【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative ModelDeep Learning JP
?
NeRF-VAE is a 3D scene generative model that combines Neural Radiance Fields (NeRF) and Generative Query Networks (GQN) with a variational autoencoder (VAE). It uses a NeRF decoder to generate novel views conditioned on a latent code. An encoder extracts latent codes from input views. During training, it maximizes the evidence lower bound to learn the latent space of scenes and allow for novel view synthesis. NeRF-VAE aims to generate photorealistic novel views of scenes by leveraging NeRF's view synthesis abilities within a generative model framework.
This document discusses self-supervised representation learning (SRL) for reinforcement learning tasks. SRL learns state representations by using prediction tasks as an auxiliary objective. The key ideas are: (1) SRL learns an encoder that maps observations to states using a prediction task like modeling future states or actions; (2) The learned state representations improve generalization and exploration in reinforcement learning algorithms; (3) Several SRL methods are discussed, including world models, inverse models, and causal infoGANs.
Two sentences are tokenized and encoded by a BERT model. The first sentence describes two kids playing with a green crocodile float in a swimming pool. The second sentence describes two kids pushing an inflatable crocodile around in a pool. The tokenized sentences are passed through the BERT model, which outputs the encoded representations of the token sequences.
This document discusses methods for automated machine learning (AutoML) and optimization of hyperparameters. It focuses on accelerating the Nelder-Mead method for hyperparameter optimization using predictive parallel evaluation. Specifically, it proposes using a Gaussian process to model the objective function and perform predictive evaluations in parallel to reduce the number of actual function evaluations needed by the Nelder-Mead method. The results show this approach reduces evaluations by 49-63% compared to baseline methods.
* Satoshi Hara and Kohei Hayashi. Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach. AISTATS'18 (to appear).
arXiv ver.: https://arxiv.org/abs/1606.09066#
* GitHub
https://github.com/sato9hara/defragTrees
This document introduces deep reinforcement learning and provides some examples of its applications. It begins with backgrounds on the history of deep learning and reinforcement learning. It then explains the concepts of reinforcement learning, deep learning, and deep reinforcement learning. Some example applications are controlling building sway, optimizing smart grids, and autonomous vehicles. The document also discusses using deep reinforcement learning for robot control and how understanding the principles can help in problem setting.
【DL輪読会】NeRF-VAE: A Geometry Aware 3D Scene Generative ModelDeep Learning JP
?
NeRF-VAE is a 3D scene generative model that combines Neural Radiance Fields (NeRF) and Generative Query Networks (GQN) with a variational autoencoder (VAE). It uses a NeRF decoder to generate novel views conditioned on a latent code. An encoder extracts latent codes from input views. During training, it maximizes the evidence lower bound to learn the latent space of scenes and allow for novel view synthesis. NeRF-VAE aims to generate photorealistic novel views of scenes by leveraging NeRF's view synthesis abilities within a generative model framework.
This document discusses self-supervised representation learning (SRL) for reinforcement learning tasks. SRL learns state representations by using prediction tasks as an auxiliary objective. The key ideas are: (1) SRL learns an encoder that maps observations to states using a prediction task like modeling future states or actions; (2) The learned state representations improve generalization and exploration in reinforcement learning algorithms; (3) Several SRL methods are discussed, including world models, inverse models, and causal infoGANs.
Two sentences are tokenized and encoded by a BERT model. The first sentence describes two kids playing with a green crocodile float in a swimming pool. The second sentence describes two kids pushing an inflatable crocodile around in a pool. The tokenized sentences are passed through the BERT model, which outputs the encoded representations of the token sequences.
This document discusses methods for automated machine learning (AutoML) and optimization of hyperparameters. It focuses on accelerating the Nelder-Mead method for hyperparameter optimization using predictive parallel evaluation. Specifically, it proposes using a Gaussian process to model the objective function and perform predictive evaluations in parallel to reduce the number of actual function evaluations needed by the Nelder-Mead method. The results show this approach reduces evaluations by 49-63% compared to baseline methods.
* Satoshi Hara and Kohei Hayashi. Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach. AISTATS'18 (to appear).
arXiv ver.: https://arxiv.org/abs/1606.09066#
* GitHub
https://github.com/sato9hara/defragTrees
This document introduces deep reinforcement learning and provides some examples of its applications. It begins with backgrounds on the history of deep learning and reinforcement learning. It then explains the concepts of reinforcement learning, deep learning, and deep reinforcement learning. Some example applications are controlling building sway, optimizing smart grids, and autonomous vehicles. The document also discusses using deep reinforcement learning for robot control and how understanding the principles can help in problem setting.
2022/3/24に開催した「オンプレML基盤 on Kubernetes」の資料です。機械学習モデルの開発者が、よりモデルの開発にのみ集中できるようにすることを目指して開発している「LakeTahoe(レイクタホ)」について紹介します。
https://ml-kubernetes.connpass.com/event/239859/