916:200-204.
  • 9. 仗亠亟从舒亰舒仆亳亠 亟仍 从舒亢亟仂亶 舒仄亳仆仂从亳仍仂 于 于弍舒仆仆仂仄 仂从仆亠 仂亠亟仆亳 舒仄亳仆仂从亳仍仂 (13-21) 从仂亳仆亞, 仂弍亠仆亳亠 仄仂亟亠仍亳 亳 仗亠亟从舒亰舒仆亳亠 2D 从 (仄舒仗仗亳仂于舒仆亳亠 仍亠仄亠仆舒 于仂亳仆仂亶 从 仆舒 仂从仆仂) 亠亟从舒亰舒仆亳亠 于仂亳仆仂亶 从
  • 10. 亠仂亟 I. Chou-Fasman / GOR 仄亠仂亟 II. 仂亟亠仍亳 仆亠亶仂仆仆 亠亠亶 III. 亠仂亟 束弍仍亳亢舒亶亠亞仂 仂亠亟舒損
  • 11. 亠仂亟 Chou-Fasman (1974) 舒亰舒弍仂舒仆 Chou & Fasman 于 1974 -1978 舒亰舒 亳亰于亠仆亠 3D 从 亞仍仂弍仍仆 弍亠仍从仂于 丼舒仂 舒仄亳仆仂从亳仍仂 于 留-仗亳舒仍 丼舒仂 舒仄亳仆仂从亳仍仂 于 硫-仍亳舒 丼舒仂 舒仄亳仆仂从亳仍仂 于 硫-仗仂于仂仂舒 舒于亳仍舒 仂弍舒亰仂于舒仆亳 留-仗亳舒仍亠亶 亳 硫-仍亳仂于 仆仂于舒仆 仆舒 舒于仂亳仄, 亞仍仂弍仍仆 弍亠仍从舒 仆舒舒仍仆舒 弍舒亰舒 15 弍亠仍从仂于
  • 13. 舒亰于亳亳亠 Chou-Fasman 1. 亳于仂亠仆亳亠 从舒亢亟仂亶 舒仄亳仆仂从亳仍仂亠 仂仗亠亟亠仍亠仆仆仂亞仂 仗仍舒 仗舒舒仄亠仂于 2. 亟亠仆亳亳从舒亳 a-helix 亳 b-sheet. 丕亟仍亳仆亠仆亳亠 亳 仂弍仍舒亠亶 于 仂弍仂亳 仆舒仗舒于仍亠仆亳. 3. 亳 仗亠亠从亳亳 舒于仆亠仆亳亠 P(H) 亳 P(E) 亳 从仂亳仆亞.
  • 14. 1. 亠仂仆仂亳 P留(H)=[(#H in helix)/(#H)]/(fraction helix {all}) T S P T A E L M R S T G P(H) 69 77 57 69 142 151 121 145 98 77 69 57 P(E) 147 75 55 147 83 37 130 105 93 75 147 75 P(turn) 114 143 152 114 66 74 59 60 95 143 114 156 舒亰于亳亳亠 Chou-Fasman
  • 15. 仂亳从 a-仗亳舒仍亳 2. 仂亳从 仂弍仍舒亠亶, 亞亟亠 4 亳亰 6 舒仄亳仆仂从亳仍仂 亳仄亠ム P(H) >100 ( 磲仂 a- 仗亳舒仍亳) T S P T A E L M R S T G P(H) 69 77 57 69 142 151 121 145 98 77 69 57 T S P T A E L M R S T G P(H) 69 77 57 69 142 151 121 145 98 77 69 57
  • 16. 丕亟仍亳仆亠仆亳亠 磲舒 a-仗亳舒仍亳 3. 舒亳亠仆亳亠 仂弍仍舒亳 磲舒, 仗仂从舒 4 舒仄亳仆仂从亳仍仂 亳仄亠ム 亠亟仆亠亠 P(H) >100. T S P T A E L M R S T G P(H) 69 77 57 69 142 151 121 145 98 77 69 57
  • 17. 仂亳从 硫-仍亳舒 4. 仂亳从 仂弍仍舒亠亶, 亞亟亠 3 亳亰 5 舒仄亳仆仂从亳仍仂 亳仄亠ム P(E) >100 磲仂 硫-仍亳舒 5. 丕亟仍亳仆亠仆亳亠 磲舒 亟仂 亠 仗仂, 仗仂从舒 4 仂亠亟仆亳 舒仄亳仆仂从亳仍仂 亳仄亠ム 亠亟仆亠亠 P(E) > 100 6. 仍亳 score 仂弍仍舒亳 > 105 亳 亠亟仆亠亠 P(E) > 亠亟仆亠亠 P(H), 亰仆舒亳 舒 仂弍仍舒 - 硫-仍亳 T S P T A E L M R S T G P(H) 69 77 57 69 142 151 121 145 98 77 69 57 P(E) 147 75 55 147 83 37 130 105 93 75 147 75
  • 18. GCG Programs PepPlot Plot on parallel panels -cff option, text output PeptideStructure text output (Most useful for detail) PlotStructure two outputs squiggles protein-like parallel panels
  • 19. GOR III (Garnier-Osguthorpe-Robson. Gibrat J.F., J.Mol.Biol, 1987)
  • 20. 仂亟亠仍亳 仆亠亶仂仆仆 亠亠亶 - 舒亳仆仆仂亠 仂弍亠仆亳亠 - 弌亠 从 (e.g. a-仗亳舒仍亳, 仆亠 a-仗亳舒仍亳) - 弍亠仆亳亠 舒仗仂亰仆舒于舒 舒弍仍仂仆, 从 于 亳亰于亠仆 弍亠仍从舒 亅亠从亳于仆仂 ~ 70 75% Rost B. Sander C. Prediction of Protein Secondary Structure at Better then 70% Accuracy. J.Mol.Biol., 1993, vol. 232. 584-599.NPS@ 亠于亠
  • 22. Eva
  • 24. 亠亟从舒亰舒仆亳亠 于仂亳仆仂亶 从 Predict Protein (Mega) - secondary structure ( PHDsec, and PROFsec) PSI-pred (PSI-BLAST profiles used for prediction; David Jones, Warwick) PHD - Rost & Sander, EMBL, Germany ASPSSP server Raghava, INDIA DSC - King & Sternberg (this server) PREDATOR - Frischman & Argos (EMBL) ZPRED server Zvelebil et al., Ludwig, U.K. nnPredict Cohen et al., UCSF, USA. BMERC PSA Server Boston University, USA SSP (Nearest-neighbor) Solovyev and Salamov, Baylor College, USA. JPRED Consensus prediction (Cuff & Barton, EBI) NPS@
  • 27. 亠亟从舒亰舒仆亳亠 仆从亳亳 亠 仂亟仆舒 于舒亢仆舒 亰舒亟舒舒 仗仂亠仂仄亳从亳 舒仆舒仍亳亰 亳 仗亠亟从舒亰舒仆亳亠 仆从亳亳 弍亠仍从舒. 亰于亠仆仂, 仂 仆从亳 弍亠仍从舒 仂仗亠亟亠仍磳 亠亞仂 舒从亳于仆仄亳 舒亶舒仄亳, 仗仂仂仄 仆舒从仂仗仍亠仆亳亠 亳 亳亠仄舒亳亰舒亳 亳仆仂仄舒亳亳 仂弍 舒从亳于仆 舒亶舒 弍亠仍从仂于 亠亰于舒亶仆仂 舒从舒仍仆舒. . 于舒仆亳亠仆从仂, . 亳亞仂仂于亳亠仄 亳 弌. 亳仆仂仄 舒亰舒弍仂舒仆舒 从仂仄仗ム亠仆舒 弍舒亰舒 亟舒仆仆 PDBSite, 从仂仂舒 仂亟亠亢亳 亳仆仂仄舒亳 仂 弍仂仍亠亠 亠仄 12 舒 舒从亳于仆 舒亶仂于 弍亠仍从仂于. 仂仆亳从仂仄 亳仆仂仄舒亳亳 仍亢舒 仂仂仂 亟仂从仄亠仆亳仂于舒仆仆亠 仗仂舒仆于亠仆仆亠 从 弍亠仍从仂于.
  • 28. 仗舒仆仂亠 于舒于仆亳于舒仆亳亠; 仄仆仂亢亠于亠仆仆仂亠 于舒于仆亳于舒仆亳亠; 仗仂亳从 亞仂仄仂仍仂亞仂于, threading; 从仆仂亠 于舒于仆亳于舒仆亳亠. 仆仂于仆亠 仄亠仂亟 于 弍亳仂亳仆仂仄舒亳从亠:
  • 29. CASP Critical Assessment of Techniques for Protein Structure Prediction CASP1 (1994) CASP2 CASP3 CASP4 CASP5..CASP9 (2010) Comparative modeling (CM) Fold-recognition (FR) CAFASP meta-server ver. 3 New folds (NF) Ten most wanted sec. struct. contacts, protein-protein docking, and disordered predictions.
  • 30. About CASP: CASP is a blind study/experiment that aims at establishing the current state of the art in protein structure prediction; identifying what progress has been made; and highlighting where future effort may be most productively focused (Every two years). This blind study is held over an ~8 month time period and ends in a meeting held every two years, in Asilomar, CA, starting from 1994. For the procedure of the experiment, CASP participants are first provided target sequences (around May) via the Protein Structure Prediction Center at Lawrence Livermore National Laboratory. The participants have a few months to determine the template structure, alignment, model structure and evaluate their results. The sequence targets are categorized by homology and difficulty for predicting their structure. The fairly simple targets have med. sequence homology (>30% seq. identity) are considered comparative modeling (CM) predictions; the med. difficulty targets have med.-to-low sequence homology (~10- 30% seq. identity) are considered fold-recognition (FR) predictions; and the difficult targets have low seq. homology and usually require an ab initio methods are considered new folds (NF). During the prediction time (~May-Oct.), researchers (structural biologist in x-ray or NMR) work on solving the experimental structure of each of the target sequences and they hold back the structure coordinate information from the predictors. By Nov., all participants submit their models (as coordinates) to the Livermore Center and the researchers (who solve the target structure) finalize and post their results. Finally, in Dec., all participants and the CASP organizers meet to evaluate the results of the experiment comparing each model with the experimental structure and discussing the methodologies used. The goal of CAFASP is to evaluate the performance of fully automatic structure prediction servers available to the community. In contrast to the normal CASP procedure, CAFASP aims to answer the question of how well servers do without any intervention of experts, i.e. how well ANY user using only automated methods can predict protein structure. CAFASP assesses the performance of methods without the user intervention allowed in CASP.
  • 32. 亠亟从舒亰舒仆亳亠 于仂舒亳于舒仆亳 弍亠仍从舒 vs 仗亠亟从舒亰舒仆亳亠 从 亠从舒亰舒仆亳亠 仗仂亠舒 仂仍亟亳仆亞舒 弍亠仍从舒 于磶舒仆仂 仗仂亠仂仄 仗亳仂弍亠亠仆亳 弍亠仍从仂仄 亠亞仂 3D 仂仄, 仂亠舒仆亳亶 亳亰亳从仂-亳仄亳亠从亳亠 仗亳仆亳仗. 亠亟从舒亰舒仆亳亠 从 亳仗仂仍亰ム 仍ミ英亠 舒亳亳亠从亳亠, 亠仂亠亳亠从亳亠 亳 仄仗亳亳亠从亳亠 亟舒仆仆亠. 4 仗仂亟仂亟舒: 仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 (Homology Modeling) 舒仗仂亰仆舒于舒仆亳亠 仂仍亟舒 (Sequence-Structure Threading (secondary structure prediction)): Dynamic programming Knowledge-based potentials 亠亟从舒亰舒仆亳亠 Ab initio Docking and Drug Design
  • 33. 仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 (homology modeling) Ab initio 仗亠亟从舒亰舒仆亳亠 舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 Threading' 仂从亳仆亞 丐亠仆亳从亳 仂仍亟亳仆亞舒 弍亠仍从舒
  • 34. 弌舒于仆亳亠仍仆仂亠 仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 仍 仗仂仍亠亟仂于舒亠仍仆仂亠亶 亞仂仄仂仍仂亞亳仆仂 > 25-30% 亳仗仂仍亰仂于舒 亳亰于亠仆 PDB 从 从舒从 仂仗舒于仆仂亶 仗仆从 亟仍 仂亰亟舒仆亳 3D 仄仂亟亠仍亳 从 仆亠亳亰于亠仆仂亶 仗仂仍亠亟仂于舒亠仍仆仂亳. 亢仆仂 亳仗仂仍亰仂于舒 从仂仂亟亳仆舒 仂仆仂于仆仂亶 亠仗亳 (N-C留-C) 亞仂仄仂仍仂亞亳仆仂亶 从 从舒从 舒弍仍仂仆 亟仍 仄仂亟亠仍亳 70% 亳 弍仂仍亠亠 亞仂仄仂仍仂亞亳仆仂亳 仂亠仆 于仂从仂亠 从舒亠于仂 仄仂亟亠仍亳, 亟舒亢亠 仗仂仍仂亢亠仆亳 弍仂从仂于 亠仗亠亶 仄仂亞 弍 仗亠亟从舒亰舒仆 于仂从仂亶 仂仆仂. 40%-65% - 亠亟仆 仂仆仂 仗亠亟从舒亰舒仆亳. 仂亞 弍 亠亰仆亠 仂亳弍从亳 亟舒亢亠 于 仗仂仍仂亢亠仆亳亳 仂仆仂于仆仂亶 亠仗亳, 仂仂弍亠仆仆仂 于 仂弍仍舒 仗亠亠仍亳亰亞亳弍仂于.
  • 35. 亠从舒于亠仆仆亠 亠亟于舒, 舒亰舒弍仂舒仆仆亠 亳仗仂仍亰仂于舒仆亳亠仄 仆亠于亠仆 仗亠亟舒于仍亠仆亳亶 仂 从亠 弍亠仍从舒, 仄仂亞 弍 仂从亳仆 亳仍亳 仂弍仍舒亟舒 仆亠仆仆仄亳 仗仂弍仂仆仄亳 亠从舒仄亳. 仍 亠从亳于仆仂亳 仂亞仂 仄亠仂亟舒 亠弍亠 仗仂 仄亠仆亠亶 仄亠亠 3,000 仆亳从舒仍仆, 仂于亠亠仆仆仂 仂仆仂 仂仗亠亟亠仍仆仆 从. 舒 从仂仆亠 2001 亞仂亟舒 亳仄亠仍仂 仂仍从仂 1,000 仆亳从舒仍仆 从 亠亟亳 16973 于 PDB. 2008 亞仂亟 53000 从 于 PDB, homo sapience ~1500.
  • 36. 1. 仂仍亠亟仂于舒亠仍仆仂-亠仍 仗亠于亳仆舒 从舒 弍亠仍从舒, 3D 从 从仂仂仂亞仂 仍亠亟亠 仂仗亠亟亠仍亳 2. 丿舒弍仍仂仆 弍亠仍仂从, 3D 从舒 仆舒 3. 舒于仆亳于舒仆亳亠 仗仂仍亠亟仂于舒亠仍仆仂亠亶 1 亳 2 弌舒于仆亳亠仍仆仂亠 仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 亠仍舒亠仍仆仂 舒从亢亠 亳仄亠 亳仂亳仄亳亠从 亳 从仆 亳仆仂仄舒亳 (仍亳亠舒舒) 仂仗仂仍仆亳亠仍仆亠 仗仂仍亠亟仂于舒亠仍仆仂亳 亞仂仄仂仍仂亞仂于 亳亰于亠仆仂亶 从仂亶
  • 37. 仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 1. Fragment-based modeling: 舒于仆亳于舒仆亳亠 亠仍 亳亟亠仆亳亳从舒亳亳 从仆仂- 仗仂仂礌仆 仂弍仍舒亠亶 (SCR): 舒) 仂弍仍舒亳 弍亠亰 于舒于仂从- 亟亠仍亠亳亶 亳 于) 仂弍仍舒亳 亠从仂 仂仗亠亟亠仍磳仄仂亶 于仂亳仆仂亶 从仂亶. VR 仂弍仍舒亳 仄亠亢亟 SCR. Composer (Sybil), Homology (InsightII) 2. Restraint-based modeling: 仗仂仍亠仆亳亠 score-仆从亳亳 仗仄 从仂仄弍亳仆亳仂于舒仆亳 束仂亞舒仆亳亠仆亳亶損 - 舒仂礌亳亶 仄亠亢亟 弌留, 仂亳仂仆仆 亞仍仂于 亳 .亟. 亠仆从舒 亠亰仍舒仂于 MD 亟舒仆仆仂亶 score- 仆从亳亠亶. Modeller
  • 39. 仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 亠亟从舒亰舒仆亳亠 Ab initio 舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 Threading' 仂从亳仆亞
  • 40. 亠亟从舒亰舒仆亳亠 Ab initio 亳仄亠仆磳, 从仂亞亟舒 仆亠亳亰于亠仆 亞仂仄仂仍仂亞亳, 仆亠 从, 从仂仂 仄仂亢仆仂 弍仍仂 弍 亳仗仂仍亰仂于舒 从舒从 舒弍仍仂仆 仂仍从仂 仂亟仆舒 仗仂仍亠亟仂于舒亠仍仆仂. 亠亟从舒亰舒仆亳亠 3D 仂仆仂于舒仆仂 仆舒 束弍舒亰仂于損 仗亳仆亳仗舒, 舒从亳, 从舒从 仆亠亞亠亳亠从亳亠 亳 舒亳亳亠从亳亠 亰舒从仂仆 亳 仗舒于亳仍舒. 亅仂 亳仄仍亳 亳亰亳亠从亳 亳仍 亳 仗仂亠仂于, 从仂仂亠 仄仂亞 仗亳于亠亳 舒亰于仆亶 弍亠仍仂从 于 仆舒亳于仆 (舒弍亳仍仆, 仗亳于ム 于 仗亳仂亟亠) 从仂仆仂仄舒亳 仆舒 从仂仄仗ム亠亠 弌舒弍亳仍仆仂 仂从亳 亰亠仆亳 亠仄仂亟亳仆舒仄亳从亳: 仆舒亳于仆舒 从仂仆仂仄舒亳 弍亠仍从舒 亠 亠亞仂 亞仍仂弍舒仍仆亶 仄亳仆亳仄仄 于仂弍仂亟仆仂亶 仆亠亞亳亳. 亠仍仂从 亟仂仍亢亠仆 于仂舒亳于舒 舒从 舒仄仂仂亠仍仆仂.
  • 42. 亠亟从舒亰舒仆亳亠 Ab initio - 于仂舒亳于舒仆亳亠 仂仍仆亶 舒 仆亠亞亳亶 仂亠仆 亰舒舒仆亶 仂从亳 亰亠仆亳 于亳仍亠仆亳亶 仗仂亠. 仂仂仄 亠弍亠 舒亰舒弍仂从舒 仆亠从亳 于亳亳亠从亳 仆亠亞亠亳亠从亳 仆从亳亶, 从仂仂亠 弍 仆舒亟亢仆仂 舒亰仍亳舒仍亳 束仗舒于亳仍仆ツ 亳 束仆亠仗舒于亳仍仆ツ 从 亳 仍亠 束仗仂仆亳仄舒仍亳損 弍 亳仍, 从仂仂亠 仗舒于仍ム 于仂舒亳于舒仆亳亠仄 弍亠仍从舒.
  • 44. 个仂仍亟亳仆亞. 亠亟从舒亰舒仆亳亠 Ab initio Protein Folding: A Perspective from Theory and Experiment Christopher M. Dobson,* Andrej S ali, and Martin Karplus*
  • 45. 亠亟从舒亰舒仆亳亠 Ab initio 弌舒于仆亠仆亳亠 舒仆仂亶 亳 从仗亠亳仄亠仆舒仍仆仂亶 仄仂亟亠仍亳 亟仍 弍亠仍从舒 仄亳仂亞仍仂弍亳仆舒 亳 亳仗仂仍亰仂于舒仆亳亠仄 refined potential function. 舒亳舒仆仆舒 从舒 磦仍磳 3D 从仂亶, 仗仂仍亠仆仆仂亶 于 亠亰仍舒亠 3- 舒亰仆 舒仂于 亟舒仍仆亠亶亠亶 从仍舒亠亳亰舒亳亠亶 亳 于弍仂仂仄 从 仆舒亳仄亠仆亠亶 仆亠亞亳亠亶. 弍亠亠 于亠仄 亳仄仍亳亳 仆舒 从仍舒亠亠 亳亰 16 仄舒亳仆 CM-5 massively parallel computer 仂舒于亳仍仂 60 舒仂于, 于 亠亠仆亳亳 从仂仂 弍仍仂 亞亠仆亠亳仂于舒仆仂 仗仂磲从舒 5 仄亳仍仍亳仂仆仂于 从. RMS 仂舒于仍磳 6.2 .
  • 46. 舒舒亟仂从 亠于亠仆舒仍 亠仄, 亰舒 从仂仂仂亠 弍亠仍仂从 从亳于舒亠, (仗亳仆亳仄舒亠 从仂仆亠仆仂亠 3D 仂仂礌亳亠) 仆舒 仄仆仂亞仂 仗仂磲从仂于 仄亠仆亠 于亠仄亠仆亳 仗亠亠弍仂舒 于亠 于仂亰仄仂亢仆 从仂仆亳亞舒亳亶. 仂仗亳仄, 于 弍亠仍从亠 100 舒仂仄仂于, 从舒亢亟亶 亳亰 从仂仂 仗亳仆亳仄舒亠 3 仗仂仍仂亢亠仆亳: 3 100 = 5 10 47 从仂仆仂仄舒亳亶. 舒亳弍亠亶亠亠 亟于亳亢亠仆亳亠 10- 15 . 亠亠弍仂 于亠 从仂仆仂仄舒亳亶 亰舒亶仄 5 10 32 亳仍亳 1.6 10 25 仍亠 (于仂亰舒 亠仍亠仆仆仂亶 ~ 13,75 109 )
  • 47. Homology Modeling Ab initio prediction Fold Recognition or Threading'
  • 48. 舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 (Threading) 舒仗仂仄亳仆舒亠 仄亠仂亟 仄仂亟亠仍亳仂于舒仆亳 亞仂仄仂仍仂亞仂于, 仆仂 仆亠 亠弍亠 从 于仂从仂亶 亠仗亠仆 亳亟亠仆亳仆仂亳. 仆亠亠ム舒 仆舒 仗仂仍亠亟仂于舒亠仍仆仂 束仗仂磪亳于舒亠晛 亠亠亰 于亠 于仂亰仄仂亢仆亠 仗仂亰亳亳亳 仂仆仂于仆仂亶 亠仗亳 于仂 于亠 亳亰于亠仆 弍亠仍从仂于 从舒 于 PDB, 亳 亟仍 从舒亢亟仂亶 亳亠舒亳亳 舒亳于舒亠 亠 于仂弍仂亟仆舒 仆亠亞亳. 弌从舒, 从仂仂舒 亟舒 仍亳亶 仗仂从舒亰舒亠仍 仆亠亞亳亳 仗亳仆亳仄舒亠 亰舒 束舒弍仍仂仆損 亳 亟舒仍仆亠亶亳亶 仗仂亠 仆舒仗仂仄亳仆舒亠 仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于 Threading 仆亠 仄仂亢亠 弍 仗亳仄亠仆仆 亟仍 亠 弍亠仍从仂于, 亟仍 从仂仂 于 弍舒亰亠 PDB 仆亠 仗仂仂亢亳 从.
  • 49. 亰 束Methods in Molecular Biology, vol 143, Methods and ProtocolMethods and Protocols. Protein Structure Prediction, 亠dited by David M. Webster損 Profiles-3D scoring function: 仂亠仆从舒 仍仂从舒仍仆仂亞仂 从仆仂亞仂 于舒于仆亳于舒仆亳 (从仍舒亟从亳) 从舒亢亟仂亶 舒仄亳仆仂从亳仍仂 于 仗仂仍亠亟仂于舒亠仍仆仂- 亳 弍亠亰 亠舒 仗仂仗舒仆仂亞仂 于亰舒亳仄仂亟亠亶- 于亳 舒仄亳仆仂从亳仍仂+从仍仂仆仆仂 从 H/E/L 从舒仄+仗仂仍仆仂 (solvent exposure) 舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 (Threading)
  • 50. 亳仆仂从 亳亰 R. Lathrop et al, Analysis and Algorithms for Protein Sequence-Structure Alignment in Computational Methods in Molecular Biology, Salzberg et al. editors, 1998. 舒仗仂亰仆舒于舒仆亳亠 于仂舒亳于舒仆亳 (Threading)
  • 51. Fold Recognition The Fold PDB Groups clustered by a common resemblanc e Genome Sequencing Homology Structure Conservation Calculated Folds 弌从仂仍从仂 于亠亞仂 仂仍亟仂于? 仂仍亳亠于仂 仂仍亟仂于 ~ 4000 亳亰 930 仂仍亟仂于 ~ 90% 亠仄亠亶于 弍亠仍从仂于
  • 52. Fold Recognition 仆亠亟仂舒从亳 亅仂 仄亠仂亟 亠亟从仂 仗亳于仂亟亳 从 仂仄 从舒亠于 从仆仂亞仂 于舒于仆亳于舒仆亳, 从仂仂仂亠 仗亠亟仂舒于仍磳 仄仂亟亠仍亳仂于舒仆亳亠 亞仂仄仂仍仂亞仂于.
  • 53. 弌亠于亠 PredictProtein Server ModBase (a database of three-dimensional protein models calculated by comparative modeling( 3D PSSM & ModBase 3D-PSSM 仗亠亟从舒亰舒仆亳亠 3D 从 仗仂 仗仂仍亠亟仂于舒亠仍仆仂亳 亳 于亠仂仆仂 仂亶 从 ModBase 弍舒亰舒 亟舒仆仆 3D 从, 仗仂仂亠仆仆 仆舒 仂仆仂于亠 舒于仆亳亠仍仆仂亞仂 仄仂亟亠仍亳仂于舒仆亳

Editor's Notes

  • #3: 1
  • #5: Experimental data can aid the structure prediction process. Some of these are: Disulphide bonds, which provide tight restraints on the location of cysteines in space Spectroscopic data, which can give you and idea as to the secondary structure content of your protein Site directed mutagenesis studies, which can give insights as to residues involved in active or binding sites Knowledge of proteolytic cleavage sites, post-translational modifictions, such as phosphorylation or glycosylation can suggest residues that must be accessible Protein Sequence: Transmembrane? Coil-coil? Does your protein contain regions of low complexity? Proteins frequently contain runs of poly-glutamine or poly-serine, which do not predict well (SEG program). If the answer to any of the above questions is yes, then it is worthwhile trying to break your sequence into pieces, or ignore particular sections of the sequence, etc. This is related to the problem of locating domains .
  • #7: Fig.:Coverage for each species is reported as the fraction of the residues in the proteome that are annotated . Structural annotation is an homology to a known structure. Functional annotation is when there is no structural annotation but there is an homology to a sequence database entry that has a useful description. Homology denotes a sequence similarity to a structurally or functionally un-annotated protein, such as one described as hypothetical. Non-globular denotes remaining sequence regions that were predicted as transmembrane, signal peptide, coiled-coils or low-complexity. Remaining residues are classified as orphans.
  • #9: Analysis of the frequency with which different amino acids are found in different types of secondary structure shows some general preferences. For example, long side chains such as those of leucine, methionine, glutamine and glutatamic acid are often found in helices, presumably because these extended side chains can project out away from the crowded central region of the helical cylinder. In contrast, residues whose side chains are branched at the beta carbon , such as valine, isoleucine and phenylalanine are more often found in beta sheets, because every other side chain in a sheet is pointing in the opposite direction, leaving room for beta-branched side chains to pack. Such tendencies underlie various empirical rules for the prediction of secondary structure from sequence, such as those of Chou and Fasman. In the Chou-Fasman and other statistical methods of predicting secondary structure, the assumption is made that local effects predominate in determining whether a stretch of sequence will be helical, form a turn, compose a beta strand, or adopt an irregular conformation. This assumption is probably only partially valid, which may account for the failure of such methods to achieve close to 100% success in secondary structure prediction. The methods take proteins of known three-dimensional structure and tabulate the preferences of individual amino acids for various structural elements. By comparing these values with what might be expected randomly, conformational preferences can be assigned to each amino acid. To apply these preferences to a sequence of unknown structure, a moving window of about five residues is scanned along a sequence, and the average preferences are tallied. Empirical rules are then applied to assign secondary structural features based on the average preferences. Unfortunately, these tendencies are only very rough, and there are many exceptions. It is probably more useful to consider which side chains are disfavored in particular types of secondary structures. With specialized exceptions Proline is disfavored in both helices and sheets because it has no backbone N-H group to participate in hydrogen bonding. Glycine is also less commonly found in helices and sheets, in part because it lacks a side chain and therefore can adopt a much wider range of phi, psi torsion angles in peptides. These two residues are, however, strongly associated with beta turns, and sequences such as Pro-Gly and Gly-Pro are sometimes considered diagnostic for turns. Although predictive schemes based on residue preferences have some value, none is completely accurate, and the one rule that seems to be most reliable is that any amino acid can be found in any type of secondary structure, if only infrequently. Proline, for instance, is sometimes found in alpha helices; when it is, it simply interrupts the helical hydrogen-bonding network and produces a kink in the helix.
  • #11: 1974 Chou and Fasman propose a statistical method based on the propensities of amino acids to adopt secondary structures based on the observation of their location in 15 protein structures determined by X-ray diffraction. Clearly these statistics derive from the particular stereochemical and physicochemical properties of the amino acids. See for example, glycine and proline. These statistics have been refined over the years by a number of authors (including Chou and Fasman themselves) using a larger set of proteins. Rather than a position by position analysis the propensity of a position is calculated using an average over 5 or 6 residues surrounding each position. On a larger set of 62 proteins the base method reports a success rate of 50%. 1978 Garnier improved the method by using statistically significant pair-wise interactions as a determinant of the statistical significance. This improved the success rate to 62% 1993 Levin improved the prediction level by using multiple sequence alignments. The reasoning is as follows. Conserved regions in a multiple sequence alignment provides a strong evolutionary indicator of a role in the function of the protein. Those regions are also likely to have conserved structure, including secondary structure and strengthen the prediction by their joint propensities. This improved the success rate to 69%. 1994 Rost and Sander combined neural networks with multiple sequence alignments. The idea of a neural net is to create a complex network of interconnected nodes, where progress from one node to the next depends on satisfying a weighted function that has been derived by training the net with data of known results, in this case protein sequences with known secondary structures. The success rate is 72%.
  • #22: Simulate the brain. Selection of training sets is extremely important. Different protein families, only one or two representative from each family.
  • #23: Jpred: (http://www.dl.ac.uk/CCP/CCP11/newsletter/vol2_4/jpred_ccp11/) Jpred runs DSC (5), PHD (1,2), PREDATOR (3,4) and NNSSP (6) in parallel to build its consensus prediction, but predictions from slightly less accurate algorithms MULPRED (8) and ZPRED (7) are also included in the final output.油油油 These methods were chosen as representatives of current state-of-the-art secondary structure predictions methods that exploit the evolutionary information from multiple sequences.油 Each derives its prediction using a different heuristic, based upon nearest neighbours (NNSSP), jury decision neural networks (PHD), linear discrimination (DSC), consensus single sequence method (MULPRED), hydrogen bonding propensities (PREDATOR), or conservation number weighted prediction (ZPRED).油油油油 The consensus is constructed using a simple majority wins combination of DSC, PHD, PREDATOR and NNSSP, relying on the PHD prediction if there is a a tie.油 In our study, we found this combination to be optimal.油
  • #24: Flowchart of EVA. Every day, EVA downloads the newest protein structures from PDB [1] . The structures are added to mySQL databases, sequences are extracted for every protein chain, and are sent to each prediction server by META-PredictProtein [2] . META-PP collects the results and sends them to EVA. Every week, EVA runs alignment programs for searching sequence (iterated PSI-BLAST [3] , MaxHom [4] ) and structure (CE [5] , ProSub [6] ) databases to determine homologues. Predictions of secondary structure and inter-residue contacts, as well as, comparative modelling are evaluated at the EVA satellites at Columbia University, Rockefeller University, and CNB Madrid. Goals: CASP addresses the question how well can experts predict protein structure if given sufficient incentive to do so?. In contrast, the question addressed by EVA is how well could molecular biologists predict protein structure, if they simply take the output from the programs out there?. Thus, the goals are: Provide a continuous, fully automated, and statistically significant analysis of structure prediction servers. As has been shown by many of us, predictions based on small numbers of samples are NOT representative. EVA running for a year could produce a fairly representative picture. Even running for a month EVA could produce more reliable estimates than CASP can do in 2 years (at least, for answering the particular, restricted but important - question how well do servers do). EVA will NOT answer to requests of users!! It will NOT be a meta-server, rather it will simply sit there and evaluate servers based on known structures. EVA will NOT evaluate any server without the consent of the author.
  • #26: SSE secondary structure elements Perutz (1990) showed (while working with hemoglobin and myoglobin) that amphipathicity can be detected in the sequnce: non polar residues can appears every 3.6 approx. in a linear sequence, making one side of the helix hydrophobic.
  • #27: An example of the prediction of secondary structure from sequence for a protein of unknown function from the Enterococcus faecalis genome. What is striking is that all of the schemes agree on the approximate locations of the alpha helices (h) and beta strands (e), but they disagree considerably on the lengths and end positions of these segments. Note also that the probable positions of loops (indicated by a c) and turns (indicated by a t) are very inconsistently predicted. Such results are typical, but the application of many methods is clearly more informative than the use of a single one. The bottom line shows the consensus prediction.
  • #28: The upper one is by Jpred and the lower one is by GOR
  • #40: 1wqa, 1tx4, 1grn, 1tad and 1gfi. -> only 1tx4, 1grn, 1tad Note that some amino acids may appear in yellow once a molecule has been loaded. It signifies that their sidechain has been reconstructed during the loading process because some atoms were lacking. When all sidechain atoms are lacking, a rotamer library is searched until the rotamer that generate a maximum of H-bonds and a minimum of steric hindrances is found. If only some sidechain atoms are lacking, the rotamer that gives the lowest RMS when fitted to the partial sidechain is taken. In any case, you may try to find a better sidechain manually with the mutation tool. If you want to act on a complete column , simply hold down the shift key while clicking in a column Note: if a little earth icon is shown below the first tool, the rotation takes place in absolute coordinates. Otherwise (little protein icon) molecules are rotated around their centrotid. Hence the first option allows you to rotate the molecule around any atom, providing that this atom has previously been centered (translated to the (0,0,0) coordinate). Note: if "caps lock" is down, you can measure several distances or angles successively. To exit the "repeated" measurement mode, you can either depress "caps lock" or hit "esc".
  • #53: 丕仆亠 仗仂仆亠仆亳.