ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement LearningPreferred Networks
?
Introduction of Deep Reinforcement Learning, which was presented at domestic NLP conference.
言語処理学会第24回年次大会(NLP2018) での講演資料です。
http://www.anlp.jp/nlp2018/#tutorial
1. The document discusses energy-based models (EBMs) and how they can be applied to classifiers. It introduces noise contrastive estimation and flow contrastive estimation as methods to train EBMs.
2. One paper presented trains energy-based models using flow contrastive estimation by passing data through a flow-based generator. This allows implicit modeling with EBMs.
3. Another paper argues that classifiers can be viewed as joint energy-based models over inputs and outputs, and should be treated as such. It introduces a method to train classifiers as EBMs using contrastive divergence.
機械学習の社会実装では、予測精度が高くても、機械学習がブラックボックであるために使うことができないということがよく起きます。
このスライドでは機械学習が不得意な予測結果の根拠を示すために考案されたLIMEの論文を解説します。
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
This document summarizes a research paper on scaling laws for neural language models. Some key findings of the paper include:
- Language model performance depends strongly on model scale and weakly on model shape. With enough compute and data, performance scales as a power law of parameters, compute, and data.
- Overfitting is universal, with penalties depending on the ratio of parameters to data.
- Large models have higher sample efficiency and can reach the same performance levels with less optimization steps and data points.
- The paper motivated subsequent work by OpenAI on applying scaling laws to other domains like computer vision and developing increasingly large language models like GPT-3.
機械学習の社会実装では、予測精度が高くても、機械学習がブラックボックであるために使うことができないということがよく起きます。
このスライドでは機械学習が不得意な予測結果の根拠を示すために考案されたLIMEの論文を解説します。
Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "" Why should i trust you?" Explaining the predictions of any classifier." Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016.
This document summarizes a research paper on scaling laws for neural language models. Some key findings of the paper include:
- Language model performance depends strongly on model scale and weakly on model shape. With enough compute and data, performance scales as a power law of parameters, compute, and data.
- Overfitting is universal, with penalties depending on the ratio of parameters to data.
- Large models have higher sample efficiency and can reach the same performance levels with less optimization steps and data points.
- The paper motivated subsequent work by OpenAI on applying scaling laws to other domains like computer vision and developing increasingly large language models like GPT-3.