際際滷

際際滷Share a Scribd company logo
Introduction to
Machine Learning with Python
2. Supervised Learning(3)
Honedae Machine Learning Study Epoch #2
1
Contacts
Haesun Park
Email : haesunrpark@gmail.com
Meetup: https://www.meetup.com/Hongdae-Machine-Learning-Study/
Facebook : https://facebook.com/haesunrpark
Blog : https://tensorflow.blog
2
Book
伎 殊企襴襯  襾語, 覦伎.
(Introduction to Machine Learning with Python, Andreas
Muller & Sarah Guido 覯.)
覯 1リ骸 2レ 觚襦蠏語 覓企襦 曙  給.
  襴觀磯ゼ 殊語 覲  給.
Github:
https://github.com/rickiepark/introduction_to_ml_with_python/
3
貉る  覯″ 襾語
4
Linear SVM
5
蟆一 覃伎 蠍一瑚鍵襯 譴 襷讌
豕蠍  w襯 豕
襷讌 覦磯ゼ  覲襯 豕
螳 epsilon 伎 襷讌
豕蠍  w襯 豕
觜 轟
6
貉る 蠍磯kernel trick
企 轟煙 豢螳伎狩 讌 覿覿覈螻 襷 轟煙 豢螳覃 一 觜 貉れ
貉る  覿襯企 豪 襯  一危 誤 螳 蟇磯Μ襯 螻壱
一危 誤語 轟煙 螻谿 襷ろ 蟆 螳 螻朱ゼ 詞
ろ 貉る
xa = 1, 2 ,   = 1, 2 朱 (   )2 = (1 1 + 2 2)2 =
1
2
1
2
+ 21 1 2 2 + 2
2
2
2
= 1
2
, 21 2, 2
2
 (1
2
, 21 2, 2
2
)
RBFradial basis function 貉る
exp(     
2
),  レ朱 蠍 螳:  =0
   

!
覓危 轟 螻糾朱 襷ろ 螻, 螻谿 襦 轟 譴煙 伎
7
SVM 危危蠍
貉る 蠍磯  SVM 貉る SVM 轟 蠏碁 SVM朱 覿襴.
Scikit-Learn SVC, SVR 企るゼ 螻牛.
企 蟆所 豺 一危 誤碁ゼ
 覯″磯 覿襴.
RBF 貉る 螳一Gaussian 貉る企手 覿襴.
8企Μ 蟇磯Μ
貉る (gamma), 0
~
= 1~0
剰  襦   覯 貉れ
 =
1
22  襯 貉る 企 覿襴
exp(     
2
)
SVC + forge dataset
9
 覯″
襷り覲 
10
small gamma
less complex
large gamma
more complex
small C
 , 螻殊
large C
 , 螻朱
SVC + cancer dataset
11
C=1, gamma=1/n_features
螻朱
cancer 一危一
一危 れ
SVM 轟煙 覯
蟆 覩手
一危 豌襴
MinMaxScaler :
 min()
max  min()
, 0 ~ 1 企 譟一
12
SVC + 豌襴 一危
13
豌襴  ろ 螻殊 .
曙
ル螻 襷り覲
レ
螳ロ覃  譬襯 一危一 螳ロ.
轟煙   覲旧″ 蟆一 蟆所 襷(貉る 碁Ν).
轟煙 襷   .
SVC/SVR(libsvm), LinearSVC/LinearSVR(liblinear)

 襷 蟆曙  螳 襴螻 覃覈襴襯 襷 (>100,000).
一危 豌襴 襷り覲 覩手.( ろ, 蠏碁誤 覿ろ)
覿蠍 企糾 觜覓瑚蟆 る蠍 企旧給.
襷り覲
C, gamma, coef0(ろ, 蠏碁企), degree(ろ)
: 1  2, :  1  2 +  
, : tanh( 1  2 + ) 14
蟆暑neural network
15
殊碁perceptron
1957  襦觚狩瑚 覦給.
譬譬 企 ろ語襯 覃磯伎 殊碁multilayer perceptron朱 覿襴.
危結一 sklearn.linear_model.Perceptron 企るゼ 螻牛り 0.18 覯
MLPClassifier, MLPRegressor 豢螳給.
16 伎
豢 伎
 覈語 朱
 =  0   0 +  1   1 +  +      + 
17
螳譴豺

蟆暑 蠏碁殊 クレ
讌  蟆曙郁 譬譬
給.
れ元 殊碁
h 0 =  0,0   0 +  1,0   1 +  2,0   2 +  3,0   3 +  0
h 0 =  0,1   0 +  1,1   1 +  2,1   2 +  3,1   3 +  1
h 0 =  0,2   0 +  1,2   1 +  2,2   2 +  3,2   3 +  2
 =  0  [0] +  1   1 +  2   2 + 
18
Naming
 郁屋 企 ろ語
(Fully Connected Neural Network)
伎 ろ語
(Dense Network)
覃 伎 殊碁
(Multi-Layer Perceptron)
朱  企 ろ語
(Feed Forward Neural Network)
 
(Deep Learning)
19
企 轟 unit朱 覿襴暑.
(覓殊   蟯 給)
れ元 殊碁
h 0 = tanh( 0,0   0 +  1,0   1 +  2,0   2 +  3,0   3 +  0 )
h 0 = tanh( 0,1   0 +  1,1   1 +  2,1   2 +  3,1   3 +  1 )
h 0 = tanh( 0,2   0 +  1,2   1 +  2,2   2 +  3,2   3 +  2 )
 =  0  [0] +  1   1 +  2   2 + 
20
伎覿襯 蟆曙 蠏碁企
れ覿襯 蟆曙 碁Д  
觜 燕
觜 
襦讌ろ 蠏 襷谿螳讌襦 襦讌ろ 觜 (伎覿襯) 襦れ碁
觜 (れ覿襯)襯 .
覈 螳 觜企襦 豕螳 伎朱 螻壱讌 覈詩 蟆曙 螳覯gradient
descent 螻伎 螻襴讀 讀蟆 .
螳 螳譴豺 w  觜 襯 覩碁 蠍一瑚鍵 讓曙朱 譟郁(learning_rate)
企.
觜 襯 讌 w  覩碁  豌伎碁0 伎 覩碁螳(蠏碁誤)
 螻燕願(backpropagation)
21

=1

 
 

=
燕 activation function
  螳譴豺  蟆郁骸 觜煙 譯殊
襭ReLU, 危朱骸襴 tanh, 蠏碁企sigmoid
22
蠍一瑚鍵螳 0 螳蟾讌.
x>0 蠏碁誤碁 1
x=0 (sub)蠏碁誤碁 0
x<0 蠏碁誤碁 0
( 覲譬 煙)


=
MLPClassifier + two_moons
23
hidden_layer_sizes=[100],
activation=relu
Limited BFGS
 危 覦覯
  螳 = 10
24
伎 豢螳, tanh 燕 
25
L2 蠏 襷り覲 alpha
26
蠍磯蓋螳
 蠏  蠏
蟆暑 覲旧°
豸旧 螳 襷 襦,
豸旧  螳螳 襷 襦,
蠏螳  襦 覲旧°螳 讀螳
覈   襷 豸旧  朱襯 ろ蟆 れ 
襷豺 螳 蟆暑 觚 蟆 螳 襦dropout 蟆暑 螻朱
覦讌  覦覯  scikit-learn 豢螳 
27
 豐蠍壱
覈語   螳譴豺襯 覓伎襦 豐蠍壱
覈語 蠍一 覲旧°螳 朱 レ 覩語  
28
螳譴豺 豐蠍壱 覦覯
Scikit-Learn Glorot 豐蠍壱 覦  螳譴豺 クレ 覈
豐蠍壱.
蠏碁企 : 
2
$+ $$
~ +
2
$+ $$
 蠏 覿
tanh, relu : 
6
$+ $$
~ +
6
$+ $$
 蠏 覿
* Xavier 豐蠍壱
蠏碁企: 賊
6
 $+ $$
tanh: 賊4
6
 $+ $$
relu: 賊 2
6
 $+ $$
29
MLPClassifier + cancer dataset
蟆暑 一危一 覯譯殊 覩手
30
蠏 0願, 覿一 1 譴蠏覿
譴   z 
StandardScaler
MLPClassifier + adam
31
豕 覦覲牛 
(蠍磯蓋螳 200)
solver=adam (Adaptive Moment Estimation)
蟆暑 螳譴豺 蟆
32
覦襦  螳
レ元螻 豸 伎 螳譴豺
豸糾骸 豢レ元 伎 螳譴豺 伎蠍  企旧給.
 譴り
DL framework landscape
33
+
PyTorch
Caffe2
(Python)
lasagna
Python
17 Mar. KDnuggets
Wrapper
ル螻 襷り覲
レ
豢覿 螳螻 一危郁 朱 襷れ 覲旧″ 覈語 襷  給.
譬譬 るジ 螻襴讀  焔レ 覦(煙語, 企語覿襯, 覯 )

一危 豌襴 覩手(覦一 蠏).
伎 一危  蟆曙 碁Μ覈語    給.
襷り覲  襷れ 企旧給(給 覈 ).
Scikit-Learn 貊覲朱convolution企 襴貉る壱recurrent 蟆暑 螻牛讌 給.
襷り覲
solver=[adam, sgd, lbfgs],
sgd 蟆曙 momentum + nesterovs_momentum
alpha(L2 蠏)
34
   蠏   
   蠏
蟆暑 覲旧° 蟠 れ
100螳 轟炎骸 100螳  , 1螳 豢  = 10,100螳 螳譴豺
+ 100螳  螳讌 豸 豢螳  10,000螳 螳譴豺 讀螳
襷 1000螳  螳讌 豸旧企朱 101,000 + 1,000,000 = 1,101,000螳
solver 蠍磯蓋螳 adam朱 一危 れ殊 譟郁 覩手.
("The Marginal Value of Adaptive Gradient Methods in Machine Learning," A. C. Wilson et al. (2017), 
Adam, RMSProp 煙 覲伎譴  蟆郁骸襦 覈覃 覦 蟷 螻ろ伎 .)
lbfgs 伎襷 蠏覈螳  覈語企  一危一 螳 る
蟇碁暑.
sgd momentum螻 nesterov_momentum 旧螻 蟷 .
35
覈覃
覈覃 螻襴讀 伎 蠏碁誤 螳 螳 螳 螳  豕螳
覦レ朱  觜襯願 危蟆 襷.
momentum 襷り覲 殊 殊 螳  .
 +1 =     
+1 =  +  +1
36
learning_ratemomentum
れろ襦 覈覃
れろ襦 覈覃 覈覃 覦朱 讌  蠏碁誤碁ゼ 螻壱 
.
 +1 =      +  
+1 =  +  +1
れ 蟲  蠏碁誤碁ゼ 螻壱  覈覃 覦  覯 
れろ襦 蠏殊螳 蟲.(https://tensorflow.blog/2017/03/22/momentum-nesterov-momentum/ 谿語^)
37
覿襯 覿れ 豢
38
覿襯 覿れ
企 ろ 誤語  豸 企 訖襷  朱 蠏 企れ
讌螳 譴 螳 
覿覿 decision_function 螻 predict_proba 覃  譴  螻牛
39
蟆一 
40
伎 覿襯 decision_function() 覦螳 蠍 (n_samples,)
 =  0   0 +  1   1 +  +      +
蟆一 蟆所 + decision_function
41
豸 襯
predict_proba() 覦螳 蠍 (n_samples, n_classes)
螳  襯 螳 螳讌 企るゼ 豸 企る 
42
蟆一 蟆所 + predict_proba
43
れ 覿襯 + decision_function
覦螳 蠍磯 (n_samples, n_classes)
螳  螳 豸 企り 
44
れ 覿襯 + predict_proba
覦螳 蠍磯 (n_samples, n_classes)
45
 覦 襴
46
螻襴讀 襴
豕蠏殊 伎
 一危一 蟆曙, 蠍磯蓋 覈碁 譬螻 る蠍 .
 覈
豌 覯讌碁  螻襴讀.  一危一 螳. 螻谿 一危一 螳.
企 覯伎
覿襯襷 螳.  覈碁慨  觜襴.  一危一螻 螻谿 一危一 螳.
 覈碁慨  .
蟆一 碁Μ
襷れ 觜襴. 一危 れ 譟一  . 螳蠍 譬螻 る蠍 .
47
 ろ
蟆一 碁Μ 覲企 蟇一  譬 焔レ . 襷れ 願 螳ロ.
一危 れ 譟一  . 螻谿  一危一   襷.
蠏碁誤 覿ろ
 ろ碁慨 譟郁  焔レ 譬.  ろ碁慨 旧 襴 豸′
觜襯願 覃覈襴襯 譟郁 .  ろ碁慨 襷り覲  襷 .
 覯″ 襾語
觜訣 覩語 轟煙朱 企讌 譴螳 蠏覈 一危一  襷.
一危 れ 譟一 . 襷り覲 覩手.
蟆暑
豪  一危一 襷れ 覲旧″ 覈語 襷  .
襷り覲 螻 一危 れ殊 覩手.  覈語 旧 る 蟇碁.
48

More Related Content

What's hot (20)

[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈 [ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈
Haesun Park
3.neural networks
3.neural networks3.neural networks
3.neural networks
Haesun Park
2.linear regression and logistic regression
2.linear regression and logistic regression2.linear regression and logistic regression
2.linear regression and logistic regression
Haesun Park
4.convolutional neural networks
4.convolutional neural networks4.convolutional neural networks
4.convolutional neural networks
Haesun Park
3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
Haesun Park
6.algorithm chains and piplines(epoch#2)
6.algorithm chains and piplines(epoch#2)6.algorithm chains and piplines(epoch#2)
6.algorithm chains and piplines(epoch#2)
Haesun Park
4.representing data and engineering features
4.representing data and engineering features4.representing data and engineering features
4.representing data and engineering features
Haesun Park
5.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 25.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 2
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
Haesun Park
5.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 15.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 1
Haesun Park
(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest
Haesun Park
危結 豕 覲蟆 ろ磯
危結 豕 覲蟆  ろ磯危結 豕 覲蟆  ろ磯
危結 豕 覲蟆 ろ磯
Haesun Park
≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2
Haesun Park
7.woring with text data
7.woring with text data7.woring with text data
7.woring with text data
Haesun Park
7.woring with text data(epoch#2)
7.woring with text data(epoch#2)7.woring with text data(epoch#2)
7.woring with text data(epoch#2)
Haesun Park
襾語 覓 #1-襾語 螳 kNN 螳
襾語  覓 #1-襾語 螳 kNN 螳襾語  覓 #1-襾語 螳 kNN 螳
襾語 覓 #1-襾語 螳 kNN 螳
Terry Cho
1.introduction(epoch#2)
1.introduction(epoch#2)1.introduction(epoch#2)
1.introduction(epoch#2)
Haesun Park
Learning by association
Learning by associationLearning by association
Learning by association
覦 蟾
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
[ 襾語 ろ磯 - 語 襾語] 3. 覿襯
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈 [ 襾語 ろ磯 - 語 襾語] 4. 覈
[ 襾語 ろ磯 - 語 襾語] 4. 覈
Haesun Park
3.neural networks
3.neural networks3.neural networks
3.neural networks
Haesun Park
2.linear regression and logistic regression
2.linear regression and logistic regression2.linear regression and logistic regression
2.linear regression and logistic regression
Haesun Park
4.convolutional neural networks
4.convolutional neural networks4.convolutional neural networks
4.convolutional neural networks
Haesun Park
3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)3.unsupervised learing(epoch#2)
3.unsupervised learing(epoch#2)
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
[ 襾語 ろ磯 - 語 襾語] 6 蟆一 碁Μ
Haesun Park
6.algorithm chains and piplines(epoch#2)
6.algorithm chains and piplines(epoch#2)6.algorithm chains and piplines(epoch#2)
6.algorithm chains and piplines(epoch#2)
Haesun Park
4.representing data and engineering features
4.representing data and engineering features4.representing data and engineering features
4.representing data and engineering features
Haesun Park
5.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 25.model evaluation and improvement(epoch#2) 2
5.model evaluation and improvement(epoch#2) 2
Haesun Park
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語[ 襾語 ろ磯 - 語 襾語] 5.  覯″ 襾語
[ 襾語 ろ磯 - 語 襾語] 5. 覯″ 襾語
Haesun Park
5.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 15.model evaluation and improvement(epoch#2) 1
5.model evaluation and improvement(epoch#2) 1
Haesun Park
(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest(Handson ml)ch.7-ensemble learning and random forest
(Handson ml)ch.7-ensemble learning and random forest
Haesun Park
危結 豕 覲蟆 ろ磯
危結 豕 覲蟆  ろ磯危結 豕 覲蟆  ろ磯
危結 豕 覲蟆 ろ磯
Haesun Park
≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2≡メ メ≡梶梶 メ求メ求 #2
≡メ メ≡梶梶 メ求メ求 #2
Haesun Park
7.woring with text data
7.woring with text data7.woring with text data
7.woring with text data
Haesun Park
7.woring with text data(epoch#2)
7.woring with text data(epoch#2)7.woring with text data(epoch#2)
7.woring with text data(epoch#2)
Haesun Park
襾語 覓 #1-襾語 螳 kNN 螳
襾語  覓 #1-襾語 螳 kNN 螳襾語  覓 #1-襾語 螳 kNN 螳
襾語 覓 #1-襾語 螳 kNN 螳
Terry Cho
1.introduction(epoch#2)
1.introduction(epoch#2)1.introduction(epoch#2)
1.introduction(epoch#2)
Haesun Park
Learning by association
Learning by associationLearning by association
Learning by association
覦 蟾

Similar to 2.supervised learning(epoch#2)-3 (20)

Neural network (perceptron)
Neural network (perceptron)Neural network (perceptron)
Neural network (perceptron)
Jeonghun Yoon
Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴
SANG WON PARK
R.T.Bach
R.T.BachR.T.Bach
R.T.Bach
豌 覦
DP 螻襴讀 覲伎.pdf
DP 螻襴讀  覲伎.pdfDP 螻襴讀  覲伎.pdf
DP 螻襴讀 覲伎.pdf
Ho Jeong Im
ル Tensor flow(skt academy)
ル  Tensor flow(skt academy)ル  Tensor flow(skt academy)
ル Tensor flow(skt academy)
Tae Young Lee
Deep learning overview
Deep learning overviewDeep learning overview
Deep learning overview
螳覩手記 螳覩手記
Lecture 4: Neural Networks I
Lecture 4: Neural Networks ILecture 4: Neural Networks I
Lecture 4: Neural Networks I
Sang Jun Lee
Machine learning linearregression
Machine learning linearregressionMachine learning linearregression
Machine learning linearregression
HaYoungChoi17
Adversarial Attack in Neural Machine Translation
Adversarial Attack in Neural Machine TranslationAdversarial Attack in Neural Machine Translation
Adversarial Attack in Neural Machine Translation
HyunKyu Jeon
覦覦ル ル_蟆暑
覦覦ル  ル_蟆暑覦覦ル  ル_蟆暑
覦覦ル ル_蟆暑
Juhui Park
DL from scratch(6)
DL from scratch(6)DL from scratch(6)
DL from scratch(6)
Park Seong Hyeon
Computational Complexity
Computational ComplexityComputational Complexity
Computational Complexity
skku_npc
瑚概讌, 蠍郁 蠏碁Μ螻 ル
瑚概讌, 蠍郁 蠏碁Μ螻 ル瑚概讌, 蠍郁 蠏碁Μ螻 ル
瑚概讌, 蠍郁 蠏碁Μ螻 ル
Jinwon Lee
ル 蠍磯蓋 襴 危
ル 蠍磯蓋 襴 危ル 蠍磯蓋 襴 危
ル 蠍磯蓋 襴 危
Hee Won Park
[覦] Chap06 糾蠍一
[覦] Chap06 糾蠍一[覦] Chap06 糾蠍一
[覦] Chap06 糾蠍一
譬 豕
neural network 蠍一
neural network 蠍一neural network 蠍一
neural network 蠍一
Dea-hwan Ki
Mlp logical input pattern classfication report doc
Mlp logical input pattern classfication report docMlp logical input pattern classfication report doc
Mlp logical input pattern classfication report doc
Digit recognizer
Digit recognizerDigit recognizer
Digit recognizer
Chul Ju Hong
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
Lee Seungeun
瑚概蟆暑
瑚概蟆暑瑚概蟆暑
瑚概蟆暑
Neural network (perceptron)
Neural network (perceptron)Neural network (perceptron)
Neural network (perceptron)
Jeonghun Yoon
Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴Coursera Machine Learning (by Andrew Ng)_螳襴
Coursera Machine Learning (by Andrew Ng)_螳襴
SANG WON PARK
R.T.Bach
R.T.BachR.T.Bach
R.T.Bach
豌 覦
DP 螻襴讀 覲伎.pdf
DP 螻襴讀  覲伎.pdfDP 螻襴讀  覲伎.pdf
DP 螻襴讀 覲伎.pdf
Ho Jeong Im
ル Tensor flow(skt academy)
ル  Tensor flow(skt academy)ル  Tensor flow(skt academy)
ル Tensor flow(skt academy)
Tae Young Lee
Lecture 4: Neural Networks I
Lecture 4: Neural Networks ILecture 4: Neural Networks I
Lecture 4: Neural Networks I
Sang Jun Lee
Machine learning linearregression
Machine learning linearregressionMachine learning linearregression
Machine learning linearregression
HaYoungChoi17
Adversarial Attack in Neural Machine Translation
Adversarial Attack in Neural Machine TranslationAdversarial Attack in Neural Machine Translation
Adversarial Attack in Neural Machine Translation
HyunKyu Jeon
覦覦ル ル_蟆暑
覦覦ル  ル_蟆暑覦覦ル  ル_蟆暑
覦覦ル ル_蟆暑
Juhui Park
Computational Complexity
Computational ComplexityComputational Complexity
Computational Complexity
skku_npc
瑚概讌, 蠍郁 蠏碁Μ螻 ル
瑚概讌, 蠍郁 蠏碁Μ螻 ル瑚概讌, 蠍郁 蠏碁Μ螻 ル
瑚概讌, 蠍郁 蠏碁Μ螻 ル
Jinwon Lee
ル 蠍磯蓋 襴 危
ル 蠍磯蓋 襴 危ル 蠍磯蓋 襴 危
ル 蠍磯蓋 襴 危
Hee Won Park
[覦] Chap06 糾蠍一
[覦] Chap06 糾蠍一[覦] Chap06 糾蠍一
[覦] Chap06 糾蠍一
譬 豕
neural network 蠍一
neural network 蠍一neural network 蠍一
neural network 蠍一
Dea-hwan Ki
Mlp logical input pattern classfication report doc
Mlp logical input pattern classfication report docMlp logical input pattern classfication report doc
Mlp logical input pattern classfication report doc
Digit recognizer
Digit recognizerDigit recognizer
Digit recognizer
Chul Ju Hong
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
Lee Seungeun
瑚概蟆暑
瑚概蟆暑瑚概蟆暑
瑚概蟆暑

2.supervised learning(epoch#2)-3

  • 1. Introduction to Machine Learning with Python 2. Supervised Learning(3) Honedae Machine Learning Study Epoch #2 1
  • 2. Contacts Haesun Park Email : haesunrpark@gmail.com Meetup: https://www.meetup.com/Hongdae-Machine-Learning-Study/ Facebook : https://facebook.com/haesunrpark Blog : https://tensorflow.blog 2
  • 3. Book 伎 殊企襴襯 襾語, 覦伎. (Introduction to Machine Learning with Python, Andreas Muller & Sarah Guido 覯.) 覯 1リ骸 2レ 觚襦蠏語 覓企襦 曙 給. 襴觀磯ゼ 殊語 覲 給. Github: https://github.com/rickiepark/introduction_to_ml_with_python/ 3
  • 4. 貉る 覯″ 襾語 4
  • 5. Linear SVM 5 蟆一 覃伎 蠍一瑚鍵襯 譴 襷讌 豕蠍 w襯 豕 襷讌 覦磯ゼ 覲襯 豕 螳 epsilon 伎 襷讌 豕蠍 w襯 豕
  • 7. 貉る 蠍磯kernel trick 企 轟煙 豢螳伎狩 讌 覿覿覈螻 襷 轟煙 豢螳覃 一 觜 貉れ 貉る 覿襯企 豪 襯 一危 誤 螳 蟇磯Μ襯 螻壱 一危 誤語 轟煙 螻谿 襷ろ 蟆 螳 螻朱ゼ 詞 ろ 貉る xa = 1, 2 , = 1, 2 朱 ( )2 = (1 1 + 2 2)2 = 1 2 1 2 + 21 1 2 2 + 2 2 2 2 = 1 2 , 21 2, 2 2 (1 2 , 21 2, 2 2 ) RBFradial basis function 貉る exp( 2 ), レ朱 蠍 螳: =0 ! 覓危 轟 螻糾朱 襷ろ 螻, 螻谿 襦 轟 譴煙 伎 7
  • 8. SVM 危危蠍 貉る 蠍磯 SVM 貉る SVM 轟 蠏碁 SVM朱 覿襴. Scikit-Learn SVC, SVR 企るゼ 螻牛. 企 蟆所 豺 一危 誤碁ゼ 覯″磯 覿襴. RBF 貉る 螳一Gaussian 貉る企手 覿襴. 8企Μ 蟇磯Μ 貉る (gamma), 0 ~ = 1~0 剰 襦 覯 貉れ = 1 22 襯 貉る 企 覿襴 exp( 2 )
  • 9. SVC + forge dataset 9 覯″
  • 10. 襷り覲 10 small gamma less complex large gamma more complex small C , 螻殊 large C , 螻朱
  • 11. SVC + cancer dataset 11 C=1, gamma=1/n_features 螻朱 cancer 一危一 一危 れ SVM 轟煙 覯 蟆 覩手
  • 12. 一危 豌襴 MinMaxScaler : min() max min() , 0 ~ 1 企 譟一 12
  • 13. SVC + 豌襴 一危 13 豌襴 ろ 螻殊 . 曙
  • 14. ル螻 襷り覲 レ 螳ロ覃 譬襯 一危一 螳ロ. 轟煙 覲旧″ 蟆一 蟆所 襷(貉る 碁Ν). 轟煙 襷 . SVC/SVR(libsvm), LinearSVC/LinearSVR(liblinear) 襷 蟆曙 螳 襴螻 覃覈襴襯 襷 (>100,000). 一危 豌襴 襷り覲 覩手.( ろ, 蠏碁誤 覿ろ) 覿蠍 企糾 觜覓瑚蟆 る蠍 企旧給. 襷り覲 C, gamma, coef0(ろ, 蠏碁企), degree(ろ) : 1 2, : 1 2 + , : tanh( 1 2 + ) 14
  • 16. 殊碁perceptron 1957 襦觚狩瑚 覦給. 譬譬 企 ろ語襯 覃磯伎 殊碁multilayer perceptron朱 覿襴. 危結一 sklearn.linear_model.Perceptron 企るゼ 螻牛り 0.18 覯 MLPClassifier, MLPRegressor 豢螳給. 16 伎 豢 伎
  • 17. 覈語 朱 = 0 0 + 1 1 + + + 17 螳譴豺 蟆暑 蠏碁殊 クレ 讌 蟆曙郁 譬譬 給.
  • 18. れ元 殊碁 h 0 = 0,0 0 + 1,0 1 + 2,0 2 + 3,0 3 + 0 h 0 = 0,1 0 + 1,1 1 + 2,1 2 + 3,1 3 + 1 h 0 = 0,2 0 + 1,2 1 + 2,2 2 + 3,2 3 + 2 = 0 [0] + 1 1 + 2 2 + 18
  • 19. Naming 郁屋 企 ろ語 (Fully Connected Neural Network) 伎 ろ語 (Dense Network) 覃 伎 殊碁 (Multi-Layer Perceptron) 朱 企 ろ語 (Feed Forward Neural Network) (Deep Learning) 19 企 轟 unit朱 覿襴暑. (覓殊 蟯 給)
  • 20. れ元 殊碁 h 0 = tanh( 0,0 0 + 1,0 1 + 2,0 2 + 3,0 3 + 0 ) h 0 = tanh( 0,1 0 + 1,1 1 + 2,1 2 + 3,1 3 + 1 ) h 0 = tanh( 0,2 0 + 1,2 1 + 2,2 2 + 3,2 3 + 2 ) = 0 [0] + 1 1 + 2 2 + 20 伎覿襯 蟆曙 蠏碁企 れ覿襯 蟆曙 碁Д 觜 燕
  • 21. 觜 襦讌ろ 蠏 襷谿螳讌襦 襦讌ろ 觜 (伎覿襯) 襦れ碁 觜 (れ覿襯)襯 . 覈 螳 觜企襦 豕螳 伎朱 螻壱讌 覈詩 蟆曙 螳覯gradient descent 螻伎 螻襴讀 讀蟆 . 螳 螳譴豺 w 觜 襯 覩碁 蠍一瑚鍵 讓曙朱 譟郁(learning_rate) 企. 觜 襯 讌 w 覩碁 豌伎碁0 伎 覩碁螳(蠏碁誤) 螻燕願(backpropagation) 21 =1 =
  • 22. 燕 activation function 螳譴豺 蟆郁骸 觜煙 譯殊 襭ReLU, 危朱骸襴 tanh, 蠏碁企sigmoid 22 蠍一瑚鍵螳 0 螳蟾讌. x>0 蠏碁誤碁 1 x=0 (sub)蠏碁誤碁 0 x<0 蠏碁誤碁 0 ( 覲譬 煙) =
  • 24. = 10 24
  • 26. L2 蠏 襷り覲 alpha 26 蠍磯蓋螳 蠏 蠏
  • 27. 蟆暑 覲旧° 豸旧 螳 襷 襦, 豸旧 螳螳 襷 襦, 蠏螳 襦 覲旧°螳 讀螳 覈 襷 豸旧 朱襯 ろ蟆 れ 襷豺 螳 蟆暑 觚 蟆 螳 襦dropout 蟆暑 螻朱 覦讌 覦覯 scikit-learn 豢螳 27
  • 28. 豐蠍壱 覈語 螳譴豺襯 覓伎襦 豐蠍壱 覈語 蠍一 覲旧°螳 朱 レ 覩語 28
  • 29. 螳譴豺 豐蠍壱 覦覯 Scikit-Learn Glorot 豐蠍壱 覦 螳譴豺 クレ 覈 豐蠍壱. 蠏碁企 : 2 $+ $$ ~ + 2 $+ $$ 蠏 覿 tanh, relu : 6 $+ $$ ~ + 6 $+ $$ 蠏 覿 * Xavier 豐蠍壱 蠏碁企: 賊 6 $+ $$ tanh: 賊4 6 $+ $$ relu: 賊 2 6 $+ $$ 29
  • 30. MLPClassifier + cancer dataset 蟆暑 一危一 覯譯殊 覩手 30 蠏 0願, 覿一 1 譴蠏覿 譴 z StandardScaler
  • 31. MLPClassifier + adam 31 豕 覦覲牛 (蠍磯蓋螳 200) solver=adam (Adaptive Moment Estimation)
  • 32. 蟆暑 螳譴豺 蟆 32 覦襦 螳 レ元螻 豸 伎 螳譴豺 豸糾骸 豢レ元 伎 螳譴豺 伎蠍 企旧給. 譴り
  • 34. ル螻 襷り覲 レ 豢覿 螳螻 一危郁 朱 襷れ 覲旧″ 覈語 襷 給. 譬譬 るジ 螻襴讀 焔レ 覦(煙語, 企語覿襯, 覯 ) 一危 豌襴 覩手(覦一 蠏). 伎 一危 蟆曙 碁Μ覈語 給. 襷り覲 襷れ 企旧給(給 覈 ). Scikit-Learn 貊覲朱convolution企 襴貉る壱recurrent 蟆暑 螻牛讌 給. 襷り覲 solver=[adam, sgd, lbfgs], sgd 蟆曙 momentum + nesterovs_momentum alpha(L2 蠏) 34 蠏 蠏
  • 35. 蟆暑 覲旧° 蟠 れ 100螳 轟炎骸 100螳 , 1螳 豢 = 10,100螳 螳譴豺 + 100螳 螳讌 豸 豢螳 10,000螳 螳譴豺 讀螳 襷 1000螳 螳讌 豸旧企朱 101,000 + 1,000,000 = 1,101,000螳 solver 蠍磯蓋螳 adam朱 一危 れ殊 譟郁 覩手. ("The Marginal Value of Adaptive Gradient Methods in Machine Learning," A. C. Wilson et al. (2017), Adam, RMSProp 煙 覲伎譴 蟆郁骸襦 覈覃 覦 蟷 螻ろ伎 .) lbfgs 伎襷 蠏覈螳 覈語企 一危一 螳 る 蟇碁暑. sgd momentum螻 nesterov_momentum 旧螻 蟷 . 35
  • 36. 覈覃 覈覃 螻襴讀 伎 蠏碁誤 螳 螳 螳 螳 豕螳 覦レ朱 觜襯願 危蟆 襷. momentum 襷り覲 殊 殊 螳 . +1 = +1 = + +1 36 learning_ratemomentum
  • 37. れろ襦 覈覃 れろ襦 覈覃 覈覃 覦朱 讌 蠏碁誤碁ゼ 螻壱 . +1 = + +1 = + +1 れ 蟲 蠏碁誤碁ゼ 螻壱 覈覃 覦 覯 れろ襦 蠏殊螳 蟲.(https://tensorflow.blog/2017/03/22/momentum-nesterov-momentum/ 谿語^) 37
  • 39. 覿襯 覿れ 企 ろ 誤語 豸 企 訖襷 朱 蠏 企れ 讌螳 譴 螳 覿覿 decision_function 螻 predict_proba 覃 譴 螻牛 39
  • 40. 蟆一 40 伎 覿襯 decision_function() 覦螳 蠍 (n_samples,) = 0 0 + 1 1 + + +
  • 41. 蟆一 蟆所 + decision_function 41
  • 42. 豸 襯 predict_proba() 覦螳 蠍 (n_samples, n_classes) 螳 襯 螳 螳讌 企るゼ 豸 企る 42
  • 43. 蟆一 蟆所 + predict_proba 43
  • 44. れ 覿襯 + decision_function 覦螳 蠍磯 (n_samples, n_classes) 螳 螳 豸 企り 44
  • 45. れ 覿襯 + predict_proba 覦螳 蠍磯 (n_samples, n_classes) 45
  • 47. 螻襴讀 襴 豕蠏殊 伎 一危一 蟆曙, 蠍磯蓋 覈碁 譬螻 る蠍 . 覈 豌 覯讌碁 螻襴讀. 一危一 螳. 螻谿 一危一 螳. 企 覯伎 覿襯襷 螳. 覈碁慨 觜襴. 一危一螻 螻谿 一危一 螳. 覈碁慨 . 蟆一 碁Μ 襷れ 觜襴. 一危 れ 譟一 . 螳蠍 譬螻 る蠍 . 47
  • 48. ろ 蟆一 碁Μ 覲企 蟇一 譬 焔レ . 襷れ 願 螳ロ. 一危 れ 譟一 . 螻谿 一危一 襷. 蠏碁誤 覿ろ ろ碁慨 譟郁 焔レ 譬. ろ碁慨 旧 襴 豸′ 觜襯願 覃覈襴襯 譟郁 . ろ碁慨 襷り覲 襷 . 覯″ 襾語 觜訣 覩語 轟煙朱 企讌 譴螳 蠏覈 一危一 襷. 一危 れ 譟一 . 襷り覲 覩手. 蟆暑 豪 一危一 襷れ 覲旧″ 覈語 襷 . 襷り覲 螻 一危 れ殊 覩手. 覈語 旧 る 蟇碁. 48

Editor's Notes

  • #4: 貊れ る0 伎 豈 蟆 譟危螻 給. j鍵 蠎 豈 蟆 讌襷 襷豢 覲伎 覲碁る 蟆 .
  • #6: https://martin-thoma.com/svm-with-sklearn/
  • #8: http://pages.cs.wisc.edu/~matthewb/pages/notes/pdf/svms/RBFKernel.pdf
  • #24: quasi-newton method 危 覦覯 蠍 覩碁 蟲 蟆 企糾碓 觜 襷
  • #25: 螳襯 譴企 覈語 覲旧°螳 讌 蟆一 蟆所螳 譟郁 豺企讌
  • #35: 豐蠍一 豢覿 螻朱 襦 覲旧″ 覈語 襷り 譟郁 蟆暑 蟲譟磯ゼ 譴願碓 alpha 螳 讀螳貅 蠏襯 螳蟆 朱 焔 レ adam 覿覿 蟆曙一 讌襷 一危 れ殊 覩手 lbfgs 蠏覈螳 覈語企 一危一 螳 襷 蟇碁 sgd 覈覃螻 れろ襦 覈覃 れ 譟一覃 焔レ 蟆 レ 覈覃 伎 蠏碁誤碁ゼ momentum 觜 襷 覦(殊 蟯) nesterovs_momentum true襦 れ覃(蠍磯蓋螳) 螻磯 覈覃 伎 蠏碁誤碁 螻 れ 覈覃
  • #41: 蟆一 覿碁 覲願 企るゼ 蟆一 襴願 蠍一 覩碁ゼ 危危蠍磯 企れ
  • #42: 蟆一 蠏碁 蟆所襯 蟲覿蠍郁 企れ
  • #44: decision_function 覲企 蟆所襯 蟲覿蠍郁