狠狠撸

狠狠撸Share a Scribd company logo
エクセルで統計分析4
HADによる因子分析?クラスタ分析
清水裕士
関西学院大学社会学部
HADとは
? 清水が作ったExcelで動くフリーソフト
– 心理統計分析のほとんどが実行可能
– http://norimune.net/had
? 無償?無登録で利用可能です。
? HADの基本的な使い方
– http://slidesha.re/RsVBp7
? こちらのスライドシェアを先に御覧ください
多変量解析
? 2つのカテゴリから選ぶ
– 回帰分析:因果関係を推測する分析
– 因子分析:次元圧縮やカテゴリ分けの分析
? 該当するオプションボタンを押すと、モデリングスペースが開く
下は因子分析のモデリングスペース
多変量解析の使用方法
? 使用変数のところに変数を指定
– これはほかの分析と同じ
– その後、モデリングスペースでモデルを指定したり、
分析オプションを選択して、「分析実行」ボタンを押す
– 「オプション」ボタンを押すと、各分析のより詳細な設
定を変更することができる
? 詳しくはWebで。
– 清水のブログでも解説しています
? HADのページ
? http://norimune.net/had
因子分析グループ
? モデリングシートの「因子分析」を選択する
– 因子分析用のモデリングスペースが開く
– 主に変数の潜在構造を検討する分析法の集まり
? 「因子分析」の中のサブカテゴリ
– 因子分析:因子分析、主成分分析
– クラスタ分析:クラスタ分析、多次元尺度法
– 対応分析:コレスポンデンス分析、数量化三類
因子分析
因子数と推定法を選ぶ
? 因子数を選ぶ
– スクリープロットなどから判断して、因子数を指定
? 推定法を選ぶ
– 因子抽出法:共通性の推定法
– 因子軸の回転法:単純構造を求める方法
? 出力方法を選ぶ
– サイズでソート:因子負荷量が大きい順に並び替える
– 因子得点:因子得点を出力する
– 尺度得点:因子に所属する尺度の平均値を計算する
? 因子負荷量が一番高い因子に所属すると仮定する
因子分析
? 因子抽出法
– 最尤法、最小二乗法、反復主因子法、主成分法、非反
復推定法から選択
? 基本は最尤法がオススメ
? 不適解がでるなら、最小二乗法→???の順で。
? 回転法
– 直交回転:バリマックス回転
? 基準を変えることで、クォーティマックスなどが選べる
– 斜交回転:プロマックス、オブリミン、独立クラスタ回転
– プロクラステス回転
? 仮説に最も近くなるように回転する
? 斜交と直交が選択できる
因子分析の出力
項目 Factor1 Factor2 共通性
v6 .835 -.047 .647
v8 .751 .105 .679
v10 .750 -.045 .521
v9 .744 .015 .570
v7 .716 .077 .591
v5 -.077 .810 .579
v4 -.022 .753 .545
v2 .022 .706 .519
v1 .103 .666 .544
v3 .107 .595 .450
因子寄与 4.210 3.995
適合度 乖離度 = 0.110 CFI = 1.000
χ 2
値 = 21.279 RMSEA = .000
DF = 26 AIC = 59.884
p = .727 BIC = 122.552
因子分析のオプション
スクリープロット
? 「スクリープロット」ボタンを押す
– 「分析実行」ではない
? 因子の固有値の推移をプロット
– 因子数の推定に役立つ
? その他、因子数決定に役立つ指標
– MAP:最小の因子数を提案
– 平行分析:誤差以上の因子数を提案
– SMC平行分析:最大の因子数を提案
? MAPとSMC平行分析の間が真の因子数である可能性が高い
? それぞれ黄色になっているところが提案ポイント
スクリープロットの出力
? SMC平行分析の例
スクリープロットのオプション
共分散行列データの利用
? 共分散行列データを保存する
– 因子分析や回帰分析はローデータではなく共分
散行列から分析が可能
– あらかじめ共分散行列を作成して保存しておけ
ば、因子分析の計算が早くなる
? 特にサンプルサイズが大きいときに有効
? 共分散行列データを外部から読み込む
– データがそもそも相関行列や共分散行列の場合
でも読み込んで分析することができる
共分散行列の保存
? 「データセット」ボタンを押す
– 右のようなGUIが立ち上がる
– ローデータ
? デフォルトはこれ
– 共分散データ
? 内部に共分散行列を保存
– ポリコリック相関
? 内部にポリコリック相関を保存
– シートを指定
? 外部の共分散行列を読み込む
共分散データモード
? 共分散行列を保存?取り込むと
– 以下のようなスペースが表示される
– チェックを付けた変数を分析に用いる
プロクラステス回転
? 仮説に最も近くなるように回転する方法
– 共分散データモードの場合のみ選択可能
– 下のように、仮説的な因子負荷量を入力する画
面が表示される
因子負荷量の仮説を入力
? 因子負荷量なので-1~1の範囲になるよう注意
? また、2乗和が1以下になるよう注意
? 負荷する因子だけがわかってる場合は下のように負
荷する因子のところに1とだけ入力してもよい
共分散データ利用の注意点
? 交互作用項は検討できません
– 回帰分析にも共分散データは利用できますが、交互
作用は検討できません。
? 分散分析など多くの分析法は利用できません
– 主にカテゴリカル変数を使うものはすべて無理です。
? Macでは利用できません
– 申し訳ないですが、現状そうなっています。
– 余裕があれば改善します。
クラスタ分析
「クラスタ分析」を選択
? クラスタ分析のモデリングスペース
モデルの指定
? クラスタ数の指定
– 階層クラスタの場合は、指定しないこともできる
? その場合、クラスタごとの特徴は出力されない
? 分類対象
– 回答者:サブジェクトを変数を使って分類する
– 変数:変数を、サブジェクトを使って分類する
? 距離行列
– ローデータ:そのままの得点から距離行列を計算
– 標準化:データを標準化してから計算
推定法の選択
? 「オプション」ボタンを押す
– 階層的クラスタと非階層的クラスタの2種類
? 階層的クラスタ???クラスタのネスト関係を仮定
– ウォード法:最も妥当な解を出すといわれている
– 群平均法:ユークリッド距離を仮定しない方法 そこそこ良い
– 最長距離法:ユークリッド距離を仮定しない方法 まぁまぁ
? 階層クラスタはサンプルサイズが大きいと計算時間がかかるので注意
? 非階層クラスタ???階層クラスタにくらべてかなり計算が早い
– K-means法:クラスタの階層関係を仮定しない 計算が早い
– マハラノビス距離によるk-means法:より精度がよくなるが、計算
にやや時間がかかる
出力の設定
? 所属クラスタ
– 回答者の分類でクラスタ数を指定した場合、回答者の所属クラ
スタを出力する
? クラスタ平均値
– 変数の分類でクラスタ数を指定した場合、各クラスタの平均値
を出力する
? デンドログラム
– 階層クラスタの場合、樹形図を出力
? クラスタの特徴
– クラスタ数を指定した場合、そのクラスタの特徴を変数の標準
化得点で表示する
出力例
? デンドログラム
CL1
CL2
CL3
CL4
CL5
CL6
CL7
CL8
CL9
CL10
CL11
CL12
CL13
CL14
CL15
CL16
CL17
CL18
CL19
CL20
CL21
CL22
CL23
CL24
CL25
デンドログラム描写の設定
? デンドログラムの表示法
– デンドログラムを表示する際、クラスタ間の距離をど
のように計算するかを設定できます。
– 距離の1乗がデフォルトで、10乗まで変えられます。
乗数をあげると、上位のクラスタがより際立って表示
されるようになります。
? デンドログラムの要約基準
– 回答者を分類するとき、全員をデンドログラムに表示
すると非常に大きな図になってしまいます。
– そこで、HADでは上位のクラスタのみを表示するのを
デフォルトにしています。
– 上位何クラスタまで表示するかを設定できます。
多次元尺度法
? 距離行列をもとに変数を2次元に表示
– 尺度の一次元性などを確認できる
クラスタ分析のオプション
数量化分析
(等質性分析)
「数量化分析」を選択
? 対応分析のモデリングスペース
モデルの指定
? 次元数の指定???何次元まで抽出するか
– バリマックス回転を行う
? 次元軸を単純構造に回転する
? データ???入力データのタイプを選択
– 変数型???1,2,3といったカテゴリごとに数値が割り当てられ
ているタイプ
– カテゴリ反応型???カテゴリごとに0?1でコードされたダミー変数
が設定されているタイプ
– クロス表型???2変数がクロス表で得られるタイプ
? 重み
– 次元の固有値で重みづけるかどうかを選択
出力の指定
? 得点
– 回答者のスコア???回答者ごとに次元得点を出力
– カテゴリ反応型データ???変数型をカテゴリ反応型
に変換して出力
? 変数をプロット
– 変数をカテゴリごとに2次元にプロットする
? 回答者をプロット
– 回答者を2次元にプロットする
クロス表からの分析结果
数量化分析のオプション
Ad

Recommended

エクセルで統計分析3 回帰分析のやり方
エクセルで統計分析3 回帰分析のやり方
Hiroshi Shimizu
?
エクセルで統計分析2 HADの使い方
エクセルで統計分析2 HADの使い方
Hiroshi Shimizu
?
エクセルで統計分析 統計プログラムHADについて
エクセルで統計分析 統計プログラムHADについて
Hiroshi Shimizu
?
エクセルでテキストマイニング TTM2HADの使い方
エクセルでテキストマイニング TTM2HADの使い方
Hiroshi Shimizu
?
エクセルで統計分析5 マルチレベル分析のやり方
エクセルで統計分析5 マルチレベル分析のやり方
Hiroshi Shimizu
?
厂贰惭のやり方 改订版
厂贰惭のやり方 改订版
Shota Yuasa
?
マルチレベルモデル講習会 実践編
マルチレベルモデル講習会 実践編
Hiroshi Shimizu
?
マルチレベルモデル講習会 理論編
マルチレベルモデル講習会 理論編
Hiroshi Shimizu
?
100614 構造方程式モデリング基本の「き」
100614 構造方程式モデリング基本の「き」
Shinohara Masahiro
?
搁で因子分析 商用ソフトで実行できない因子分析のあれこれ
搁で因子分析 商用ソフトで実行できない因子分析のあれこれ
Hiroshi Shimizu
?
媒介分析について
媒介分析について
Hiroshi Shimizu
?
惭颁惭颁でマルチレベルモデル
惭颁惭颁でマルチレベルモデル
Hiroshi Shimizu
?
因果関係を时系列変化で分析
因果関係を时系列変化で分析
DaikiNagamine
?
重回帰分析で交互作用効果
重回帰分析で交互作用効果
Makoto Hirakawa
?
心理学におけるベイズ统计の流行を整理する
心理学におけるベイズ统计の流行を整理する
Hiroshi Shimizu
?
惭辫濒耻蝉の使い方 初级编
惭辫濒耻蝉の使い方 初级编
Hiroshi Shimizu
?
2012-1110「マルチレベルモデルのはなし」(肠别苍蝉辞谤别诲)
2012-1110「マルチレベルモデルのはなし」(肠别苍蝉辞谤别诲)
Mizumoto Atsushi
?
厂迟补苍コードの书き方 中级编
厂迟补苍コードの书き方 中级编
Hiroshi Shimizu
?
StanとRでベイズ統計モデリング 1,2章
StanとRでベイズ統計モデリング 1,2章
Miki Katsuragi
?
倾向スコアの概念とその実践
倾向スコアの概念とその実践
Yasuyuki Okumura
?
厂迟补苍の便利な事后処理関数
厂迟补苍の便利な事后処理関数
daiki hojo
?
阶层ベイズと奥础滨颁
阶层ベイズと奥础滨颁
Hiroshi Shimizu
?
ベイズファクターとモデル选択
ベイズファクターとモデル选択
kazutantan
?
厂贰惭を用いた縦断データの解析 潜在曲线モデル
厂贰惭を用いた縦断データの解析 潜在曲线モデル
Masaru Tokuoka
?
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
Shiga University, RIKEN
?
計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)
Shota Yasui
?
搁耻产颈苍の论文(の行间)を読んでみる-倾向スコアの理论-
搁耻产颈苍の论文(の行间)を読んでみる-倾向スコアの理论-
Koichiro Gibo
?
惭辫濒耻蝉の使い方 中级编
惭辫濒耻蝉の使い方 中级编
Hiroshi Shimizu
?
颁尘诲蝉迟补苍谤入门と谤别诲耻肠别冲蝉耻尘()解説
颁尘诲蝉迟补苍谤入门と谤别诲耻肠别冲蝉耻尘()解説
Hiroshi Shimizu
?
厂迟补苍でガウス过程
厂迟补苍でガウス过程
Hiroshi Shimizu
?

More Related Content

What's hot (20)

100614 構造方程式モデリング基本の「き」
100614 構造方程式モデリング基本の「き」
Shinohara Masahiro
?
搁で因子分析 商用ソフトで実行できない因子分析のあれこれ
搁で因子分析 商用ソフトで実行できない因子分析のあれこれ
Hiroshi Shimizu
?
媒介分析について
媒介分析について
Hiroshi Shimizu
?
惭颁惭颁でマルチレベルモデル
惭颁惭颁でマルチレベルモデル
Hiroshi Shimizu
?
因果関係を时系列変化で分析
因果関係を时系列変化で分析
DaikiNagamine
?
重回帰分析で交互作用効果
重回帰分析で交互作用効果
Makoto Hirakawa
?
心理学におけるベイズ统计の流行を整理する
心理学におけるベイズ统计の流行を整理する
Hiroshi Shimizu
?
惭辫濒耻蝉の使い方 初级编
惭辫濒耻蝉の使い方 初级编
Hiroshi Shimizu
?
2012-1110「マルチレベルモデルのはなし」(肠别苍蝉辞谤别诲)
2012-1110「マルチレベルモデルのはなし」(肠别苍蝉辞谤别诲)
Mizumoto Atsushi
?
厂迟补苍コードの书き方 中级编
厂迟补苍コードの书き方 中级编
Hiroshi Shimizu
?
StanとRでベイズ統計モデリング 1,2章
StanとRでベイズ統計モデリング 1,2章
Miki Katsuragi
?
倾向スコアの概念とその実践
倾向スコアの概念とその実践
Yasuyuki Okumura
?
厂迟补苍の便利な事后処理関数
厂迟补苍の便利な事后処理関数
daiki hojo
?
阶层ベイズと奥础滨颁
阶层ベイズと奥础滨颁
Hiroshi Shimizu
?
ベイズファクターとモデル选択
ベイズファクターとモデル选択
kazutantan
?
厂贰惭を用いた縦断データの解析 潜在曲线モデル
厂贰惭を用いた縦断データの解析 潜在曲线モデル
Masaru Tokuoka
?
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
Shiga University, RIKEN
?
計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)
Shota Yasui
?
搁耻产颈苍の论文(の行间)を読んでみる-倾向スコアの理论-
搁耻产颈苍の论文(の行间)を読んでみる-倾向スコアの理论-
Koichiro Gibo
?
惭辫濒耻蝉の使い方 中级编
惭辫濒耻蝉の使い方 中级编
Hiroshi Shimizu
?
100614 構造方程式モデリング基本の「き」
100614 構造方程式モデリング基本の「き」
Shinohara Masahiro
?
搁で因子分析 商用ソフトで実行できない因子分析のあれこれ
搁で因子分析 商用ソフトで実行できない因子分析のあれこれ
Hiroshi Shimizu
?
惭颁惭颁でマルチレベルモデル
惭颁惭颁でマルチレベルモデル
Hiroshi Shimizu
?
因果関係を时系列変化で分析
因果関係を时系列変化で分析
DaikiNagamine
?
重回帰分析で交互作用効果
重回帰分析で交互作用効果
Makoto Hirakawa
?
心理学におけるベイズ统计の流行を整理する
心理学におけるベイズ统计の流行を整理する
Hiroshi Shimizu
?
惭辫濒耻蝉の使い方 初级编
惭辫濒耻蝉の使い方 初级编
Hiroshi Shimizu
?
2012-1110「マルチレベルモデルのはなし」(肠别苍蝉辞谤别诲)
2012-1110「マルチレベルモデルのはなし」(肠别苍蝉辞谤别诲)
Mizumoto Atsushi
?
厂迟补苍コードの书き方 中级编
厂迟补苍コードの书き方 中级编
Hiroshi Shimizu
?
StanとRでベイズ統計モデリング 1,2章
StanとRでベイズ統計モデリング 1,2章
Miki Katsuragi
?
倾向スコアの概念とその実践
倾向スコアの概念とその実践
Yasuyuki Okumura
?
厂迟补苍の便利な事后処理関数
厂迟补苍の便利な事后処理関数
daiki hojo
?
阶层ベイズと奥础滨颁
阶层ベイズと奥础滨颁
Hiroshi Shimizu
?
ベイズファクターとモデル选択
ベイズファクターとモデル选択
kazutantan
?
厂贰惭を用いた縦断データの解析 潜在曲线モデル
厂贰惭を用いた縦断データの解析 潜在曲线モデル
Masaru Tokuoka
?
統計的因果推論への招待 -因果構造探索を中心に-
統計的因果推論への招待 -因果構造探索を中心に-
Shiga University, RIKEN
?
計量経済学と 機械学習の交差点入り口 (公開用)
計量経済学と 機械学習の交差点入り口 (公開用)
Shota Yasui
?
搁耻产颈苍の论文(の行间)を読んでみる-倾向スコアの理论-
搁耻产颈苍の论文(の行间)を読んでみる-倾向スコアの理论-
Koichiro Gibo
?
惭辫濒耻蝉の使い方 中级编
惭辫濒耻蝉の使い方 中级编
Hiroshi Shimizu
?

More from Hiroshi Shimizu (15)

颁尘诲蝉迟补苍谤入门と谤别诲耻肠别冲蝉耻尘()解説
颁尘诲蝉迟补苍谤入门と谤别诲耻肠别冲蝉耻尘()解説
Hiroshi Shimizu
?
厂迟补苍でガウス过程
厂迟补苍でガウス过程
Hiroshi Shimizu
?
阶层ベイズと自由エネルギー
阶层ベイズと自由エネルギー
Hiroshi Shimizu
?
厂迟补苍と搁でベイズ统计モデリング読书会 导入编(1章~3章)
厂迟补苍と搁でベイズ统计モデリング読书会 导入编(1章~3章)
Hiroshi Shimizu
?
厂补辫辫辞谤辞搁#6 初心者セッションスライド
厂补辫辫辞谤辞搁#6 初心者セッションスライド
Hiroshi Shimizu
?
厂迟补苍超初心者入门
厂迟补苍超初心者入门
Hiroshi Shimizu
?
Tokyo r53
Tokyo r53
Hiroshi Shimizu
?
心理学者のための骋濒尘尘?阶层ベイズ
心理学者のための骋濒尘尘?阶层ベイズ
Hiroshi Shimizu
?
驳濒尘尘蝉迟补苍パッケージを作ってみた
驳濒尘尘蝉迟补苍パッケージを作ってみた
Hiroshi Shimizu
?
负の二项分布について
负の二项分布について
Hiroshi Shimizu
?
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
Hiroshi Shimizu
?
社会心理学と骋濒尘尘
社会心理学と骋濒尘尘
Hiroshi Shimizu
?
搁で潜在ランク分析
搁で潜在ランク分析
Hiroshi Shimizu
?
Latent rank theory
Latent rank theory
Hiroshi Shimizu
?
Excelでも統計分析 HADについて SappoRo.R#3
Excelでも統計分析 HADについて SappoRo.R#3
Hiroshi Shimizu
?
颁尘诲蝉迟补苍谤入门と谤别诲耻肠别冲蝉耻尘()解説
颁尘诲蝉迟补苍谤入门と谤别诲耻肠别冲蝉耻尘()解説
Hiroshi Shimizu
?
厂迟补苍でガウス过程
厂迟补苍でガウス过程
Hiroshi Shimizu
?
阶层ベイズと自由エネルギー
阶层ベイズと自由エネルギー
Hiroshi Shimizu
?
厂迟补苍と搁でベイズ统计モデリング読书会 导入编(1章~3章)
厂迟补苍と搁でベイズ统计モデリング読书会 导入编(1章~3章)
Hiroshi Shimizu
?
厂补辫辫辞谤辞搁#6 初心者セッションスライド
厂补辫辫辞谤辞搁#6 初心者セッションスライド
Hiroshi Shimizu
?
厂迟补苍超初心者入门
厂迟补苍超初心者入门
Hiroshi Shimizu
?
心理学者のための骋濒尘尘?阶层ベイズ
心理学者のための骋濒尘尘?阶层ベイズ
Hiroshi Shimizu
?
驳濒尘尘蝉迟补苍パッケージを作ってみた
驳濒尘尘蝉迟补苍パッケージを作ってみた
Hiroshi Shimizu
?
负の二项分布について
负の二项分布について
Hiroshi Shimizu
?
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
谤蝉迟补苍で简単に骋尝惭惭ができる驳濒尘尘蝉迟补苍()を作ってみた
Hiroshi Shimizu
?
社会心理学と骋濒尘尘
社会心理学と骋濒尘尘
Hiroshi Shimizu
?
搁で潜在ランク分析
搁で潜在ランク分析
Hiroshi Shimizu
?
Excelでも統計分析 HADについて SappoRo.R#3
Excelでも統計分析 HADについて SappoRo.R#3
Hiroshi Shimizu
?
Ad

エクセルで統計分析4 因子分析のやり方