際際滷

際際滷Share a Scribd company logo
Introduction to
Machine Learning with Python
2. Supervised Learning(1)
Honedae Machine Learning Study Epoch #2
1
Contacts
Haesun Park
Email : haesunrpark@gmail.com
Meetup: https://www.meetup.com/Hongdae-Machine-Learning-Study/
Facebook : https://facebook.com/haesunrpark
Blog : https://tensorflow.blog
2
Book
伎 殊企襴襯  襾語, 覦伎.
(Introduction to Machine Learning with Python, Andreas
Muller & Sarah Guido 覯.)
覯 1リ骸 2レ 觚襦蠏語 覓企襦 曙  給.
  襴觀磯ゼ 殊語 覲  給.
Github:
https://github.com/rickiepark/introduction_to_ml_with_python/
3
讌 
4
讌 supervised learning
リ骸 豢レ  一危郁   襦 レ  豢レ 豸″.
5
(training, learning)
豸(predict, Inference)
 一危磯ゼ 襷 碁レ ( ).
覿襯classification 蠏regression
覿襯 螳レ  企 企 譴 襯 豸″.
伎 覿襯binary classification :  螳 企 覿襯(ろ, 0-燕企, 1-燕企)
れ 覿襯multiclass classification :  伎 企 覿襯(覿蟒 譬)
語伎 譬襯襯 覿襯(蟲伎 れ 伎 るジ 語願 )
覿覿 襾語 覓語螳 覿襯 覓語.
蠏 一 (れ)襯 豸″.
)蟲, , 譯手碓讌襯 覦朱 郁  豸
 , , 螻襦   豸
豸 螳 覩碁 谿願 蟆 譴讌 給.(磯 豸′ 蟆曙 40,000,001
企 39,999,999 覓語螳 讌 給.)
糾 襷 郁規 給.
6
蠏 - Regression
7
regression toward the mean
 螻Francis Galton
朱, 螻朱, 螻殊
朱generalization
 誤碁 牛 覈語 ろ 誤語  蟆.
(, 覈語 ろ 誤語  朱螳 )
螻朱overfitting
 誤語 覓 襷豢伎  ろ 誤語 焔  .
(, 覈語  誤語 螻朱 )
螻殊underfitting
 誤碁ゼ 豢覿 覦讌 覈詩  誤, ろ 誤語 覈 焔 
. (, 覈語 覓  螻殊 )
8
覓 誤 覈  螻朱
9
45 伎,   覩碁,
危狩讌  螻螳
碁ゼ  蟆企.
誤 螻螳 一危磯ゼ  碁ゼ る  豸″り .
襷 10,000螳
一危郁 覈 
譟郁唄 襷譟燕る?
覓 螳 覈  螻殊
10
讌  螻螳
覈 碁ゼ  蟆企.
覈 覲旧° 螻′
11
一危一  覩手
螻襴讀 豌 れ姶
(y = ax + b  b螳 )
ク-覿 碁企ろbias-variance tradeoff手 覿襴.
一危一螻 覲旧° 蟯螻
一危郁 襷朱 れ煙 貉れ 覲旧″ 覈語 襷  給.
10,000覈 螻螳 一危一 45 伎,   覩碁, 危狩讌  螻螳
碁ゼ ろる 伎覲企  襤  覈語企手   給.
12

ろ
(less complex) (more complex)
一危一
forge 一危一
語朱 襷 伎 覿襯 一危一, 26螳 一危 誤, 2螳 
13
一危一
wave 一危一
語朱 襷 蠏 一危一, 40螳 一危 誤, 1螳 
14
一危一
れ 覦 一危一
Malignant(1)/Benign(0) 伎 覿襯, load_breast_cancer(),
569螳 一危 誤, 30螳 轟
覲伎ろ 譯狩螳蟆 一危一
1970 覲伎ろ 譯朱 譯狩 蠏螳蟆 豸, 蠏 一危一, load_boston(),
506螳 一危 誤, 13螳 轟
 覲伎ろ 譯狩螳蟆 一危一
轟焔朱Μ 螻燕 襦 轟煙 襷(轟 螻牛, 4, PolynomialFeatures),
mglearn.datasets.load_extended_boston(), 104螳 一危 誤
譴覲 譟壱 螻旧 

= +1

企襦 13
2
= 13+21
2
=
14!
2! 142 !
= 91
15
positive, negative
轟煙 螻煙 襷れ伎
load_breast_cancer()
16
(, 轟)
Bunch 企れ 
蟾
load_boston()
17
 13螳 轟
ル 104螳 轟
 豈 襯 伎 襷
ル 一危一
k-豕蠏殊 伎 覿襯
18
k-豕蠏殊 伎 覿襯
襦 一危 誤語 螳蟾 伎 譴 れ 企majority voting襯 豸″.
forge 一危一 1-豕蠏殊 伎, 3-豕蠏殊 伎 覃 れ螻 螳給.
19
豸′ 覦
k-NN 覿襯蠍
20
 誤語 ろ 誤碁 覿襴
覈 螳豌 
覈 螳
覈
KNeighborsClassifier 覿
21
more complex
螻朱
less complex
螻殊
殊 螳蟆朱 燕 誤語
豸 螳 伎 蟆一 蟆所 蟲覿
k-NN 覿襯蠍一 覈 覲旧°
22
more complex less complex
豕
螻朱
螻殊
k-豕蠏殊 伎 蠏
23
k-豕蠏殊 伎 蠏
襦 一危 誤語 螳蟾 伎 豢リ 蠏 豸′ .
wave 一危一(1谿) 1-豕蠏殊 伎, 3-豕蠏殊 伎 覃 れ螻 螳給.
24
ろ 一危
豸
k-NN 豢蠍
25
 誤語 ろ 誤碁 覿襴
覈 螳豌 
覈 螳
覈
蠏 覈語 螳
蠏 覈語 score()  蟆一 螻 2
襯 覦
2 = 1 
=0

   2
=0

   2 : 蟾螳 : 蟾螳 蠏 : 覈語 豸
覯 豸: 蟾螳==豸  覿==0, 2 = 1
蟾螳 蠏  豸: 覿覿覈, 2 = 0 
蠏 覲企 蟆 豸″覃 螳   
26
KNeighborsRegressor 覿
27
more complex
螻朱
less complex
螻殊
ル螻 襷り覲
譴 襷り覲
誤 伎 蟇磯Μ 豸′ 覦覯: metric 襷り覲 蠍磯蓋螳 minkowski 願
p 襷り覲 蠍磯蓋螳 2  ,
企Μ 蟇磯Μ =0

1
()
 2
() 2
伎 (n_neighbors): 3螳 5螳(蠍磯蓋螳)螳 覲危ク
レ 危危蠍 , 豪 譟一   , 豌  覈碁 ,
觜蟲 覈語 觜襯願 襷  
 轟 螳  螳螳 覃 豸′ 襴,
一危 豌襴 譴(れ殊  轟煙 レ 譴伎 朱る 蠏 ),
(覦炎 伎) 襷 轟煙 螳讌 一危一  讌 ,
 一危一  讌 
28
 覈 - 蠏
29
蠏  覈
 (linear model)襯  豸
 =  0   0 +  1   1 +  +      + 
 = 0  0 + 1  1 +  +      + 
轟 :  0 ~  轟 螳: (p + 1)
覈 朱誤model parameter:  0 ~  , 
 : 螳譴豺weight, 螻coefficient, ,  e.g. model.coef_
 : クintercept, クbias e.g. model.intercept_
危狩朱誤hyperparameter: 給讌 螻 讌 れ 譯殊伎 (襷り覲)
e.g. KNeighborsRegressor n_neighbors
30
螳 讌
襷り覲 蟲覿
wave 一危一(轟 1螳)朱 觜蟲
31
 覈 k-豕蠏殊 伎
 =  0   0 + 
k-豕蠏殊 伎 觜
 覲伎伎襷
轟煙 襷朱 ろ
螻朱 蠍 曙給.
 覈語 轟煙  螳企 覃,  螳 伎 豐覃hyperplane .
豕螻焔OLS, ordinary least squares
蠏螻煙れ姶mean square error(MSE =
1
 =0

  
2)襯 豕
LinearRegression: 蠏覦normal equation  =  
 1
 
  w, b襯 蟲
32
 誤語 ろ 誤碁 覿襴
覈 螳
覈 螳豌  & 
螻殊(1谿 一危一企  襦)
螳譴豺 轟煙 螳襷
豕螻焔OLS, ordinary least squares
覲伎ろ 譯狩 螳蟆 一危一, 506螳 , 104螳 轟
33
 誤語 ろ 誤語 R2  谿願 
轟煙 襷 螳譴豺螳 覿伎(104螳 谿) 螻朱 
狩 蠍磯蓋 襷り覲襦
襴酔ridge
 覈(MSE 豕) + 螳譴豺 豕(螳ロ 0 螳蟾蟆)
L2 蠏regularization : L2 碁norm 螻  2
2
= =1

ゐ
2
觜 cost function :  +  =1

ゐ
2
 loss function, 覈 objective function 手 覿襴
手 覃 郁 貉れ ゐ螳 語 (螻朱 覦讌)
ゐ螳 0 螳蟾蟆 讌襷 0 讌 
34
豕螳
penalty
財
財
Ridge 企
35
(螳譴豺螳 蠏) 螻朱 譴螻
ろ 誤 螳 豪
蠍磯蓋螳 alpha=1.0
曙 覓 貉れ
螻殊 alpha=0.00001
襦 覃 觜訣伎
豕螻焔
Ridge.coef_
36
alpha 螳 磯ジ coef_ 螳 覲
蠏  一危一 蟯螻
覲伎ろ 譯狩螳蟆 一危一 糾魁 : LinearRegression vs Ridge(alpha=1)
37
 誤語 
襴酔螳  
ろ 誤語 
襴酔螳  
一危郁  
LinearRegression  
R2 < 0
(4~10 samples per weight)
一危郁 襷朱
蠏 螻 螳
(覲旧″ 覈語 螳ロ伎)
一危郁 襷讌覃
螻朱 譴企
殊Lasso
38
 覈(MSE 豕) + 螳譴豺 豕(螳ロ 0朱)
L1 蠏 : L1 碁  1 = =1

ゐ
觜 cost function :  +  =1

ゐ
手 覃 郁 貉れ ゐ螳  語 
ゐ螳 0   (轟  螻)
朱 螻螳 0 覃 覈語 危危蠍 所
譴 轟煙 蠍 曙給.
豕螳
財
財
Lasso
39
alpha=1.0, max_iter=1000
螻殊(蠏螳 覓 ), 4螳 轟焔 
蠏襯 覓 豢覃 LinearRegression螻 觜
譬螳覯coordinate descent
豕螻焔
襴酔 觜
Lasso.coef_
40
alpha 螳 磯ジ coef_ 螳 覲
Ridge vs Lasso
朱朱 襴酔螳 殊覲企 碁
L2 郁 L1 磯慨 碁 (SGD 螳 )
襷 轟 譴 朱襷 譴り 覃 殊
覿螻 危危蠍  覈語   殊
41
ElasticNet
襴酔 殊  蟆壱 (R glmnet)
alpha, l1_ratio 襷り覲襦 L1 蠏 L2 蠏  譟一
 Lasso ElasticNet(l1_ratio=1.0) 
42
 +   1_$
=1

ヰ +
1
2
  1  1_$
=1

ゐ
2
1 =   1_$ 2 =   1  1_$
 = 1 + 2 1_$ =
1
1 + 2
1螻 2 襷豢
殊 1_ratio 譟一

More Related Content

What's hot (20)

5.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 25.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 2
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
Haesun Park
5.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 15.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 1
Haesun Park
3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
Haesun Park
3.unsupervised learing
3.unsupervised learing3.unsupervised learing
3.unsupervised learing
Haesun Park
7.woring with text data
7.woring with text data7.woring with text data
7.woring with text data
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈 [ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈
Haesun Park
2.linear regression and logistic regression
2.linear regression and logistic regression2.linear regression and logistic regression
2.linear regression and logistic regression
Haesun Park
3.neural networks
3.neural networks3.neural networks
3.neural networks
Haesun Park
7.woring with text data(epoch#2)
7.woring with text data(epoch#2)7.woring with text data(epoch#2)
7.woring with text data(epoch#2)
Haesun Park
(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
Haesun Park
4.convolutional neural networks
4.convolutional neural networks4.convolutional neural networks
4.convolutional neural networks
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
Haesun Park
1.introduction(epoch#2)
1.introduction(epoch#2)1.introduction(epoch#2)
1.introduction(epoch#2)
Haesun Park
危結 豕 覲蟆 ろ磯
危結 豕 覲蟆  ろ磯危結 豕 覲蟆  ろ磯
危結 豕 覲蟆 ろ磯
Haesun Park
≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2
Haesun Park
Boosting_suman
Boosting_sumanBoosting_suman
Boosting_suman
suman_lim
襾語 覓 #1-襾語 螳 kNN 螳
襾語  覓 #1-襾語 螳 kNN 螳襾語  覓 #1-襾語 螳 kNN 螳
襾語 覓 #1-襾語 螳 kNN 螳
Terry Cho
5.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 25.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 2
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
Haesun Park
5.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 15.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 1
Haesun Park
3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
[ 襾語 ろ磯 - 語 襾語] 2. 襾語 襦 豌覿 蟾讌
Haesun Park
3.unsupervised learing
3.unsupervised learing3.unsupervised learing
3.unsupervised learing
Haesun Park
7.woring with text data
7.woring with text data7.woring with text data
7.woring with text data
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈 [ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈
Haesun Park
2.linear regression and logistic regression
2.linear regression and logistic regression2.linear regression and logistic regression
2.linear regression and logistic regression
Haesun Park
3.neural networks
3.neural networks3.neural networks
3.neural networks
Haesun Park
7.woring with text data(epoch#2)
7.woring with text data(epoch#2)7.woring with text data(epoch#2)
7.woring with text data(epoch#2)
Haesun Park
(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
Haesun Park
4.convolutional neural networks
4.convolutional neural networks4.convolutional neural networks
4.convolutional neural networks
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
Haesun Park
1.introduction(epoch#2)
1.introduction(epoch#2)1.introduction(epoch#2)
1.introduction(epoch#2)
Haesun Park
危結 豕 覲蟆 ろ磯
危結 豕 覲蟆  ろ磯危結 豕 覲蟆  ろ磯
危結 豕 覲蟆 ろ磯
Haesun Park
≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2
Haesun Park
Boosting_suman
Boosting_sumanBoosting_suman
Boosting_suman
suman_lim
襾語 覓 #1-襾語 螳 kNN 螳
襾語  覓 #1-襾語 螳 kNN 螳襾語  覓 #1-襾語 螳 kNN 螳
襾語 覓 #1-襾語 螳 kNN 螳
Terry Cho

Similar to 2.supervised learning(epoch#2)-1 (20)

Machine learning bysogood
Machine learning bysogoodMachine learning bysogood
Machine learning bysogood
S.Good Kim
求==メ求==梶求午メ求 Ch2
求==メ求==梶求午メ求 Ch2求==メ求==梶求午メ求 Ch2
求==メ求==梶求午メ求 Ch2
HyeonSeok Choi
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
讌 譟
ESM Mid term Review
ESM Mid term ReviewESM Mid term Review
ESM Mid term Review
Mario Cho
Workshop 210417 dhlee
Workshop 210417 dhleeWorkshop 210417 dhlee
Workshop 210417 dhlee
Dongheon Lee
Introduction to SAC(Soft Actor-Critic)
Introduction to SAC(Soft Actor-Critic)Introduction to SAC(Soft Actor-Critic)
Introduction to SAC(Soft Actor-Critic)
Suhyun Cho
HR Analytics - 伎螳レ煙豸°
HR Analytics - 伎螳レ煙豸°HR Analytics - 伎螳レ煙豸°
HR Analytics - 伎螳レ煙豸°
Seong-Bok Lee
Naive ML Overview
Naive ML OverviewNaive ML Overview
Naive ML Overview
Chul Ju Hong
瑚概蟆暑
瑚概蟆暑瑚概蟆暑
瑚概蟆暑
Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴
SANG WON PARK
讌れろ 瑚 螻 一危 蠍磯 覯覓 讌 觜
讌れろ 瑚 螻 一危 蠍磯 覯覓 讌 觜讌れろ 瑚 螻 一危 蠍磯 覯覓 讌 觜
讌れろ 瑚 螻 一危 蠍磯 覯覓 讌 觜
ル 蠍磯蓋 襴 危
ル 蠍磯蓋 襴 危ル 蠍磯蓋 襴 危
ル 蠍磯蓋 襴 危
Hee Won Park
襦磯 覦一磯 ル
襦磯 覦一磯 ル襦磯 覦一磯 ル
襦磯 覦一磯 ル
谿 譯
S.M.Lee, Invited Talk on "Machine Learning-based Anomaly Detection"
S.M.Lee, Invited Talk on "Machine Learning-based Anomaly Detection"S.M.Lee, Invited Talk on "Machine Learning-based Anomaly Detection"
S.M.Lee, Invited Talk on "Machine Learning-based Anomaly Detection"
Network Science Lab, The Catholic University of Korea
Adversarial Attack in Neural Machine Translation
Adversarial Attack in Neural Machine TranslationAdversarial Attack in Neural Machine Translation
Adversarial Attack in Neural Machine Translation
HyunKyu Jeon
ル Tensor flow(skt academy)
ル  Tensor flow(skt academy)ル  Tensor flow(skt academy)
ル Tensor flow(skt academy)
Tae Young Lee
=釈玩_求 メ梶 堰= 釈 過_v2.pptx
=釈玩_求 メ梶 堰= 釈 過_v2.pptx=釈玩_求 メ梶 堰= 釈 過_v2.pptx
=釈玩_求 メ梶 堰= 釈 過_v2.pptx
Donghwan Lee
覲企 襾語
 覲企 襾語 覲企 襾語
覲企 襾語
譯手化
Machine learning bysogood
Machine learning bysogoodMachine learning bysogood
Machine learning bysogood
S.Good Kim
求==メ求==梶求午メ求 Ch2
求==メ求==梶求午メ求 Ch2求==メ求==梶求午メ求 Ch2
求==メ求==梶求午メ求 Ch2
HyeonSeok Choi
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
讌 譟
ESM Mid term Review
ESM Mid term ReviewESM Mid term Review
ESM Mid term Review
Mario Cho
Workshop 210417 dhlee
Workshop 210417 dhleeWorkshop 210417 dhlee
Workshop 210417 dhlee
Dongheon Lee
Introduction to SAC(Soft Actor-Critic)
Introduction to SAC(Soft Actor-Critic)Introduction to SAC(Soft Actor-Critic)
Introduction to SAC(Soft Actor-Critic)
Suhyun Cho
HR Analytics - 伎螳レ煙豸°
HR Analytics - 伎螳レ煙豸°HR Analytics - 伎螳レ煙豸°
HR Analytics - 伎螳レ煙豸°
Seong-Bok Lee
Naive ML Overview
Naive ML OverviewNaive ML Overview
Naive ML Overview
Chul Ju Hong
瑚概蟆暑
瑚概蟆暑瑚概蟆暑
瑚概蟆暑
Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴
SANG WON PARK
讌れろ 瑚 螻 一危 蠍磯 覯覓 讌 觜
讌れろ 瑚 螻 一危 蠍磯 覯覓 讌 觜讌れろ 瑚 螻 一危 蠍磯 覯覓 讌 觜
讌れろ 瑚 螻 一危 蠍磯 覯覓 讌 觜
ル 蠍磯蓋 襴 危
ル 蠍磯蓋 襴 危ル 蠍磯蓋 襴 危
ル 蠍磯蓋 襴 危
Hee Won Park
襦磯 覦一磯 ル
襦磯 覦一磯 ル襦磯 覦一磯 ル
襦磯 覦一磯 ル
谿 譯
Adversarial Attack in Neural Machine Translation
Adversarial Attack in Neural Machine TranslationAdversarial Attack in Neural Machine Translation
Adversarial Attack in Neural Machine Translation
HyunKyu Jeon
ル Tensor flow(skt academy)
ル  Tensor flow(skt academy)ル  Tensor flow(skt academy)
ル Tensor flow(skt academy)
Tae Young Lee
=釈玩_求 メ梶 堰= 釈 過_v2.pptx
=釈玩_求 メ梶 堰= 釈 過_v2.pptx=釈玩_求 メ梶 堰= 釈 過_v2.pptx
=釈玩_求 メ梶 堰= 釈 過_v2.pptx
Donghwan Lee
覲企 襾語
 覲企 襾語 覲企 襾語
覲企 襾語
譯手化

2.supervised learning(epoch#2)-1

  • 1. Introduction to Machine Learning with Python 2. Supervised Learning(1) Honedae Machine Learning Study Epoch #2 1
  • 2. Contacts Haesun Park Email : haesunrpark@gmail.com Meetup: https://www.meetup.com/Hongdae-Machine-Learning-Study/ Facebook : https://facebook.com/haesunrpark Blog : https://tensorflow.blog 2
  • 3. Book 伎 殊企襴襯 襾語, 覦伎. (Introduction to Machine Learning with Python, Andreas Muller & Sarah Guido 覯.) 覯 1リ骸 2レ 觚襦蠏語 覓企襦 曙 給. 襴觀磯ゼ 殊語 覲 給. Github: https://github.com/rickiepark/introduction_to_ml_with_python/ 3
  • 5. 讌 supervised learning リ骸 豢レ 一危郁 襦 レ 豢レ 豸″. 5 (training, learning) 豸(predict, Inference) 一危磯ゼ 襷 碁レ ( ).
  • 6. 覿襯classification 蠏regression 覿襯 螳レ 企 企 譴 襯 豸″. 伎 覿襯binary classification : 螳 企 覿襯(ろ, 0-燕企, 1-燕企) れ 覿襯multiclass classification : 伎 企 覿襯(覿蟒 譬) 語伎 譬襯襯 覿襯(蟲伎 れ 伎 るジ 語願 ) 覿覿 襾語 覓語螳 覿襯 覓語. 蠏 一 (れ)襯 豸″. )蟲, , 譯手碓讌襯 覦朱 郁 豸 , , 螻襦 豸 豸 螳 覩碁 谿願 蟆 譴讌 給.(磯 豸′ 蟆曙 40,000,001 企 39,999,999 覓語螳 讌 給.) 糾 襷 郁規 給. 6
  • 7. 蠏 - Regression 7 regression toward the mean 螻Francis Galton
  • 8. 朱, 螻朱, 螻殊 朱generalization 誤碁 牛 覈語 ろ 誤語 蟆. (, 覈語 ろ 誤語 朱螳 ) 螻朱overfitting 誤語 覓 襷豢伎 ろ 誤語 焔 . (, 覈語 誤語 螻朱 ) 螻殊underfitting 誤碁ゼ 豢覿 覦讌 覈詩 誤, ろ 誤語 覈 焔 . (, 覈語 覓 螻殊 ) 8
  • 9. 覓 誤 覈 螻朱 9 45 伎, 覩碁, 危狩讌 螻螳 碁ゼ 蟆企. 誤 螻螳 一危磯ゼ 碁ゼ る 豸″り . 襷 10,000螳 一危郁 覈 譟郁唄 襷譟燕る?
  • 10. 覓 螳 覈 螻殊 10 讌 螻螳 覈 碁ゼ 蟆企.
  • 11. 覈 覲旧° 螻′ 11 一危一 覩手 螻襴讀 豌 れ姶 (y = ax + b b螳 ) ク-覿 碁企ろbias-variance tradeoff手 覿襴.
  • 12. 一危一螻 覲旧° 蟯螻 一危郁 襷朱 れ煙 貉れ 覲旧″ 覈語 襷 給. 10,000覈 螻螳 一危一 45 伎, 覩碁, 危狩讌 螻螳 碁ゼ ろる 伎覲企 襤 覈語企手 給. 12 ろ (less complex) (more complex)
  • 13. 一危一 forge 一危一 語朱 襷 伎 覿襯 一危一, 26螳 一危 誤, 2螳 13
  • 14. 一危一 wave 一危一 語朱 襷 蠏 一危一, 40螳 一危 誤, 1螳 14
  • 15. 一危一 れ 覦 一危一 Malignant(1)/Benign(0) 伎 覿襯, load_breast_cancer(), 569螳 一危 誤, 30螳 轟 覲伎ろ 譯狩螳蟆 一危一 1970 覲伎ろ 譯朱 譯狩 蠏螳蟆 豸, 蠏 一危一, load_boston(), 506螳 一危 誤, 13螳 轟 覲伎ろ 譯狩螳蟆 一危一 轟焔朱Μ 螻燕 襦 轟煙 襷(轟 螻牛, 4, PolynomialFeatures), mglearn.datasets.load_extended_boston(), 104螳 一危 誤 譴覲 譟壱 螻旧 = +1 企襦 13 2 = 13+21 2 = 14! 2! 142 ! = 91 15 positive, negative 轟煙 螻煙 襷れ伎
  • 17. load_boston() 17 13螳 轟 ル 104螳 轟 豈 襯 伎 襷 ル 一危一
  • 19. k-豕蠏殊 伎 覿襯 襦 一危 誤語 螳蟾 伎 譴 れ 企majority voting襯 豸″. forge 一危一 1-豕蠏殊 伎, 3-豕蠏殊 伎 覃 れ螻 螳給. 19 豸′ 覦
  • 20. k-NN 覿襯蠍 20 誤語 ろ 誤碁 覿襴 覈 螳豌 覈 螳 覈
  • 21. KNeighborsClassifier 覿 21 more complex 螻朱 less complex 螻殊 殊 螳蟆朱 燕 誤語 豸 螳 伎 蟆一 蟆所 蟲覿
  • 22. k-NN 覿襯蠍一 覈 覲旧° 22 more complex less complex 豕 螻朱 螻殊
  • 24. k-豕蠏殊 伎 蠏 襦 一危 誤語 螳蟾 伎 豢リ 蠏 豸′ . wave 一危一(1谿) 1-豕蠏殊 伎, 3-豕蠏殊 伎 覃 れ螻 螳給. 24 ろ 一危 豸
  • 25. k-NN 豢蠍 25 誤語 ろ 誤碁 覿襴 覈 螳豌 覈 螳 覈
  • 26. 蠏 覈語 螳 蠏 覈語 score() 蟆一 螻 2 襯 覦 2 = 1 =0 2 =0 2 : 蟾螳 : 蟾螳 蠏 : 覈語 豸 覯 豸: 蟾螳==豸 覿==0, 2 = 1 蟾螳 蠏 豸: 覿覿覈, 2 = 0 蠏 覲企 蟆 豸″覃 螳 26
  • 28. ル螻 襷り覲 譴 襷り覲 誤 伎 蟇磯Μ 豸′ 覦覯: metric 襷り覲 蠍磯蓋螳 minkowski 願 p 襷り覲 蠍磯蓋螳 2 , 企Μ 蟇磯Μ =0 1 () 2 () 2 伎 (n_neighbors): 3螳 5螳(蠍磯蓋螳)螳 覲危ク レ 危危蠍 , 豪 譟一 , 豌 覈碁 , 觜蟲 覈語 觜襯願 襷 轟 螳 螳螳 覃 豸′ 襴, 一危 豌襴 譴(れ殊 轟煙 レ 譴伎 朱る 蠏 ), (覦炎 伎) 襷 轟煙 螳讌 一危一 讌 , 一危一 讌 28
  • 29. 覈 - 蠏 29
  • 30. 蠏 覈 (linear model)襯 豸 = 0 0 + 1 1 + + + = 0 0 + 1 1 + + + 轟 : 0 ~ 轟 螳: (p + 1) 覈 朱誤model parameter: 0 ~ , : 螳譴豺weight, 螻coefficient, , e.g. model.coef_ : クintercept, クbias e.g. model.intercept_ 危狩朱誤hyperparameter: 給讌 螻 讌 れ 譯殊伎 (襷り覲) e.g. KNeighborsRegressor n_neighbors 30 螳 讌 襷り覲 蟲覿
  • 31. wave 一危一(轟 1螳)朱 觜蟲 31 覈 k-豕蠏殊 伎 = 0 0 + k-豕蠏殊 伎 觜 覲伎伎襷 轟煙 襷朱 ろ 螻朱 蠍 曙給. 覈語 轟煙 螳企 覃, 螳 伎 豐覃hyperplane .
  • 32. 豕螻焔OLS, ordinary least squares 蠏螻煙れ姶mean square error(MSE = 1 =0 2)襯 豕 LinearRegression: 蠏覦normal equation = 1 w, b襯 蟲 32 誤語 ろ 誤碁 覿襴 覈 螳 覈 螳豌 & 螻殊(1谿 一危一企 襦) 螳譴豺 轟煙 螳襷
  • 33. 豕螻焔OLS, ordinary least squares 覲伎ろ 譯狩 螳蟆 一危一, 506螳 , 104螳 轟 33 誤語 ろ 誤語 R2 谿願 轟煙 襷 螳譴豺螳 覿伎(104螳 谿) 螻朱 狩 蠍磯蓋 襷り覲襦
  • 34. 襴酔ridge 覈(MSE 豕) + 螳譴豺 豕(螳ロ 0 螳蟾蟆) L2 蠏regularization : L2 碁norm 螻 2 2 = =1 ゐ 2 觜 cost function : + =1 ゐ 2 loss function, 覈 objective function 手 覿襴 手 覃 郁 貉れ ゐ螳 語 (螻朱 覦讌) ゐ螳 0 螳蟾蟆 讌襷 0 讌 34 豕螳 penalty 財 財
  • 35. Ridge 企 35 (螳譴豺螳 蠏) 螻朱 譴螻 ろ 誤 螳 豪 蠍磯蓋螳 alpha=1.0 曙 覓 貉れ 螻殊 alpha=0.00001 襦 覃 觜訣伎 豕螻焔
  • 37. 蠏 一危一 蟯螻 覲伎ろ 譯狩螳蟆 一危一 糾魁 : LinearRegression vs Ridge(alpha=1) 37 誤語 襴酔螳 ろ 誤語 襴酔螳 一危郁 LinearRegression R2 < 0 (4~10 samples per weight) 一危郁 襷朱 蠏 螻 螳 (覲旧″ 覈語 螳ロ伎) 一危郁 襷讌覃 螻朱 譴企
  • 38. 殊Lasso 38 覈(MSE 豕) + 螳譴豺 豕(螳ロ 0朱) L1 蠏 : L1 碁 1 = =1 ゐ 觜 cost function : + =1 ゐ 手 覃 郁 貉れ ゐ螳 語 ゐ螳 0 (轟 螻) 朱 螻螳 0 覃 覈語 危危蠍 所 譴 轟煙 蠍 曙給. 豕螳 財 財
  • 39. Lasso 39 alpha=1.0, max_iter=1000 螻殊(蠏螳 覓 ), 4螳 轟焔 蠏襯 覓 豢覃 LinearRegression螻 觜 譬螳覯coordinate descent 豕螻焔 襴酔 觜
  • 41. Ridge vs Lasso 朱朱 襴酔螳 殊覲企 碁 L2 郁 L1 磯慨 碁 (SGD 螳 ) 襷 轟 譴 朱襷 譴り 覃 殊 覿螻 危危蠍 覈語 殊 41
  • 42. ElasticNet 襴酔 殊 蟆壱 (R glmnet) alpha, l1_ratio 襷り覲襦 L1 蠏 L2 蠏 譟一 Lasso ElasticNet(l1_ratio=1.0) 42 + 1_$ =1 ヰ + 1 2 1 1_$ =1 ゐ 2 1 = 1_$ 2 = 1 1_$ = 1 + 2 1_$ = 1 1 + 2 1螻 2 襷豢 殊 1_ratio 譟一

Editor's Notes

  • #4: 貊れ る0 伎 豈 蟆 譟危螻 給. j鍵 蠎 豈 蟆 讌襷 襷豢 覲伎 覲碁る 蟆 .
  • #7: 企り 譬 企るゼ 襷 蟆 螻 牛螻 . ろ 覃殊 蟆曙一 ろ 覃殊 企り
  • #8: 19瑚鍵 覦 螻伎 郁規 り 覿覈 企れ り 蠏 螳蟾讌. 郁 蟯螻襯 螻 一危一 狩 覦 蠏 覿襴. http://blog.minitab.com/blog/statistics-and-quality-data-analysis/so-why-is-it-called-regression-anyway
  • #10: 100% れ企讌襷 るジ 螳ロ 蠏豺 襷 66, 52, 53, 58 螻螳 碁ゼ 磯る 螳ロ. 讀 螻朱. 誤語 100% 覩 襦 一危一 襷 .
  • #11: 覓 螳 覈語伎伎 螻殊 .
  • #16: PolynomialFeatures
  • #23: 伎 螳 企 襦 覈語 伎螻 誤語 企り讌襷 ろ 誤語 手 覈語 覓 伎覃 ろ 誤語 焔レ ろ 讌
  • #27: https://stats.stackexchange.com/questions/12900/when-is-r-squared-negative https://stats.stackexchange.com/questions/183265/what-does-negative-r-squared-mean
  • #29: 伎螳 蟇磯Μ襯 螻壱 轟 螳 覯螳 るゴ覃 轟煙 レ 覦, k-NN 轟煙 螳 れ殊 螳讌襦 蠏 蟆 覲危 豸′ 襴螻 襷 轟煙 豌襴讌 覈詩 覈語 覈語
  • #31: sklearn coef_ 煙 牛 螳譴豺襯 伎 w襯 , 貉危 伎語 讓曙 theta, 糾讓曙 beta 讀蟆
  • #32: 蠏 60螳 , k-NN 40螳 覈: 轟煙 讌, 螳 覃, 螳 伎 豐覃(hyperplane) 讌 曙 襷螻 觜れ朱 覲伎伎襷 轟煙 襷 蟆曙 襷れ 螳ロ 焔レ 覦
  • #33: coef_: 螳譴豺, 螻, 轟 螳 襷 intercept_: ク, ク, れ螳 _ 覩 誤語 ろ 誤語 焔レ 觜蟲 朱伎 觜件螻殊 wave 1谿企 螻朱蠍 企れ
  • #35: ろ, 觜, 覈 手係譯 轟覯(Lagrange multiplier)企朱 豕 覓語 願屋 螳讌 覦覯企. 蠏碁殊 螳 螳覃 曙^蟇 伎 螳譴豺螳 貉れ螻 螳 讀螳覃 曙^蟇 譬 螳譴豺螳 讌. (http://m.blog.naver.com/fantajeon/80171071356)曙 豕 覓語, 覓語襯 蠍 覓語襦 覲 蠍磯 譬譬. 企 覓語襯 primary problem( 覓語)願, 覲 覓語襯 dual problem企手 . 覲 覦覯 Lagrangian dual problem, Wolfe dual problem, Fenchel dual problem . 覲危 襷 Lagrangian dual problem 曙 覈 (object function) 豢螳 蠍 , 0 襦 覲(了) Lagrange multipliers襯 Lagrangian 襷血朱 覲 蟆企. 蠏碁Μ螻 覓語 覲(primal variables) 企ゼ 谿剰鍵 , dual problem 豕螳 企ゼ 谿城. 企 企 覲(primal variable)襯 dual variables 覿襴 Lagrange multiplierれ 襦 螻牛. 蠏碁, 覲 覓語 曙 dual variables 蟯 object function 豕 . 朱朱 primal problem螻 dual problem 豕 螳 螳 . 企 願 duality gap企.* duality gap: 伎 dual 伎 谿( 0 覲企 蟇磯 螳). ==> strong duality襯 襷譟燕る, duality gap 0企( 豢覿 蟯螻). 觜訣 :relaxation - 企れ 覓語襯 蠍 所 蠏殊 蟆.
  • #36: 1) LinearRegression覲企 Ridge螳 朱 覈語
  • #37: alpha=10 -3~3 伎 豺讌襷 1, 0.1 襦 螳襦 貉れ. LinearRegression 蠏螳 蠏碁襯 願
  • #38: 覦覲 螻襴讀 螻′ https://stats.stackexchange.com/questions/116132/regression-with-very-small-sample-size https://stats.stackexchange.com/questions/10079/rules-of-thumb-for-minimum-sample-size-for-multiple-regression
  • #39: L1 碁 觜 豢螳 蠏. |w| < t 觜螳 豕 螳譴豺襯 谿城. t 螳 蟯螻 一危 譟伎企.(https://en.wikipedia.org/wiki/Lasso_(statistics)#Basic_form) 蠏碁殊 螳 螳覃 曙^蟇 伎 螳譴豺螳 貉れ螻 螳 讀螳覃 曙^蟇 譬 螳譴豺螳 讌.
  • #40: ElasticNet 企れ L2 蠏螳 觜讌 蟆 Lasso ElasticNet 譬螳覯 覦覲旧 旧 . alpha螳 譴企る 螳譴豺螳 る 螳 螳 企覩襦 max_iter襯 れ殊伎
  • #41: 蠍磯蓋螳 alpha=1 覿覿 0 0.01企 襷 螻螳 0 (0.1 襴酔 觜訣) 0.0001 蟒 螳