際際滷

際際滷Share a Scribd company logo
Introduction to
Machine Learning with Python
2. Supervised Learning(2)
Honedae Machine Learning Study Epoch #2
1
Contacts
Haesun Park
Email : haesunrpark@gmail.com
Meetup: https://www.meetup.com/Hongdae-Machine-Learning-Study/
Facebook : https://facebook.com/haesunrpark
Blog : https://tensorflow.blog
2
Book
伎 殊企襴襯  襾語, 覦伎.
(Introduction to Machine Learning with Python, Andreas
Muller & Sarah Guido 覯.)
覯 1リ骸 2レ 觚襦蠏語 覓企襦 曙  給.
  襴觀磯ゼ 殊語 覲  給.
Github:
https://github.com/rickiepark/introduction_to_ml_with_python/
3
 覈 - 覿襯
4
伎 覿襯binary classification
蠏 螳  覦 
 =  0   0 +  1   1 +  +      +  > 0
0覲企 覃  企(+1), 0覲企 朱  企(-1)
predict_proba() sigmoid , predict() decision_function() 
 レ  蟆一 蟆所decision boundary襯 
蟆一 蟆所 讌(轟 1螳), 覃(轟 2螳), 豐覃(轟 3螳)朱 
 覈語 螻襴讀 蟲覿
螳譴豺 ク  一危一 朱  襷讌  觜    
   蠏 覦覯
5
0-1 
螻  覩碁 覿螳  豕 蠍 企れ
6
襴  surrogate loss function
7
LogisticRegression, LinearSVC
  覿襯 螻襴讀
襦讌ろ 蠏Logistic Regression(sklearn.linear_model.LogisticRegression)
  覯″ 襾語Linear SVM(sklearn.svm.LinearSVC)
襦讌ろ(蠏碁企sigmoid) 
8
 =
1
1 + 
 =    + 
predict() : z > 0predict_proba()
:  > 0.5
襦讌ろ 蠏 觜
multi_class=multinomial
(襦 碁cross-entropy )
multi_class=ovr
(襦讌ろlogistic )
9

=1

  ,  =
 
 

=1

  + 1   log 1   ,  =
1
1 + 
,  = {1, 0}

=1

log  っ+
+ 1 ,  = {1, 1}
    + 2  1,  =
1

     蠏   
     蠏   
ろ語 螻旧螻
蟲 覦
譬譬 谿願 
碁Дsoftmax 
蠏 螳
LinearSVC vs LogisticRegression
10
L2 蠏(penalty=l2 蠍磯蓋螳)
loss=squared_hinge (蠍磯蓋螳)
蟆一 蟆所
forge 一危一
企 1
企 0
LinearSVCs C param
11
螻殊 螻朱
C=1.0 蠍磯蓋螳
   蠏    (れ 誤語 襷豢)
   蠏    (螳螳 誤語 襷豢)
蠏 螳
LogisticRegression + cancer
12
螻殊(蠏螳 覓 )
C=1.0
覲旧° 讀螳, 焔ロレ
覲旧°襯 蠍磯蓋螳 覲企  豢覃
30螳 轟
LogisticRegression.coef_ (L2)
13
蠏 
蠏 Ridge 觜
LogisticRegression.coef_ (L1)
14
蠏 
蠏 Lasso 觜
れ 企 覿襯
襦讌ろ 蠏襯 誤螻 覿覿  覿襯 覈語 伎 覿襯襷 讌
襦讌ろ 蠏 碁Д 襯  れ 覿襯 讌
LogisticRegression(multi_class=multinomial)
覿覿 覈碁れ 企る 磯 伎 覿襯 覈語 襷 朱one-vs-rest
覦( one-vs-all)  伎 覿襯 覈 譴 螳  
企り 
企る 螳譴豺 ク 襷れ伎
15

=1

  ,  =
  
=1

  
  =   0   0 +   1   1 +  +       +
make_blobs dataset
16
3螳 企るゼ 螳讌 2谿 一危一
LinearSVC れ 覿襯
17
 螳 企  螳 轟
企 0
企 1企 2
れ 覿襯 蟆一 蟆所
18
ル螻 襷り覲
蠏 襷り覲: 蠏 覈語 alpha, 覿襯 覈語 C
覲危 蠏 襦蠏 れ朱 譟一 (0.1, 1, 10, 100)
朱 轟煙 譴蟇磯 伎 所る L1 蠏, 覃 蠍磯蓋螳 L2
 覈語 レ
旧 豸′ 觜襴(覯″ 螻煙)
觜蟲 豸 螻殊 危危蠍 (螻 覿 企れ  )
 一危一螻 覦 一危一 
 (n)覲企 轟(m) 襷 . ex) m = 10,000, n = 1,000
轟煙 覿譟燕   覈 覲企る 貉る SVM 煙 螻殊
, 覦焔螳朱 LogisticRegression  solver=sag 旧 (L2襷 螳)
  一危一 SGDRegressor, SGDClassifier 19
     蠏   
     蠏
覃 郁屋method chaining
20
螳豌(self) 覦
logreg = LogisticRegression()
logreg = logreg.fit(X_train, y_train)
豸 蟆郁骸 覦
牛 襦讌ろ 蠏 覈語 れ 貊
企 覯伎
21
企 覯伎Navie Bayes 覿襯蠍
 覿襯蠍磯慨  螳 觜襯伎襷 朱 焔レ 譟郁 伎.
轟焔 企る 糾襯 豬 朱誤磯ゼ 牛.
GaussianNB : 一 一危
BernoulliNB : 伎 一危, ろ 一危
MultinomialNB :  豺伎危 一危, ろ 一危
22
BernoulliNB
23
MultinomialNB : 企る 轟煙 蠏
GaussianNB : 企る 轟煙 譴ク谿 蠏
ル螻 襷り覲
alpha 襷り覲襦 覈 覲旧° 譟一.
螳  一危磯ゼ alpha 螳襷 豢螳 糾襯 襷蟆 襷.
alpha螳 覃 覈語 覲旧°螳 讌讌襷 焔レ 覲 讌 給.
GaussianNB 螻谿 一危一 BernoulliNB, MultinomialNB ろ語 螳
 一危磯ゼ 豺伎危誤 .
MultinomialNB 0  轟煙 襷 蟆曙 BernoulliNB覲企 焔レ 譬給.
螻 豸 螳 觜襯願 螻殊 危危蠍 曙給.
 螻谿 一危一  螻 襷り覲 覩手讌 給.
24
蟆一 碁Μ
25
蟆一 碁Μdecision tree
覿襯 蠏 襴 .
蟆一 るるゴ蠍  / 讌覓語 伎企螳覃伎 牛 伎 碁Μ.
26
轟
(i.e. 朱 襷 襾豪?)
碁node
襴leaf 碁
ledge
襭root 碁
蟆一 碁Μ 襷り鍵
sklearn.datasets.make_moons(): two_moons 一危一
旧 螳 觜襴  yes/no 讌覓(ろ) 牛.
一 一危一 轟 i 螳 a 覲企 郁? 螳 螳 .
27
蟆一 碁Μ 
28
x[1]
x[0]
企 0
企 1
* 覿 蠍一
- 蠏 覓語:
criterion=mse
- 覿襯 覓語:
criterion=gini or entropy
蟆一 碁Μ 豸
 轟煙  一危磯ゼ 襦 覩襦  豢 蟆 覿襴.
旧 碁襷  蟾讌 覿 覦覲給螻 襦 一危 誤瑚 
覿  豸(れ 蟾 轟 碁 蠏螳) .
29 碁:  蟾襷 螳讌
覲旧° 
覈 襴螳  碁螳   蟾讌 讌覃 覲旧″伎螻 螻朱.
 碁襦襷 企伎 碁Μ  一危磯ゼ 100%  襷豢覩襦 朱
焔レ 給.
 螳讌豺蠍pre-prunning: 碁Μ 煙 覩碁Μ 譴
碁Μ 豕 蟾 , 襴 豕 螳 
覿 螳ロ 誤語 豕 螳 讌
 螳讌豺蠍post-prunning: 碁Μ襯 襷  碁襯 蟇磯 覲.
DecisionTreeRegressor, DecisionTreeClassifier  螳讌豺蠍磯 讌.
30
覲旧°  螻
31
蟆一碁Μ  覦 
螻朱 
碁Μ 豕 蟾 4襦 
覈 襴碁螳
碁
蟆一 碁Μ 覿
32
螻襴讀 危 所 觜覓瑚蟆
る蠍 譬給. 讌襷 蟾願
譟郁襷 蟾企 襷れ ロ伎.
襷 一危郁 襯企 蟆暑襯
讌譴伎 誤 蟆 譬給.
轟 譴feature importance
0(豸′ 讌 )螻 1(覯渚蟆 豸) 伎 螳朱 豌  1.
33
碁Μ 蠏碁
豌覯讌 碁襦 
(  煙
覩語語   )
るジ 轟炎骸 狩
覲企ゼ 螳讌螻
轟炎骸 企 伎 蟯螻
34
X[1] 螳螻 豢リ骸 蟯螻螳  觜襦/覦觜襦讌 給.
蟆一 碁Μ - 蠏
sklearn.tree.DecisionTreeRegressor
 一危 覯 覦 豸″ 語extrapolation 覿螳ロ.
れ殊  覦讌 給.
e.g. 貉危 覃覈襴 螳蟆 一危一
35
 一危
ろ 一危
蠏 觜蟲蠍 
襦蠏 れ朱 覦蠑語給.
LinearRegression vs DecisionTreeRegressor
36
碁Μ 覲旧°  朱襦
 一危磯ゼ 覯渚 豸(螳讌豺蠍 )
一危 覯 覦
襷讌襷  一危 誤碁ゼ
伎 豸
ル螻 襷り覲
覈 覲旧° ( 螳讌豺蠍) 襷り覲
max_depth : 碁Μ 豕 蟾
max_leaf_nodes : 襴 碁 豕 螳
min_samples_leaf : 襴 碁螳 蠍  豕  螳
min_samples_split : 碁螳 覿蠍  豕  螳
 碁Μ  螳螳 譬 る蠍 曙給.
轟煙 螳螳 豌襴覩襦 一危 れ殊 蟲 覦讌 給.
蠏 譴 螳 豌襴 螻殊  給.
伎 轟煙企 一 轟煙 狩 企 螳ロ.
: 螻朱 螳レ  朱 焔レ 譬讌 給.
37
 ろ
38
 ろrandom forest
 蟆一 碁Μ襯 覓苦 螻朱 狩   觚 覦覯 譴 .
豸′  (螻朱) 碁Μるゼ 蠏伎 螻朱 譴.
 ろ碁 碁Μ 煙 覓伎煙 譯殊.
碁Μ 煙 一危 譴 朱襯 覓伎襦 .
碁 覿  覓伎襦 覲 轟煙 .
sklearn.ensemble.RandomForestClassifier, RandomForestRegressor
n_estimators 襷り覲襦 碁Μ 螳襯 讌(蠍磯蓋螳 10).
覈 碁Μ 豸′ 襷 , 蠏 螳 豸 螳 蠏, 覿襯 豸
襯 蠏(渚  ) .
39
覓伎
覿語ろ碁 boostrap sample
n 螳  一危一 覓伎襦 豢豢 n 螳 一危一 襷
譴覲 豢豢 螳ロ覃  覿語ろ碁   1/3   暑
(100螳  譴 螳 讌  襯 100覯 覦覲 =
99
100
100
= 0.366)
[a, b, c, d]  [b, d, d, c], [d, a, d, a]
碁 覿  覲 轟煙 ろ蟆 (max_features 襷り覲).
max_features  n_features : 覈 轟煙 . 觜訣 碁Μれ .
max_features  1 : 碁 覿 覓伎襦 . 襦 襷 るゴ螻 蟾 碁Μ .
  ろ語 碁Μ螳 覈 るゴ蟆 焔
40
 ろ 覿
41
forest.estimators_螳 蟆一 碁Μ
襦 襷 る
觚 蟆一蟆所
cancer 一危一 
42
 蟆一碁Μ
 誤: 1.0
ろ 誤: 0.937 豪 襷り覲  讌  譬 焔レ .
0 伎 轟煙 襷.
螳 譴 轟煙 覦
ル螻 襷り覲
レ
蠏 覿襯 螳 襴  螻襴讀.(る蠍磯 企旧給)
一企 焔レ 企 襷り覲  覿伎 螻 一危 れ 覿.
 一危一  螳,  CPU 貊伎 覲 螳(n_jobs: 蠍磯蓋螳 1, 豕 -1)

襷 碁Μ螳 焔覩襦 誤 覿 企糾 碁Μ螳 蟾伎 蟆渚レ 給.
谿 螻  一危一 焔 譬給(e.g. ろ 一危) 覈
 覈 覲企 覃覈襴  襷螻 螻 豸′ 襴暑.
襷り覲
n_estimators(碁Μ 螳, 覃覈襴 螳 螻), max_features(覲 轟煙 螳)
max_features 蠍磯蓋螳, 蠏  n_features, 覿襯  sqrt(n_features)
n_estimators螳 伎襦, max_features螳 襦 螻朱 譴 譴.
螳讌豺蠍: max_depth, max_leaf_nodes, min_samples_leaf, min_samples_split
43
蠏碁誤 覿ろ
44
蠏碁誤 覿ろGradient Boosting 蠏
蟆一 碁Μ(DecisionTreeRegressor)襯 蠍磯朱   るジ 觚 螻襴讀
蠏 覿襯 覈  螳ロ.
 ろ語 襴 覓伎   螳讌豺蠍磯ゼ 螳蟆 .
れ 危  碁Μ(渚 糾鍵)襯  伎 碁Μ れ姶襯 覲伎襦
れ 碁Μ 燕.
蠏 : 豕螻煙れ姶 ろ, 覿襯 : 襦讌ろ ろ
蟆曙 螳覯gradient descent (learning_rate 襷り覲 譴, 蠍磯蓋螳 0.1)
襾語 蟆曙磯(e.g. 貂蠍Kaggle) 襷 .
 ろ 覲企 襷り覲 譟郁  覩手讌襷 譟郁   焔レ .
45
GradientBoostingClassifier
46
n_estimators=100, max_depth=3
learning_rate=0.1
螻朱
碁Μ 蟾 
給 螳
蠏碁誤 覿ろ 轟 譴
47
ろろ語 襴
朱 轟煙 0 給.
ル螻 襷り覲
レ
 ろ碁慨 豸 螳 觜殊狩蟇磯 焔レ  譽伎   .
轟 れ 譟一  螻 伎, 一 轟煙  螳ロ.
譯 蠏覈 蟆曙 覿一襴螳 螳ロ xgboost螳 觜襯願 蠍磯 曙給.

 螻谿 一危一  讌 給.
襷り覲 覩手,  螳  蟇碁暑.
襷り覲
n_estimators, learning_rate, max_depth(<=5)
learning_rate 豢覃 覲旧°螳  焔レ 襴る  襷 碁Μ螳 .
 ろ語 襴 n_estimators襯 蟆覃 螻朱 螳レ 讌.
螳 覃覈襴 螳 n_estimators襯 襷豢螻 learning_rate朱 譟一. 48

More Related Content

What's hot (20)

6.algorithm chains and piplines(epoch#2)
6.algorithm chains and piplines(epoch#2)6.algorithm chains and piplines(epoch#2)
6.algorithm chains and piplines(epoch#2)
Haesun Park
3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)
Haesun Park
3.unsupervised learing
3.unsupervised learing3.unsupervised learing
3.unsupervised learing
Haesun Park
5.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 25.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 2
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈 [ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
Haesun Park
5.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 15.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 1
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
Haesun Park
危結 豕 覲蟆 ろ磯
危結 豕 覲蟆  ろ磯危結 豕 覲蟆  ろ磯
危結 豕 覲蟆 ろ磯
Haesun Park
4.convolutional neural networks
4.convolutional neural networks4.convolutional neural networks
4.convolutional neural networks
Haesun Park
3.neural networks
3.neural networks3.neural networks
3.neural networks
Haesun Park
2.linear regression and logistic regression
2.linear regression and logistic regression2.linear regression and logistic regression
2.linear regression and logistic regression
Haesun Park
7.woring with text data
7.woring with text data7.woring with text data
7.woring with text data
Haesun Park
7.woring with text data(epoch#2)
7.woring with text data(epoch#2)7.woring with text data(epoch#2)
7.woring with text data(epoch#2)
Haesun Park
(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest
Haesun Park
1.introduction(epoch#2)
1.introduction(epoch#2)1.introduction(epoch#2)
1.introduction(epoch#2)
Haesun Park
≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2
Haesun Park
Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)
Tae Young Lee
boosting 蠍磯 危 (bagging vs boosting)
boosting 蠍磯 危 (bagging vs boosting)boosting 蠍磯 危 (bagging vs boosting)
boosting 蠍磯 危 (bagging vs boosting)
SANG WON PARK
6.algorithm chains and piplines(epoch#2)
6.algorithm chains and piplines(epoch#2)6.algorithm chains and piplines(epoch#2)
6.algorithm chains and piplines(epoch#2)
Haesun Park
3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)
Haesun Park
3.unsupervised learing
3.unsupervised learing3.unsupervised learing
3.unsupervised learing
Haesun Park
5.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 25.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 2
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈 [ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
Haesun Park
5.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 15.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 1
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
Haesun Park
危結 豕 覲蟆 ろ磯
危結 豕 覲蟆  ろ磯危結 豕 覲蟆  ろ磯
危結 豕 覲蟆 ろ磯
Haesun Park
4.convolutional neural networks
4.convolutional neural networks4.convolutional neural networks
4.convolutional neural networks
Haesun Park
3.neural networks
3.neural networks3.neural networks
3.neural networks
Haesun Park
2.linear regression and logistic regression
2.linear regression and logistic regression2.linear regression and logistic regression
2.linear regression and logistic regression
Haesun Park
7.woring with text data
7.woring with text data7.woring with text data
7.woring with text data
Haesun Park
7.woring with text data(epoch#2)
7.woring with text data(epoch#2)7.woring with text data(epoch#2)
7.woring with text data(epoch#2)
Haesun Park
(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest
Haesun Park
1.introduction(epoch#2)
1.introduction(epoch#2)1.introduction(epoch#2)
1.introduction(epoch#2)
Haesun Park
≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2
Haesun Park
Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)
Tae Young Lee
boosting 蠍磯 危 (bagging vs boosting)
boosting 蠍磯 危 (bagging vs boosting)boosting 蠍磯 危 (bagging vs boosting)
boosting 蠍磯 危 (bagging vs boosting)
SANG WON PARK

Similar to 2.supervised learning(epoch#2)-2 (20)

== 11=
== 11=== 11=
== 11=
Juhui Park
Chapter 8 - optimization for training deep models
Chapter 8 - optimization for training deep modelsChapter 8 - optimization for training deep models
Chapter 8 - optimization for training deep models
KyeongUkJang
Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴
SANG WON PARK
Machine learning bysogood
Machine learning bysogoodMachine learning bysogood
Machine learning bysogood
S.Good Kim
Learning method
Learning methodLearning method
Learning method
chs71
PaLM Paper Review
PaLM Paper ReviewPaLM Paper Review
PaLM Paper Review
Tae Young Lee
ル Tensor flow(skt academy)
ル  Tensor flow(skt academy)ル  Tensor flow(skt academy)
ル Tensor flow(skt academy)
Tae Young Lee
(Book Summary) Classification and ensemble(book review)
(Book Summary) Classification and ensemble(book review)(Book Summary) Classification and ensemble(book review)
(Book Summary) Classification and ensemble(book review)
MYEONGGYU LEE
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
jdo
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
讌 譟
DL from scratch(6)
DL from scratch(6)DL from scratch(6)
DL from scratch(6)
Park Seong Hyeon
Transfer learning usage
Transfer learning usageTransfer learning usage
Transfer learning usage
Tae Young Lee
[れ企AI伎擦]企至 蟇煙 覃豢螻 覯伎る殊語 覯 覦一郁 螳
[れ企AI伎擦]企至 蟇煙 覃豢螻 覯伎る殊語  覯 覦一郁 螳[れ企AI伎擦]企至 蟇煙 覃豢螻 覯伎る殊語  覯 覦一郁 螳
[れ企AI伎擦]企至 蟇煙 覃豢螻 覯伎る殊語 覯 覦一郁 螳
NAVER Engineering
Survey of activation functions
Survey of activation functionsSurvey of activation functions
Survey of activation functions
谿所鍵 覓
Ensemble Model (Hybrid model)
Ensemble Model (Hybrid model)Ensemble Model (Hybrid model)
Ensemble Model (Hybrid model)
Jeonghun Yoon
[224] メп 求=_求_メ_求梶
[224] メп  求=_求_メ_求梶[224] メп  求=_求_メ_求梶
[224] メп 求=_求_メ_求梶
NAVER D2
Siamese neural networks for one shot image recognition paper explained
Siamese neural networks for one shot image recognition paper explainedSiamese neural networks for one shot image recognition paper explained
Siamese neural networks for one shot image recognition paper explained
taeseon ryu
Ml for 一危
Ml for 一危Ml for 一危
Ml for 一危
JEEHYUN PAIK
R梶 求釈= 求 メ
R梶 求釈= 求 メR梶 求釈= 求 メ
R梶 求釈= 求 メ
simon park
Machine learning linearregression
Machine learning linearregressionMachine learning linearregression
Machine learning linearregression
HaYoungChoi17
== 11=
== 11=== 11=
== 11=
Juhui Park
Chapter 8 - optimization for training deep models
Chapter 8 - optimization for training deep modelsChapter 8 - optimization for training deep models
Chapter 8 - optimization for training deep models
KyeongUkJang
Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴
SANG WON PARK
Machine learning bysogood
Machine learning bysogoodMachine learning bysogood
Machine learning bysogood
S.Good Kim
Learning method
Learning methodLearning method
Learning method
chs71
PaLM Paper Review
PaLM Paper ReviewPaLM Paper Review
PaLM Paper Review
Tae Young Lee
ル Tensor flow(skt academy)
ル  Tensor flow(skt academy)ル  Tensor flow(skt academy)
ル Tensor flow(skt academy)
Tae Young Lee
(Book Summary) Classification and ensemble(book review)
(Book Summary) Classification and ensemble(book review)(Book Summary) Classification and ensemble(book review)
(Book Summary) Classification and ensemble(book review)
MYEONGGYU LEE
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
jdo
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
讌 譟
Transfer learning usage
Transfer learning usageTransfer learning usage
Transfer learning usage
Tae Young Lee
[れ企AI伎擦]企至 蟇煙 覃豢螻 覯伎る殊語 覯 覦一郁 螳
[れ企AI伎擦]企至 蟇煙 覃豢螻 覯伎る殊語  覯 覦一郁 螳[れ企AI伎擦]企至 蟇煙 覃豢螻 覯伎る殊語  覯 覦一郁 螳
[れ企AI伎擦]企至 蟇煙 覃豢螻 覯伎る殊語 覯 覦一郁 螳
NAVER Engineering
Survey of activation functions
Survey of activation functionsSurvey of activation functions
Survey of activation functions
谿所鍵 覓
Ensemble Model (Hybrid model)
Ensemble Model (Hybrid model)Ensemble Model (Hybrid model)
Ensemble Model (Hybrid model)
Jeonghun Yoon
[224] メп 求=_求_メ_求梶
[224] メп  求=_求_メ_求梶[224] メп  求=_求_メ_求梶
[224] メп 求=_求_メ_求梶
NAVER D2
Siamese neural networks for one shot image recognition paper explained
Siamese neural networks for one shot image recognition paper explainedSiamese neural networks for one shot image recognition paper explained
Siamese neural networks for one shot image recognition paper explained
taeseon ryu
R梶 求釈= 求 メ
R梶 求釈= 求 メR梶 求釈= 求 メ
R梶 求釈= 求 メ
simon park
Machine learning linearregression
Machine learning linearregressionMachine learning linearregression
Machine learning linearregression
HaYoungChoi17

2.supervised learning(epoch#2)-2

  • 1. Introduction to Machine Learning with Python 2. Supervised Learning(2) Honedae Machine Learning Study Epoch #2 1
  • 2. Contacts Haesun Park Email : haesunrpark@gmail.com Meetup: https://www.meetup.com/Hongdae-Machine-Learning-Study/ Facebook : https://facebook.com/haesunrpark Blog : https://tensorflow.blog 2
  • 3. Book 伎 殊企襴襯 襾語, 覦伎. (Introduction to Machine Learning with Python, Andreas Muller & Sarah Guido 覯.) 覯 1リ骸 2レ 觚襦蠏語 覓企襦 曙 給. 襴觀磯ゼ 殊語 覲 給. Github: https://github.com/rickiepark/introduction_to_ml_with_python/ 3
  • 4. 覈 - 覿襯 4
  • 5. 伎 覿襯binary classification 蠏 螳 覦 = 0 0 + 1 1 + + + > 0 0覲企 覃 企(+1), 0覲企 朱 企(-1) predict_proba() sigmoid , predict() decision_function() レ 蟆一 蟆所decision boundary襯 蟆一 蟆所 讌(轟 1螳), 覃(轟 2螳), 豐覃(轟 3螳)朱 覈語 螻襴讀 蟲覿 螳譴豺 ク 一危一 朱 襷讌 觜 蠏 覦覯 5
  • 6. 0-1 螻 覩碁 覿螳 豕 蠍 企れ 6
  • 7. 襴 surrogate loss function 7
  • 8. LogisticRegression, LinearSVC 覿襯 螻襴讀 襦讌ろ 蠏Logistic Regression(sklearn.linear_model.LogisticRegression) 覯″ 襾語Linear SVM(sklearn.svm.LinearSVC) 襦讌ろ(蠏碁企sigmoid) 8 = 1 1 + = + predict() : z > 0predict_proba() : > 0.5
  • 9. 襦讌ろ 蠏 觜 multi_class=multinomial (襦 碁cross-entropy ) multi_class=ovr (襦讌ろlogistic ) 9 =1 , = =1 + 1 log 1 , = 1 1 + , = {1, 0} =1 log っ+ + 1 , = {1, 1} + 2 1, = 1 蠏 蠏 ろ語 螻旧螻 蟲 覦 譬譬 谿願 碁Дsoftmax 蠏 螳
  • 10. LinearSVC vs LogisticRegression 10 L2 蠏(penalty=l2 蠍磯蓋螳) loss=squared_hinge (蠍磯蓋螳) 蟆一 蟆所 forge 一危一 企 1 企 0
  • 11. LinearSVCs C param 11 螻殊 螻朱 C=1.0 蠍磯蓋螳 蠏 (れ 誤語 襷豢) 蠏 (螳螳 誤語 襷豢) 蠏 螳
  • 12. LogisticRegression + cancer 12 螻殊(蠏螳 覓 ) C=1.0 覲旧° 讀螳, 焔ロレ 覲旧°襯 蠍磯蓋螳 覲企 豢覃 30螳 轟
  • 15. れ 企 覿襯 襦讌ろ 蠏襯 誤螻 覿覿 覿襯 覈語 伎 覿襯襷 讌 襦讌ろ 蠏 碁Д 襯 れ 覿襯 讌 LogisticRegression(multi_class=multinomial) 覿覿 覈碁れ 企る 磯 伎 覿襯 覈語 襷 朱one-vs-rest 覦( one-vs-all) 伎 覿襯 覈 譴 螳 企り 企る 螳譴豺 ク 襷れ伎 15 =1 , = =1 = 0 0 + 1 1 + + +
  • 16. make_blobs dataset 16 3螳 企るゼ 螳讌 2谿 一危一
  • 17. LinearSVC れ 覿襯 17 螳 企 螳 轟 企 0 企 1企 2
  • 18. れ 覿襯 蟆一 蟆所 18
  • 19. ル螻 襷り覲 蠏 襷り覲: 蠏 覈語 alpha, 覿襯 覈語 C 覲危 蠏 襦蠏 れ朱 譟一 (0.1, 1, 10, 100) 朱 轟煙 譴蟇磯 伎 所る L1 蠏, 覃 蠍磯蓋螳 L2 覈語 レ 旧 豸′ 觜襴(覯″ 螻煙) 觜蟲 豸 螻殊 危危蠍 (螻 覿 企れ ) 一危一螻 覦 一危一 (n)覲企 轟(m) 襷 . ex) m = 10,000, n = 1,000 轟煙 覿譟燕 覈 覲企る 貉る SVM 煙 螻殊 , 覦焔螳朱 LogisticRegression solver=sag 旧 (L2襷 螳) 一危一 SGDRegressor, SGDClassifier 19 蠏 蠏
  • 20. 覃 郁屋method chaining 20 螳豌(self) 覦 logreg = LogisticRegression() logreg = logreg.fit(X_train, y_train) 豸 蟆郁骸 覦 牛 襦讌ろ 蠏 覈語 れ 貊
  • 22. 企 覯伎Navie Bayes 覿襯蠍 覿襯蠍磯慨 螳 觜襯伎襷 朱 焔レ 譟郁 伎. 轟焔 企る 糾襯 豬 朱誤磯ゼ 牛. GaussianNB : 一 一危 BernoulliNB : 伎 一危, ろ 一危 MultinomialNB : 豺伎危 一危, ろ 一危 22
  • 23. BernoulliNB 23 MultinomialNB : 企る 轟煙 蠏 GaussianNB : 企る 轟煙 譴ク谿 蠏
  • 24. ル螻 襷り覲 alpha 襷り覲襦 覈 覲旧° 譟一. 螳 一危磯ゼ alpha 螳襷 豢螳 糾襯 襷蟆 襷. alpha螳 覃 覈語 覲旧°螳 讌讌襷 焔レ 覲 讌 給. GaussianNB 螻谿 一危一 BernoulliNB, MultinomialNB ろ語 螳 一危磯ゼ 豺伎危誤 . MultinomialNB 0 轟煙 襷 蟆曙 BernoulliNB覲企 焔レ 譬給. 螻 豸 螳 觜襯願 螻殊 危危蠍 曙給. 螻谿 一危一 螻 襷り覲 覩手讌 給. 24
  • 26. 蟆一 碁Μdecision tree 覿襯 蠏 襴 . 蟆一 るるゴ蠍 / 讌覓語 伎企螳覃伎 牛 伎 碁Μ. 26 轟 (i.e. 朱 襷 襾豪?) 碁node 襴leaf 碁 ledge 襭root 碁
  • 27. 蟆一 碁Μ 襷り鍵 sklearn.datasets.make_moons(): two_moons 一危一 旧 螳 觜襴 yes/no 讌覓(ろ) 牛. 一 一危一 轟 i 螳 a 覲企 郁? 螳 螳 . 27
  • 28. 蟆一 碁Μ 28 x[1] x[0] 企 0 企 1 * 覿 蠍一 - 蠏 覓語: criterion=mse - 覿襯 覓語: criterion=gini or entropy
  • 29. 蟆一 碁Μ 豸 轟煙 一危磯ゼ 襦 覩襦 豢 蟆 覿襴. 旧 碁襷 蟾讌 覿 覦覲給螻 襦 一危 誤瑚 覿 豸(れ 蟾 轟 碁 蠏螳) . 29 碁: 蟾襷 螳讌
  • 30. 覲旧° 覈 襴螳 碁螳 蟾讌 讌覃 覲旧″伎螻 螻朱. 碁襦襷 企伎 碁Μ 一危磯ゼ 100% 襷豢覩襦 朱 焔レ 給. 螳讌豺蠍pre-prunning: 碁Μ 煙 覩碁Μ 譴 碁Μ 豕 蟾 , 襴 豕 螳 覿 螳ロ 誤語 豕 螳 讌 螳讌豺蠍post-prunning: 碁Μ襯 襷 碁襯 蟇磯 覲. DecisionTreeRegressor, DecisionTreeClassifier 螳讌豺蠍磯 讌. 30
  • 31. 覲旧° 螻 31 蟆一碁Μ 覦 螻朱 碁Μ 豕 蟾 4襦 覈 襴碁螳 碁
  • 32. 蟆一 碁Μ 覿 32 螻襴讀 危 所 觜覓瑚蟆 る蠍 譬給. 讌襷 蟾願 譟郁襷 蟾企 襷れ ロ伎. 襷 一危郁 襯企 蟆暑襯 讌譴伎 誤 蟆 譬給.
  • 33. 轟 譴feature importance 0(豸′ 讌 )螻 1(覯渚蟆 豸) 伎 螳朱 豌 1. 33 碁Μ 蠏碁 豌覯讌 碁襦 ( 煙 覩語語 ) るジ 轟炎骸 狩 覲企ゼ 螳讌螻
  • 34. 轟炎骸 企 伎 蟯螻 34 X[1] 螳螻 豢リ骸 蟯螻螳 觜襦/覦觜襦讌 給.
  • 35. 蟆一 碁Μ - 蠏 sklearn.tree.DecisionTreeRegressor 一危 覯 覦 豸″ 語extrapolation 覿螳ロ. れ殊 覦讌 給. e.g. 貉危 覃覈襴 螳蟆 一危一 35 一危 ろ 一危 蠏 觜蟲蠍 襦蠏 れ朱 覦蠑語給.
  • 36. LinearRegression vs DecisionTreeRegressor 36 碁Μ 覲旧° 朱襦 一危磯ゼ 覯渚 豸(螳讌豺蠍 ) 一危 覯 覦 襷讌襷 一危 誤碁ゼ 伎 豸
  • 37. ル螻 襷り覲 覈 覲旧° ( 螳讌豺蠍) 襷り覲 max_depth : 碁Μ 豕 蟾 max_leaf_nodes : 襴 碁 豕 螳 min_samples_leaf : 襴 碁螳 蠍 豕 螳 min_samples_split : 碁螳 覿蠍 豕 螳 碁Μ 螳螳 譬 る蠍 曙給. 轟煙 螳螳 豌襴覩襦 一危 れ殊 蟲 覦讌 給. 蠏 譴 螳 豌襴 螻殊 給. 伎 轟煙企 一 轟煙 狩 企 螳ロ. : 螻朱 螳レ 朱 焔レ 譬讌 給. 37
  • 39. ろrandom forest 蟆一 碁Μ襯 覓苦 螻朱 狩 觚 覦覯 譴 . 豸′ (螻朱) 碁Μるゼ 蠏伎 螻朱 譴. ろ碁 碁Μ 煙 覓伎煙 譯殊. 碁Μ 煙 一危 譴 朱襯 覓伎襦 . 碁 覿 覓伎襦 覲 轟煙 . sklearn.ensemble.RandomForestClassifier, RandomForestRegressor n_estimators 襷り覲襦 碁Μ 螳襯 讌(蠍磯蓋螳 10). 覈 碁Μ 豸′ 襷 , 蠏 螳 豸 螳 蠏, 覿襯 豸 襯 蠏(渚 ) . 39
  • 40. 覓伎 覿語ろ碁 boostrap sample n 螳 一危一 覓伎襦 豢豢 n 螳 一危一 襷 譴覲 豢豢 螳ロ覃 覿語ろ碁 1/3 暑 (100螳 譴 螳 讌 襯 100覯 覦覲 = 99 100 100 = 0.366) [a, b, c, d] [b, d, d, c], [d, a, d, a] 碁 覿 覲 轟煙 ろ蟆 (max_features 襷り覲). max_features n_features : 覈 轟煙 . 觜訣 碁Μれ . max_features 1 : 碁 覿 覓伎襦 . 襦 襷 るゴ螻 蟾 碁Μ . ろ語 碁Μ螳 覈 るゴ蟆 焔 40
  • 41. ろ 覿 41 forest.estimators_螳 蟆一 碁Μ 襦 襷 る 觚 蟆一蟆所
  • 42. cancer 一危一 42 蟆一碁Μ 誤: 1.0 ろ 誤: 0.937 豪 襷り覲 讌 譬 焔レ . 0 伎 轟煙 襷. 螳 譴 轟煙 覦
  • 43. ル螻 襷り覲 レ 蠏 覿襯 螳 襴 螻襴讀.(る蠍磯 企旧給) 一企 焔レ 企 襷り覲 覿伎 螻 一危 れ 覿. 一危一 螳, CPU 貊伎 覲 螳(n_jobs: 蠍磯蓋螳 1, 豕 -1) 襷 碁Μ螳 焔覩襦 誤 覿 企糾 碁Μ螳 蟾伎 蟆渚レ 給. 谿 螻 一危一 焔 譬給(e.g. ろ 一危) 覈 覈 覲企 覃覈襴 襷螻 螻 豸′ 襴暑. 襷り覲 n_estimators(碁Μ 螳, 覃覈襴 螳 螻), max_features(覲 轟煙 螳) max_features 蠍磯蓋螳, 蠏 n_features, 覿襯 sqrt(n_features) n_estimators螳 伎襦, max_features螳 襦 螻朱 譴 譴. 螳讌豺蠍: max_depth, max_leaf_nodes, min_samples_leaf, min_samples_split 43
  • 45. 蠏碁誤 覿ろGradient Boosting 蠏 蟆一 碁Μ(DecisionTreeRegressor)襯 蠍磯朱 るジ 觚 螻襴讀 蠏 覿襯 覈 螳ロ. ろ語 襴 覓伎 螳讌豺蠍磯ゼ 螳蟆 . れ 危 碁Μ(渚 糾鍵)襯 伎 碁Μ れ姶襯 覲伎襦 れ 碁Μ 燕. 蠏 : 豕螻煙れ姶 ろ, 覿襯 : 襦讌ろ ろ 蟆曙 螳覯gradient descent (learning_rate 襷り覲 譴, 蠍磯蓋螳 0.1) 襾語 蟆曙磯(e.g. 貂蠍Kaggle) 襷 . ろ 覲企 襷り覲 譟郁 覩手讌襷 譟郁 焔レ . 45
  • 47. 蠏碁誤 覿ろ 轟 譴 47 ろろ語 襴 朱 轟煙 0 給.
  • 48. ル螻 襷り覲 レ ろ碁慨 豸 螳 觜殊狩蟇磯 焔レ 譽伎 . 轟 れ 譟一 螻 伎, 一 轟煙 螳ロ. 譯 蠏覈 蟆曙 覿一襴螳 螳ロ xgboost螳 觜襯願 蠍磯 曙給. 螻谿 一危一 讌 給. 襷り覲 覩手, 螳 蟇碁暑. 襷り覲 n_estimators, learning_rate, max_depth(<=5) learning_rate 豢覃 覲旧°螳 焔レ 襴る 襷 碁Μ螳 . ろ語 襴 n_estimators襯 蟆覃 螻朱 螳レ 讌. 螳 覃覈襴 螳 n_estimators襯 襷豢螻 learning_rate朱 譟一. 48

Editor's Notes

  • #4: 貊れ る0 伎 豈 蟆 譟危螻 給. j鍵 蠎 豈 蟆 讌襷 襷豢 覲伎 覲碁る 蟆 .
  • #6: 襦讌ろ 蠏 蟆曙 蠏 襷谿螳讌襦 覲危 1, 0 朱 / 企るゼ 讌襷 襦讌ろ 蠏 觜 螻一 螳蟆 襷るり / 企るゼ 1/-1襦 覦蠖.
  • #7: http://fa.bianp.net/blog/2014/surrogate-loss-functions-in-machine-learning/
  • #8: huber loss: SGDClassifier
  • #9: 企 襦讌ろ 蠏伎襷 覿襯 螻襴讀.
  • #10: -log(e^-x+1) if x < 0, x log(e^x+1) 殊 螳 讀螳 螳譴豺 譴企れ襷 襦讌ろ 蠏 C 讀螳覃 蠏螳 伎 螳譴豺螳 讀螳. http://stats.stackexchange.com/questions/235514/how-do-i-get-cost-function-of-logistic-regression-in-scikit-learn-from-log-likel http://www.holehouse.org/mlclass/12_Support_Vector_Machines.html
  • #11: 轟煙 螳螳 1000螳 譬襯 襷れ 企るゼ 蟲覿 れ matplotlib contour 襦 蟆所襯 讌 蟆一 蟆所, 蟆所 讓曙 企 1, 蟆所 讓曙 企 0 襦 一危郁 企 豺 磯 企り 蟆一.
  • #12: C less 蠏, 豕 覿襯襯 碁ロ. C more 蠏, 螳譴豺 w 襯 0 朱 襷. https://martin-thoma.com/svm-with-sklearn/, http://scikit-learn.org/stable/modules/svm.html C-Support Vector Classification(CLASSIFICATION SVM TYPE 1, http://www.statsoft.com/Textbook/Support-Vector-Machines) rbf(蠍磯蓋螳), poly 煙 貉る 觜 覿襯襯 . 蠏襯 LinearSVR, SVR 企る .
  • #14: mean perimeter : 蠏 C 螳 磯 襴覩誤一 覿瑚 覦. 螳 覩 蟆曙. texture_error 譬螻 蟯 . 覈語 螳螳 襷り覲襯 覿伎 .
  • #16: one-vs-all 手 覿襴 http://stats.stackexchange.com/questions/31714/logistic-regression-for-multiclass
  • #18: 蠏碁 譴 手 企至 覿襯蟾?
  • #19: 譴 覿 覈語 螳蟾 手 覿覿 企 0朱 覿襯 蠏碁 伎姶 一危一 蟆 襷れ predict() 覃襦 蟆一蟆所襯 襷
  • #20: Stochastic Average Gradient Descent(襯 蠏 蟆曙 螳覯)
  • #33: 碁Μ 螳: 螻襴讀 豸 危 , 觜覓瑚蟆 る蠍 譬 蟾願 譟郁襷 蟾企 襷れ ロ伎 襷 一危郁 襯企 蟆暑襯 讌譴伎
  • #34: 覈語 螻 螳 觜 worst_radius 螳 螳 譴 轟: 碁Μ 蠏碁 豌覯讌 碁襦 feature_importance_ 螳 るジ 轟煙 螻 蠍 覓語 worst radius螳 /煙 覩誤讌 蠏 伎 れ レ
  • #35: x[1]襷 讌襷 x[1] る 蟆 企れ 企るゼ 覩誤 蟆
  • #37: 覈 碁Μ 蠍磯 覈語
  • #42: 覿語ろ碁 覓語 碁Μ襷 一危 誤瑚 る 碁Μ 螳螳 覦 豌螳螳 覃 襷れ 覿 蟆一 蟆所螳 襷れ 讌
  • #43: 蠍磯蓋螳朱 100螳 碁Μ , 譯 譬 焔 覦 碁Μ 蟆曙磯慨 襷 轟煙 0 伎 螳 螳讌 worst radius 覲企 worst perimeter螳 譬 轟煙朱 覓伎煙 螳レ煙 螻ろ蟆 覩襦 一危磯ゼ 覲企 蟆 覦朱
  • #44: 碁Μ 螳 襷 襦 譬讌襷 覃覈襴 螳 襷 max_features 螳 朱 螻朱 譴譴
  • #47: 碁Μ 蟾企ゼ 譟一 蟆 螻朱 螻殊朱 襷 給 螳(螻殊)讌襷 焔 螳
  • #48: 蠏碁誤 覿ろ 碁Μ 觜訣蟆 朱 轟煙 覓伎 max_features 蠍磯蓋螳 n_features