The document titled "Trends Observed Through DeepSeek" explores advancements in AI and reinforcement learning through the lens of DeepSeek's latest developments. It is structured into three main sections:
DeepSeek-V3
Focuses on context length extension, initially supporting 32,000 characters and later expanding to 128,000 characters.
Introduces Mixture of Experts (MoE) architecture, optimizing computational efficiency using a novel Auxiliary-Loss-Free Load Balancing strategy.
Multi-Head Latent Attention (MLA) reduces memory consumption while maintaining performance, enhancing large-scale model efficiency.
DeepSeek-R1-Zero
Explores advancements in reinforcement learning algorithms, transitioning from RLHF to GRPO (Group Relative Policy Optimization) for cost-effective optimization.
Direct Preference Optimization (DPO) enhances learning by leveraging preference-based optimization instead of traditional reward functions.
DeepSeek-R1 and Data Attribution
Discusses a Cold Start approach using high-quality data (SFT) to ensure stable initial training.
Incorporates reasoning-focused reinforcement learning, balancing logical accuracy with multilingual consistency.
Utilizes rejection sampling and data augmentation to refine AI-generated outputs for enhanced usability and safety.
The document provides a detailed analysis of these methodologies, positioning DeepSeek as a key player in AI model development and reinforcement learning.