The document provides definitions and properties regarding surds (irrational numbers expressed as the nth root of a positive number). It defines surds and their algebraic operations including addition, subtraction, multiplication, and division. It discusses simplifying surds expressions and rationalizing fractions involving surds. Examples are provided to demonstrate simplifying various surds expressions and solving exponential equations involving surds.
2. Properties of Surds
1 1
n 4
Definition : a a n
16 4
16 2
m 1 m m
n 3 3 3
a n
a n a 16 4 4
16 2 8
m 1
m n m 3
4
163
n
a n
a a 16 4 4
4096 8
m n m
n
a a
Jeff Bivin -- LZHS
3. Simplify the surds
For positif real numbers a and b
n n n
a.b a. b
32 16.2 16. 2 4 2
3 294 3 49.6 3 49. 6 3.7. 6 21 6
3
32 3
8.4 3
8. 3 4 3
2 4
Jeff Bivin -- LZHS
4. Simplify!!!!!
288 12 2
500 x 10 5
x x x
3
3
500 5 4
Jeff Bivin -- LZHS
5. Algebraic Operation on Surds
Addition and Subtraction
Suppose , b
a R and c R
a c b c= a b c
5 5 10 5 = 5 10 5 15 5
5 3 48 2 27 = 5 3 4 3 6 3 5 4 6 3
3 3
20 125 3 5 = 2 5 5 5 3 5 = 0
Jeff Bivin -- LZHS
6. Algebraic Operation on Surds
Multiplication
Suppose , b
a R and c, d R
a c .b d = ab. cd
5 5.10 2 = 5.10 5.2 50 10
3 2 3 2 3 6 6 2 5 2 6
2 5 5 3 2 = 2.5 2.3 5.2 = 10 6 10
Jeff Bivin -- LZHS
7. Algebraic Operation on Surds
Division
Suppose , b
a R and c, d R
a c :b d = a:b c:d
1 1
5 8 :10 2 = 5 :10 8: 2 4 .2 1
2 2
2 3.3 2 6 6 1
= =
12 6 12 6 2
2 2
5 2 5 2 5 2 3
1
3 3 3
Jeff Bivin -- LZHS
8. Simplify!!!!!
0,36 0,16 1
6 2 5 2 2 5 2 11 10
a b
a b
a b
Jeff Bivin -- LZHS
23. Try this Questions!!!
1 1
2
2 2 4
1 3
...
4 12
5 6
a b 30 9
5 6
a b ......?
Jeff Bivin -- LZHS
24. Exponential Equations
Properties
B C
a a B C
3x 27 3x 33 x 3
1 1 1 1
1 2x 1 2 52 x 5 2 2x x
52 x 5 5 5 5 2 4
5
1
3
36 x 3
27 x 1
Jeff Bivin -- LZHS
25. Try this Questions!!!
x 2 1
5 125 x
2
4x 2 3
16 x 5 x 4
1 5
32 2x
x
273 x 7
2
1
x 3
2
0, 09 x 2
1
0,33 x 1
Jeff Bivin -- LZHS