【DL輪読会】Standardized Max Logits: A Simple yet Effective Approach for Identifyi...Deep Learning JP
?
1) The document proposes a simple method called Standardized Max Logits (SML) to detect unexpected road obstacles in semantic segmentation. SML normalizes the maximum logit values for each class to account for differences between in-distribution classes and better identify anomalies.
2) SML is combined with iterative boundary suppression and dilated smoothing techniques to gradually remove false positives and negatives, especially around boundaries.
3) Experiments on three datasets demonstrate SML achieves state-of-the-art performance in detecting anomalies without requiring retraining or additional out-of-distribution data, while maintaining efficient computation.
KDD Cup 2021で開催された時系列異常検知コンペ
Multi-dataset Time Series Anomaly Detection (https://compete.hexagon-ml.com/practice/competition/39/) に参加して
5位入賞した解法の紹介と上位解法の整理のための資料です.
9/24のKDD2021参加報告&論文読み会 (https://connpass.com/event/223966/) の発表資料です.
p7タイトル: "Do Better ImageNet Models Transfer Better??" -> "What makes ImageNet good for transfer learning?"の誤りでした。大変申し訳ございません。
cvpaper.challenge の メタサーベイ発表スライドです。
cvpaper.challengeはコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ作成?アイディア考案?議論?実装?論文投稿に取り組み、凡ゆる知識を共有します。2020の目標は「トップ会議30+本投稿」することです。
http://xpaperchallenge.org/cv/
【DL輪読会】Standardized Max Logits: A Simple yet Effective Approach for Identifyi...Deep Learning JP
?
1) The document proposes a simple method called Standardized Max Logits (SML) to detect unexpected road obstacles in semantic segmentation. SML normalizes the maximum logit values for each class to account for differences between in-distribution classes and better identify anomalies.
2) SML is combined with iterative boundary suppression and dilated smoothing techniques to gradually remove false positives and negatives, especially around boundaries.
3) Experiments on three datasets demonstrate SML achieves state-of-the-art performance in detecting anomalies without requiring retraining or additional out-of-distribution data, while maintaining efficient computation.
KDD Cup 2021で開催された時系列異常検知コンペ
Multi-dataset Time Series Anomaly Detection (https://compete.hexagon-ml.com/practice/competition/39/) に参加して
5位入賞した解法の紹介と上位解法の整理のための資料です.
9/24のKDD2021参加報告&論文読み会 (https://connpass.com/event/223966/) の発表資料です.
p7タイトル: "Do Better ImageNet Models Transfer Better??" -> "What makes ImageNet good for transfer learning?"の誤りでした。大変申し訳ございません。
cvpaper.challenge の メタサーベイ発表スライドです。
cvpaper.challengeはコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ作成?アイディア考案?議論?実装?論文投稿に取り組み、凡ゆる知識を共有します。2020の目標は「トップ会議30+本投稿」することです。
http://xpaperchallenge.org/cv/
Tandem connectionist anomaly detection: Use of faulty vibration signals in fe...pcl-lab
?
This document proposes a method called tandem connectionist anomaly detection that uses faulty vibration data from non-target machines to improve anomaly detection performance on a target machine. The method uses a deep neural network trained on both normal and faulty non-target data to learn discriminative features, which are then used as input to a Gaussian mixture model anomaly detector trained on normal target data. Experiments show this method significantly improves anomaly detection compared to using hand-crafted features or transferring just the detector. It demonstrates the ability to transfer the system between machines of both the same type and different types.
Adaptive training of vibration-based anomaly detector for wind turbine condit...pcl-lab
?
Takanori Hasegawa, Jun Ogata, Masahiro Murakawa, Tetsunori Kobayashi, Tetsuji Ogawa, ``Adaptive training of vibration-based anomaly detector for wind turbine condition monitoring,’’ Proc. Annual Conference on PHM Society, pp.177-184, Oct. 2017.