際際滷

際際滷Share a Scribd company logo
Introduction to EEG-based
Systems with Deep Learning
2018.04.04.
??? (dhkim518@gist.ac.kr)
? Background (??? ?? ??)
? ??? ?? & ?-??? ?????
? ?-??? ?????: ???? 4?? ???? ?? & 7? ?? ?? ??
I. Resting State EEG
? [I-1] Seizure Detection
? [I-2] Gender Prediction
II. Mental-task Imagery
? [II-1] Motor Imagery (Left/ Right)
III. Steady-state Evoked Potential (SSEP)
? [III-1] SSVEP Classification
IV. Event Related Potential (ERP)
? [IV-1] P300 Speller
? [IV-2] Transferring Human Visual Capabilities to Machine
? [IV-3] EEG-in/ Image-out
?? ??
2
? ??? ?? ?? ???? ???? ????? ?????
? ?? ??? ???? ??? ?? ????? ???? ?? ? ???
? `??? ??? ?? ??? ???/ ?? ????? ??? ?????¨
? ??? ?? ?? ?? ??? ? ???? ??? ??? ?????
? ?? ??? ???? ?? ??? ?? ????? ?????? ?????
? ?????? ??? ??? ???
`?? ????? ???? ??? ???? ?? ?? ?? ???¨ ???
? ?? ??, ????, BCI, ??? ?? ?? ??? ?? ? ??
? CNN, LSTM, GAN ?? ??? ??? ?? ??
? Temporal, spectral, spatial feature? ??? ?? ? ??
? ?????
3
? ??? (Electroencephalogram, EEG)
? ? ?? ??? ??? ??? ? ??? ??? ??, ???? ??? ?? ??? ??
? 1929? Hans Berger? ?? ???? ?? ???? ????? [Berger, `29]
? ?-??? ?????(Brain-computer interface, BCI)? ?? ???? ???? ??
? BCI: ??? ???? ???? ??, ?? ??? ???? ??? ?????
? ??? ??? ?? 3??; ??, ???, ??
Background
4
?? ??? ??? ??? ??, ?? ?? ??? ?? ??? ??? ?? ??
??? δ (0.1-4 Hz), θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), γ (30-50 Hz) ?? ?? ??
?? ???? ????? ? ?? ??
[Berger, `29] Berger, H. (1929). Ueber das Elektroenkephalogramm des Menschen. Archiv f┨r Psychiatrie und Nervenkrankheiten, 87(1), 527-570.
International 10-20 System
? ???? ?? ?? ??? ??
? ???? ??? ?? ??
? I. Resting state EEG
? II. Mental-task Imagery
? III. Steady-state Evoked Potential (SSEP)
? IV. Event Related Potential (ERP)
Background
5
Signal ProcessingSignal Acquisition Applications
? Feature extraction/ pattern recognition
? Machine learning based approaches
? Brainwave ? Entertainments (Game)
? Therapy/ healthcare
? Prostheses
? Authentication
? Resting EEG
? ??? ?? ????? ??? ??
? ?? EO (Eye-open)?? EC (Eye-closed) ??? ??? ???? ?? ??
? ???? ??
? [I-1] Seizure Detection
? [I-2] Gender Prediction
I. Resting State EEG
6
. . . .
? ?? ??
? Seizure: ??, ?? ????? ???? ??? ????? ?? ?? ??
? Epilepsy: ??, ??? ??? ??? ??? ?? ???? ??
[I-1] Seizure Detection
7
Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adeli, H. (2017). Deep convolutional neural network for the automated detection and diagnosis of seizure using
EEG signals. Computers in biology and medicine.
? Motivation & Objective
? EEG? ?? ??? ?? ??? ??? ?? ?? ??? ???? ???? ??
? ???? ?? (unprovoked seizure)? 2? ?? ?? ? ??? ????
? ??? ?? ??: `direct visual inspection¨
? ?? ??? ??, ??? ??
`time-consuming¨, `technical artifact¨, `variable results¨, `limitation to identifying abnormality¨
? ??? Computer-aided diagnosis (CAD) ???? ??
? 13-layer Convolutional Neural Network
? Normal, Pre-ictal (?? ?? ??), Seizure 3?? ??? ?? ??? ????
[I-1] Seizure Detection
8
? Dataset
? Public dataset [Andrzejak, `01]
? 3 states: Normal, Pre-ictal, and Seizure
? 100 segments for each class
? ??? EEG segment ??
? Single channel EEG signals
? 23.6 sec, Ns = 4097 (Ns: ?? ?)
? Z-score normalization (mean 0, std. 1)
? Architecture
? 13-layer CNN
[I-1] Seizure Detection
9
[Andrzejak ¨01] R.G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, C.E. Elger, Indications of nonlinear deterministic and finite dimensional structures
in time series of brain electrical activity: dependence on recording region and brain state, Phys. Rev. E 64 (2001) 061907.
Color information
- Kernel size
- Max-pooling
- Fully connected layer
? Experimental Validation
? 10-fold cross-validation
? EEG signals? 10 ???? ???, 9 ?? train ? ?? 1 ?? test ?? ??? 10? ??
? Train ???? 70 % ???? ???? 150 runs* ???? (batch size: 3),
30 % ???? validation? ?? (overfitting ?? ??)
? Results & Discussion
? Accuracy: 88.67%, Sensitivity: 95.00%, and Specificity: 90.00%
? ?? ??? ?? ???? ??? ???? ???
? ? ??? `Novelty¨? EEG ??? Seizure detection? ???? ???? ??? ?
? ? ?? ??? ?? ???? ? ?? ??? ?? ??? ??
[I-1] Seizure Detection
10
*Run: one iteration of the full training set
? Motivation & Objective
? ????? ???? ????? ??? ????.
? ??? ??? ?? ?????, ?????? ???? ??????? ???? ??
? ?? ??? ?? ?? ??? ??? ??
? ??? `sex-specific information¨ ? ??? ???? ?????, ?????? ???
?? ??? visual inspection/ quantitative inspection ??? ?? ??
? ??: ??? ??? ?? ??? ?? ???? ??? ????? ???? ?? ??
[I-2] Gender Prediction
11 Putten, M. J., Olbrich, S., & Arns, M. (2018). Predicting sex from brain rhythms with deep learning. Scientific reports, 8(1), 3069.
? Dataset
? EEG data from 6 different Labs*
? 1308 subjects (mean age 43.38 (18.42 SD) y; range 18C98 y; 47% males)
? Eye-closed (EC) Resting EEG 2 min.
? ??? EEG segment ??
? 24 channels/ 2 sec, Fs = 128 Hz, Ns = 256 (?? ?)/ 1 ???? 40 EEG segments ??
? Band-pass filtering [0.5, 25]
? Architecture
? 6-layer Convolutional Neural Network
[I-2] Gender Prediction
12 *Brain Resource International Database (New York, Rhode Island, Nijmegen, London, Adelaide and Sydney).
? Experimental Validation
? ??? ?? ??? ?? ???? cross-validation? ?? ??
? 1000? ???? ??? (40,000 EEG segments, 47% male)? train??,
308? ???? ??? (12,320 EEG segments, 49% male)? test
? ?? ?? 150 runs* ?? (batch size: 70)
? Results & Discussion
? Accuracy: 81 % (p < 10-5)
? ???? ?? ?, ? ?? ??? ??? (?? layer, ? ? filter size, ?/?? ?? ?)
? Visualization
of six convolutional layers
? Deep dream algorithm
?? [Mahendran, ¨15][Mahendran, ¨16]
? ??? CNN ????
??? (12-25 Hz) ?? ??
? ??? ???
logistic regression model ??
70 % accuracy
[I-2] Gender Prediction
13
[Mahendran, ¨15] Mahendran, A. & Vedaldi, A. Understanding deep image representations by inverting them. in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015).
[Mahendran, `16] Mahendran, A. & Vedaldi, A. Visualizing Deep Convolutional Neural Networks Using Natural Pre-images. Int. J. Comput. Vis. 120, 233C255 (2016).
? Mental-task Imagery
? ???? ???? ???? ?? ??
? ?? ?? ?? (motor imagery), ? ?? (speech imagery) ?? ?? ??
? ???? ??
? [II-1] Motor imagery: Imagination of moving a body part without actual movement
II. Mental-task Imagery
14
? Motivation & Objective
? BCI ???? ?? ?? ?? ??? ????? ????? ??? ???
? ????? ????? `Feature Extraction¨ ??? `Classification¨ ??? ??? ???
?? ?? ?? ? ?????
? Common Spatial Pattern (CSP), Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), Support Vector Machine (SVM) ?? ??????
? ?? training data ? ?? ???? ???? ?? ??? ?? ?? ?????,
?? ???? ???? BCI ???? ?????? ????? ???? ??? ???
? ??? ? ??? ???? ???? ??? ???
? ? ????? ??? ??? ?? ??? ?? ??? ?? ??? ?? ??
[II-1] Motor Imagery
15 Tabar, Y. R., & Halici, U. (2016). A novel deep learning approach for classification of EEG motor imagery signals. Journal of neural engineering, 14(1), 016003.
? Dataset
? Public dataset (BCI Competition IV dataset 2b)
? 9? ???? ???? ?? ?? ??? ?? ??
? ??? EEG segment ??
? 3 channels (C3, Cz, C4)
? 2 sec (cue? ??? ? 0.5~2.5? ?? ??? ??), Fs = 250 Hz
? 1 ???? 400 EEG segments ??
? Input image form
? ?? (time), ??? (frequency), ?? (channel location) ??? ??? ??? ?? ?
? Short-time Fourier transform (STFT) ?? (window size: 64, time lapses = 14)
? 1 channel EEG segment (Ns = 500) ? STFT ? frequency-time image (257 x 32)
? ??? ??? ????? ???? mu ??(8-13 Hz) ? beta ??(17-30 Hz) ? ??
? 3?? (C3, Cz, C4) ??? ??
Frequency-Time images (size of 31 x 32)
? ?? input
? 3??? ?? ??? ? ???? ??
(size of 93 x 32)
[II-1] Motor Imagery
16
? Architecture
? Convolutional Neural Network (CNN)
? ?? ???? Convolution ?? ? ?? 30? ??, ? ?? ???? (93 x 3) ? ??
? Max-pooling? (10 x 1) ? ?? ??
? Batch size = 50?? 300 runs ?? ??
[II-1] Motor Imagery
17
? Architecture
? Convolutional Neural Network (CNN)
? Stacked Auto Encoder (SAE)
? 6 ?? ??? AE? ??? ????
? SAE? ???? ??? AE ?? unsupervised ??? ?? ????? ????
? ??? AE? Batch size = 20? 200 runs ?? ??? ?,
Fine tuning ???? batch size = 40? 200 runs ?? ????
[II-1] Motor Imagery
18
? Architecture
? Convolutional Neural Network (CNN)
? Stacked Auto Encoder (SAE)
? Combined CNN-SAE
? CNN?? ??? convolutional layer ??? SAE? ??? ??
[II-1] Motor Imagery
19
? Architecture
? Convolutional Neural Network (CNN)
? ?? ???? Convolution ?? ? ?? 30? ??, ? ?? ???? (93 x 3) ? ??
? Max-pooling? (10 x 1) ? ?? ??
? Batch size = 50?? 300 runs ?? ??
? Stacked Auto Encoder (SAE)
? 6 ?? ??? AE? ??? ????
? SAE? ???? ??? AE ?? unsupervised ??? ?? ????? ????
? ??? AE? Batch size = 20? 200 runs ?? ??? ?,
Fine tuning ???? batch size = 40? 200 runs ?? ????
? Combined CNN-SAE
? CNN?? ??? convolutional layer ??? SAE? ??? ??
[II-1] Motor Imagery
20
? Experimental Validation
? 10 x 10 Fold Cross-validation
? ? ???? 400 Trials? Random?? 10 ???? ???,
9 ?? train ? ?? 1 ?? test ?? ??? ?? ??? ??? 10? ??
? Random ?? 10 ???? ??? ???? ??? ??? 10? ??
? Results & Discussion
? CNN-SAE ? ?? ?? ??? ????, ??? ????? ?? ??? ???.
? CNN?? ??? ?? 30? ??
? ??? Feature? ?? ??, ?? ??? ?? ? ??? ???? ?? ?? ?? ????
[II-1] Motor Imagery
21
? Steady-state Evoked Potential (SSEP)
? ??/ ??/ ?? ??? ????? ??? ? ???? ??
? ?? ??? ???? ??? ?? ??
? ???? ??
? [III-1] SSVEP Classification
III. Steady-state Evoked Potential
22
Flickering Light
(20 Hz)
Oscillatory Response
(20 Hz)
[III-1] SSVEP Classification
23
Kwak, N. S., M┨ller, K. R., & Lee, S. W. (2017). A convolutional neural network for steady state visual evoked potential classification under ambulatory
environment. PloS one, 12(2), e0172578.
? Dataset
? 7? ???? ???? ?? ??
? ????
? Random auditory cue? ???? 3? ?? start beep? ??? ???? 5?? ?? LED ??
? Cue: ?? 9 Hz, ??? 11 Hz, ???? 13 Hz, ??? 15 Hz, ?? 17 Hz (5 classes)
? Task 1 (Static SSVEP): ??? ??? ???? cue? ?? (? class ? 10??, ? 50?)
? Task 2 (Ambulatory SSVEP): ??? ???? ??? cue ? ?? (? class ? 50??, ? 250 ?)
? ??? EEG segment ??
? 8 channels (?? ?? ???)
? BPF [4 - 40 Hz] ??? EEG ??? 2 sec (Fs = 1000 Hz) ??? segment? ??
? ??? ?? ? ??? FFT ? [5 - 35 Hz]? ???? 120 samples ?? ? 0-1 Normalization
? ? EEG segment? size? (120 x 8)
? ?? ?? ??? ???? ?? ??? ??
? 2 sec sliding window with different shift sizes (60, 30, 20, 15, 12, 10 msec)
? ??? ? (50, 100, 150, 200, 250, 300 data samples)
[III-1] SSVEP Classification
24
´
Shift size
? Architecture
? CNN-1
? [C1] Convolution? ????? 8? channels ???? ??
? [C2] Convolution? ?????? 11 frequency samples ???? ??
[III-1] SSVEP Classification
25
? Architecture
? CNN-1
? CNN-2
? CNN-1? ?? ?? ?????, F3 layer? 3? ??? ???? Visualization ??? ??
[III-1] SSVEP Classification
26
? Architecture
? CNN-1
? CNN-2
? NN
[III-1] SSVEP Classification
27
? Architecture
? CNN-1/ CNN-2/ NN
? Experimental Validation
? ? ??? ?? 2?? static/ ambulatory SSVEP ??? ??? 10-fold CV ??
? ?? ?? ??? ???? ?? ??? ??
? Learning rate = 0.1 / Learning iterations = 50?
(10? ?? ??? error rate? 0.5 % ??? ???? ?? ??)
[III-1] SSVEP Classification
28
? Results & Discussion
? static/ ambulatory ???? ??? ???? ?? ?, ??? ???? ??? ?? ??
? Feature Representation (CNN-2 ?? ?? ??)
[IV-1] SSVEP Classification
29
? Event Related Potential (ERP)
? ??/ ??/ ?? ?? ??? ???? ? ??
? ??????, P300 ??? ??? ??? ??? ?? ??
? ???? ??
? [IV-1] P300 Speller
? [IV-2] Transferring Human Visual Capabilities to Machine
? [IV-3] EEG-in/ Image-out
IV. Event Related Potential
30
? P300 Speller? ?? ? ??? ??
(a) P300 detection: ??? ?? ?? P300 ??? ?? ???
(b) Character Recognition: ???? ?? ??? ???? ???
[IV-1] P300 Speller
31
Cecotti, H., & Graser, A. (2011). Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE transactions on pattern
analysis and machine intelligence, 33(3), 433-445.
? Dataset
? Public dataset (Data set II from the third BCI competition)
? 2? ???? ???? P300 Speller ?? ??
? Training database: ? 85 characters / Test database: ? 100 characters
? 12? (6 rows, 6 columns) ?? ?????, ? 12? ???? 15? ??
? ??? EEG segment ??
? 64 channels
? 650 msec (cue? ??? ? 0 ~ 650 msec ??? ??), Fs = 120 Hz
? ? ?? ? ?? Standardization
? Architecture
? [L0] Input size: 64 Ch. x 78 Ns
? [L1] Convolution
? (1x64) ??? ?? 10?
? 10@78x1
? [L2] Convolution + Subsampling
? (13x1) ??? ?? 5?
? 50@6x1
? [L3, L4] Fully connected
? 300 nodes C 100 nodes C 2 output
[IV-1] P300 Speller
32
? Experimental Validation
? ? ??? ?? ??? training dataset ?? ????, test dataset?? ??? ??
? Training dataset ? 95 % training, 5 %? validation
? Validation ???? ?? least mean square error ? ???? ??? ?? ??
(CNN ??? ??? variation ? ? ???? ??? ??? ??? ?????)
? Results & Discussion
? ??? ???? ???? ??? ?? ??
? (A) P300 Detection (B) Character Recognition
[IV-1] P300 Speller
33
? CNN? ? ??? ??? ???, ??? ??? visual object classifier ???
[IV-2] Transferring Human Visual Capabilities to Machine
34
Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., & Shah, M. (2017, July). Deep learning human mind for automated visual classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6809-6817).
? Objective & Contribution
? ?? ??? ?? ??? ??? ?? ??? ERP ??? ??? ? ?? ??? ??
? ERP ?? ????? ?? visual descriptor? ??? computer vision ??? ??
? ? ??? EEG ????? ?? ???? ? trained model ? publicly release ??
[IV-2] Transferring Human Visual Capabilities to Machine
35
Part 1. ?? ??? ??? ?? ERP ???
? Dataset
? 6? ???? ???? ?? ??
? ????
? ImageNet ???? 40 classes 2,000 images (50 from each class) ??
? 10 ? ???? ??? ???? 0.5 ?? ???? ???? EEG Recording
? ??? EEG segment ??
? 128 channels
? BPF [14 - 71 Hz] ??? EEG ??? 440 msec (Fs = 1000 Hz) ??
? Beta (15-31 Hz), Gamma (32-70 Hz) ??? ?? ?? ? cognitive process? ??
? ??? ??? ?? 0.5 ? ??? ?? ?? 40 msec ??? 440 msec ??? ??
? ? EEG segment? size? (128 x 440)
[IV-2] Transferring Human Visual Capabilities to Machine
36
Part 1. ?? ??? ??? ?? ERP ???
? Architecture
? a) Common LSTM
? Common? ??: ?? EEG ??(128?)? ???? ?? LSTM layer? ???? ??
[IV-2] Transferring Human Visual Capabilities to Machine
37
Part 1. ?? ??? ??? ?? ERP ???
? Architecture
? a) Common LSTM
? b) Channel LSTM + Common LSTM
? ??? single EEG ???? LSTM ??? ????, ??? inter-channel analysis ? ????
?? common LSTM ? ??? ??
[IV-2] Transferring Human Visual Capabilities to Machine
38
Part 1. ?? ??? ??? ?? ERP ???
? Architecture
? a) Common LSTM
? b) Channel LSTM + Common LSTM
? c) Common LSTM + output layer
? ?? ??? a) common LSTM? ?????, ? ??? output layer? LSTM? ?? input??
?? ?? (ReLU) ?? ???? ??
[IV-2] Transferring Human Visual Capabilities to Machine
39
Part 1. ?? ??? ??? ?? ERP ???
? Experimental Validation
? Training 80 % (1,600 images), validation 10 % (200), test 10 % (200)
? Results & Discussion
[IV-2] Transferring Human Visual Capabilities to Machine
40
Part 2. ???? EEG ?? Feature? ???? CNN-based Regression
? ?? ?? 2??
? Approach 1. End-to-end training
? Pre-trained AlexNet CNN? weights? initialization? ??
? GoogleNet, VGG? ?? ??? ??; ?? ????? ????? ???? ?? ? ?
? ??? layer? ?? softmax ???? regression layer? ??
? Regression layer ?? ?? ?? EEG feature vector dimension? ?? ??
? ?? ??? Euclidean loss? ?? ?? ??
[IV-2] Transferring Human Visual Capabilities to Machine
41
Part 2. ???? EEG ?? Feature? ???? CNN-based Regression
? ?? ?? 2??
? Approach 2. Deep feature extraction followed by regressor training
? Pre-trained AlexNet, GoogleNet, VGG? weights? initialization? ??
? ? ??? CNN ??? ???? ??? ??? ???? regression methods ? ??
? k-NN regression, ridge regression, random forest regression
? CNN ???? ??? ??? ??? EEG feature vector? ??
[IV-2] Transferring Human Visual Capabilities to Machine
42
Part 2. ???? EEG ?? Feature? ???? CNN-based Regression
? Experimental Validation
? ?? Part 1?? ?? ??? ?? 128 Common + 128 Output ? feature vector ??
? ? 2000 ?? ???? ??, CNN? regression ?? ?? `confusing¨ ? ???? ???
??? ????? ??? EEG feature vector? ???? ??
? ? ?? ???? ??? ??
? Average: 6 ? ???? ? ???? ?? ??? feature vector? average ??
? Best: ??? ???? ???, 6 ? ???? EEG feature vectors ??? ?? ??
classification loss? ?? ?? feature vector ??? ??
? Result & Discussion
? Mean-square error? ?? ??
? Approach 2? [GoogleNet + k-NN regression + Average EEG feature vector]? ?? ??
[IV-2] Transferring Human Visual Capabilities to Machine
43
Part 3. Automated Visual Classification
? Experimental Validation
? ?? Part 1, Part 2?? ?? ??? ?? ???? ?? ??
? GoogleNet + k-NN + Average EEG feature vector + 128 Common, 128 Output
? ??? ??? ? ?? Test data (10 %, 200? ???)?? 89.7 % ?? ???
? ???? ?? Caltech-101? 30 class? ?? ?? ?? ??
? GoogleNet/ VGG/ ??? ??? feature extractor? ??
? Multiclass SVM classifier? ?? ???? ?? ??? ??
? Result & Discussion
? Human Brain-driven Automated Visual Classification
? GoogleNet? ????? ??? ????, VGG?? ??? ?? ??
? EEG encoder? regressor? ???? ?? ?? ????? ??? ???? ????
`impressive¨ ?? ??
[IV-2] Transferring Human Visual Capabilities to Machine
44
? Read the Mind, Generate the Image
???? ???? ??? ? ????? ? ??? ??? ???? ?????
[IV-3] EEG-in/ Image-out
45
Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., & Shah, M. (2017, October). Generative Adversarial Networks Conditioned by Brain Signals. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3410-3418).
? Objective & Contribution
? Generative model? ??? ??? ??? ? ?? ???? ?? ? ??? ????
? ??? ???? ?? ??, ??? ??? ?????
? ?? ??
? Condition Generative Adversarial Network (cGAN)
[IV-3] EEG-in/ Image-out
46
? Architecture
? A. Learning EEG Manifold
? B. Image Generation
? B-1. Generator
? B-2. Discriminator
[IV-3] EEG-in/ Image-out
47
Input G1 G2 G3 G4 G5
1 x 100
(Random Noise)
+
1 x 128
(EEG Feature)
4 x 4 x 512 8 x 8 x 256 16 x 16 x 128 32 x 32 x 64 64 x 64 x 3
Input DC1 DC2 DC3 DC4 DFC5 DFC6
64 x 64 x 3 32 x 32 x 64 16 x 16 x 128 8 x 8 x 256
4 x 4 x 512
+
4 x 4 x 8
(EEG Feature)
1024 1
? Experimental Validation
? Condition GAN ????? ?????, ?? ??? ?? ?? (40 class, 50 images)
? ???, ? ??? ??? ?? ?????
? 1??: EEG feature? zero vector? ??, non-conditional GAN ??? 100 epochs ?? ??
? 2??: EEG feature vector? ?? ???? conditional GAN ??? 50 epochs ????
? ??? ???? ??: inception score ? inception classification accuracy
? Results & Discussion
? ??? ???? ?? inception network classification ?? 43 % ??? ??
? ?? ???? ????, 40 class ? ?? 43 % ?? ????? ?? (1/40 = 2.5 %)
[IV-3] EEG-in/ Image-out
48
Good Results: Jack-o¨-Lantern & Panda Bad results: Banana & Bolete
? ??? ??? ??? ???? ???? 4?? ????? 7?? ?? ??
Conclusive Remarks
49
?? ???? ?? ??? ??? ?? EEG domain
I. Resting State EEG
1. Seizure Detection 1-D 13-L CNN ??
2. Gender Prediction 6-L CNN ??-??
II. Mental-task Imagery 3. Motor Imagery (L/ R) CNN + SAE ??-??-???
III. Steady-state
Evoked Potential
4. SSVEP Classification
CNN & Visualization
using 3 nodes
???-??
IV. Event Related Potential
5. P300 Speller CNN ??-??
6. Human Visual
Capabilities to Machine
LSTM &
CNN-regression
??-??
7. EEG-in/ Image-out
LSTM &
(conditional) GAN
??-??
Thank you
50

More Related Content

What's hot (20)

PDF
フ`リエ篁擦隼R抹の碧怏み
yuichi takeda
?
PDF
Wasserstein GAN ?? ???? I
Sungbin Lim
?
PDF
???? ???? ????????, ???? ??? ??????.
Yongho Ha
?
PPTX
NLPにおけるAttention゛Seq2Seq から BERTまで゛
Takuya Ono
?
PPTX
Attention Is All You Need
Illia Polosukhin
?
PPTX
Deep Learning - RNN and CNN
Pradnya Saval
?
PDF
????? ???????? ?????? 1??? (2022??? ??????)
ssusercdf17c
?
PDF
^An Introduction to Data Augmentation Techniques in ML Frameworks, ̄ a Present...
Edge AI and Vision Alliance
?
PPTX
CNN Machine learning DeepLearning
Abhishek Sharma
?
PDF
[DLi氏]Hindsight Experience Replay
Deep Learning JP
?
PPTX
Transformer in Vision
Sangmin Woo
?
PDF
Attention is All You Need (Transformer)
Jeong-Gwan Lee
?
PPTX
Transformers in Vision: From Zero to Hero
Bill Liu
?
PDF
?????? ?? ?
NAVER Engineering
?
PDF
Tutorial on Deep Learning
inside-BigData.com
?
PDF
1???? GAN(Generative Adversarial Network) ?? ????
NAVER Engineering
?
PPTX
Understanding RNN and LSTM
宗殻 剋
?
PPTX
???? / ????? ????
Yongha Kim
?
PDF
Imagen: Photorealistic Text-to-Image Diffusion Models with Deep Language Unde...
Vitaly Bondar
?
PPTX
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
?
フ`リエ篁擦隼R抹の碧怏み
yuichi takeda
?
Wasserstein GAN ?? ???? I
Sungbin Lim
?
???? ???? ????????, ???? ??? ??????.
Yongho Ha
?
NLPにおけるAttention゛Seq2Seq から BERTまで゛
Takuya Ono
?
Attention Is All You Need
Illia Polosukhin
?
Deep Learning - RNN and CNN
Pradnya Saval
?
????? ???????? ?????? 1??? (2022??? ??????)
ssusercdf17c
?
^An Introduction to Data Augmentation Techniques in ML Frameworks, ̄ a Present...
Edge AI and Vision Alliance
?
CNN Machine learning DeepLearning
Abhishek Sharma
?
[DLi氏]Hindsight Experience Replay
Deep Learning JP
?
Transformer in Vision
Sangmin Woo
?
Attention is All You Need (Transformer)
Jeong-Gwan Lee
?
Transformers in Vision: From Zero to Hero
Bill Liu
?
?????? ?? ?
NAVER Engineering
?
Tutorial on Deep Learning
inside-BigData.com
?
1???? GAN(Generative Adversarial Network) ?? ????
NAVER Engineering
?
Understanding RNN and LSTM
宗殻 剋
?
???? / ????? ????
Yongha Kim
?
Imagen: Photorealistic Text-to-Image Diffusion Models with Deep Language Unde...
Vitaly Bondar
?
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
?

Similar to [????] ??? ??? EEG ?? ?? (20)

PDF
[GDG DevFest Gwangju 2018] ?????? ???: ??/ IoT/ ????/ ???/ ?????? ????
Donghyeon Kim
?
PPTX
iT Cafe - Deep Learning
Dongmin Kim
?
PDF
Data Augmentation of Wearable Sensor Data for Parkinson¨s
Woodam Lim
?
PPTX
Anomaly detection practive_using_deep_learning
?? ?
?
PDF
Technical Report on "Neuromarketing: Graph Transformer-based Consumer Prefere...
Network Science Lab, The Catholic University of Korea
?
PDF
Ai study - 2 layer feed-forward network, Backpropagation
DaeHeeKim31
?
PDF
4???????? ?????
Namkug Kim
?
PDF
Neural network? ??? ???
Tae Young Lee
?
PDF
????? ?? ???
SK(?) C&C - ???
?
PDF
Neural stream
Mk Kim
?
PDF
4?????? ????
Namkug Kim
?
PDF
?????(Recurrent neural networks) ??
Byoung-Hee Kim
?
PPTX
Deep Learning for AI (1)
Dongheon Lee
?
PDF
???????????????
jaypi Ko
?
PPTX
Cnn ??
?? ?
?
PPTX
????, ???? ??? ???
Jinwon Lee
?
PDF
Pycon Korea 2018 ?????? ?? ????
Park Sejin
?
PDF
?? ?? ????_?_????_??
?? ?
?
PDF
Lecture 4: Neural Networks I
Sang Jun Lee
?
PDF
?? ????? ???? ????
Seonghyun Kim
?
[GDG DevFest Gwangju 2018] ?????? ???: ??/ IoT/ ????/ ???/ ?????? ????
Donghyeon Kim
?
iT Cafe - Deep Learning
Dongmin Kim
?
Data Augmentation of Wearable Sensor Data for Parkinson¨s
Woodam Lim
?
Anomaly detection practive_using_deep_learning
?? ?
?
Technical Report on "Neuromarketing: Graph Transformer-based Consumer Prefere...
Network Science Lab, The Catholic University of Korea
?
Ai study - 2 layer feed-forward network, Backpropagation
DaeHeeKim31
?
4???????? ?????
Namkug Kim
?
Neural network? ??? ???
Tae Young Lee
?
????? ?? ???
SK(?) C&C - ???
?
Neural stream
Mk Kim
?
4?????? ????
Namkug Kim
?
?????(Recurrent neural networks) ??
Byoung-Hee Kim
?
Deep Learning for AI (1)
Dongheon Lee
?
???????????????
jaypi Ko
?
Cnn ??
?? ?
?
????, ???? ??? ???
Jinwon Lee
?
Pycon Korea 2018 ?????? ?? ????
Park Sejin
?
?? ?? ????_?_????_??
?? ?
?
Lecture 4: Neural Networks I
Sang Jun Lee
?
?? ????? ???? ????
Seonghyun Kim
?
Ad

[????] ??? ??? EEG ?? ??

  • 1. Introduction to EEG-based Systems with Deep Learning 2018.04.04. ??? (dhkim518@gist.ac.kr)
  • 2. ? Background (??? ?? ??) ? ??? ?? & ?-??? ????? ? ?-??? ?????: ???? 4?? ???? ?? & 7? ?? ?? ?? I. Resting State EEG ? [I-1] Seizure Detection ? [I-2] Gender Prediction II. Mental-task Imagery ? [II-1] Motor Imagery (Left/ Right) III. Steady-state Evoked Potential (SSEP) ? [III-1] SSVEP Classification IV. Event Related Potential (ERP) ? [IV-1] P300 Speller ? [IV-2] Transferring Human Visual Capabilities to Machine ? [IV-3] EEG-in/ Image-out ?? ?? 2
  • 3. ? ??? ?? ?? ???? ???? ????? ????? ? ?? ??? ???? ??? ?? ????? ???? ?? ? ??? ? `??? ??? ?? ??? ???/ ?? ????? ??? ?????¨ ? ??? ?? ?? ?? ??? ? ???? ??? ??? ????? ? ?? ??? ???? ?? ??? ?? ????? ?????? ????? ? ?????? ??? ??? ??? `?? ????? ???? ??? ???? ?? ?? ?? ???¨ ??? ? ?? ??, ????, BCI, ??? ?? ?? ??? ?? ? ?? ? CNN, LSTM, GAN ?? ??? ??? ?? ?? ? Temporal, spectral, spatial feature? ??? ?? ? ?? ? ????? 3
  • 4. ? ??? (Electroencephalogram, EEG) ? ? ?? ??? ??? ??? ? ??? ??? ??, ???? ??? ?? ??? ?? ? 1929? Hans Berger? ?? ???? ?? ???? ????? [Berger, `29] ? ?-??? ?????(Brain-computer interface, BCI)? ?? ???? ???? ?? ? BCI: ??? ???? ???? ??, ?? ??? ???? ??? ????? ? ??? ??? ?? 3??; ??, ???, ?? Background 4 ?? ??? ??? ??? ??, ?? ?? ??? ?? ??? ??? ?? ?? ??? δ (0.1-4 Hz), θ (4-8 Hz), α (8-13 Hz), β (13-30 Hz), γ (30-50 Hz) ?? ?? ?? ?? ???? ????? ? ?? ?? [Berger, `29] Berger, H. (1929). Ueber das Elektroenkephalogramm des Menschen. Archiv f┨r Psychiatrie und Nervenkrankheiten, 87(1), 527-570. International 10-20 System
  • 5. ? ???? ?? ?? ??? ?? ? ???? ??? ?? ?? ? I. Resting state EEG ? II. Mental-task Imagery ? III. Steady-state Evoked Potential (SSEP) ? IV. Event Related Potential (ERP) Background 5 Signal ProcessingSignal Acquisition Applications ? Feature extraction/ pattern recognition ? Machine learning based approaches ? Brainwave ? Entertainments (Game) ? Therapy/ healthcare ? Prostheses ? Authentication
  • 6. ? Resting EEG ? ??? ?? ????? ??? ?? ? ?? EO (Eye-open)?? EC (Eye-closed) ??? ??? ???? ?? ?? ? ???? ?? ? [I-1] Seizure Detection ? [I-2] Gender Prediction I. Resting State EEG 6 . . . .
  • 7. ? ?? ?? ? Seizure: ??, ?? ????? ???? ??? ????? ?? ?? ?? ? Epilepsy: ??, ??? ??? ??? ??? ?? ???? ?? [I-1] Seizure Detection 7 Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adeli, H. (2017). Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Computers in biology and medicine.
  • 8. ? Motivation & Objective ? EEG? ?? ??? ?? ??? ??? ?? ?? ??? ???? ???? ?? ? ???? ?? (unprovoked seizure)? 2? ?? ?? ? ??? ???? ? ??? ?? ??: `direct visual inspection¨ ? ?? ??? ??, ??? ?? `time-consuming¨, `technical artifact¨, `variable results¨, `limitation to identifying abnormality¨ ? ??? Computer-aided diagnosis (CAD) ???? ?? ? 13-layer Convolutional Neural Network ? Normal, Pre-ictal (?? ?? ??), Seizure 3?? ??? ?? ??? ???? [I-1] Seizure Detection 8
  • 9. ? Dataset ? Public dataset [Andrzejak, `01] ? 3 states: Normal, Pre-ictal, and Seizure ? 100 segments for each class ? ??? EEG segment ?? ? Single channel EEG signals ? 23.6 sec, Ns = 4097 (Ns: ?? ?) ? Z-score normalization (mean 0, std. 1) ? Architecture ? 13-layer CNN [I-1] Seizure Detection 9 [Andrzejak ¨01] R.G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, C.E. Elger, Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: dependence on recording region and brain state, Phys. Rev. E 64 (2001) 061907. Color information - Kernel size - Max-pooling - Fully connected layer
  • 10. ? Experimental Validation ? 10-fold cross-validation ? EEG signals? 10 ???? ???, 9 ?? train ? ?? 1 ?? test ?? ??? 10? ?? ? Train ???? 70 % ???? ???? 150 runs* ???? (batch size: 3), 30 % ???? validation? ?? (overfitting ?? ??) ? Results & Discussion ? Accuracy: 88.67%, Sensitivity: 95.00%, and Specificity: 90.00% ? ?? ??? ?? ???? ??? ???? ??? ? ? ??? `Novelty¨? EEG ??? Seizure detection? ???? ???? ??? ? ? ? ?? ??? ?? ???? ? ?? ??? ?? ??? ?? [I-1] Seizure Detection 10 *Run: one iteration of the full training set
  • 11. ? Motivation & Objective ? ????? ???? ????? ??? ????. ? ??? ??? ?? ?????, ?????? ???? ??????? ???? ?? ? ?? ??? ?? ?? ??? ??? ?? ? ??? `sex-specific information¨ ? ??? ???? ?????, ?????? ??? ?? ??? visual inspection/ quantitative inspection ??? ?? ?? ? ??: ??? ??? ?? ??? ?? ???? ??? ????? ???? ?? ?? [I-2] Gender Prediction 11 Putten, M. J., Olbrich, S., & Arns, M. (2018). Predicting sex from brain rhythms with deep learning. Scientific reports, 8(1), 3069.
  • 12. ? Dataset ? EEG data from 6 different Labs* ? 1308 subjects (mean age 43.38 (18.42 SD) y; range 18C98 y; 47% males) ? Eye-closed (EC) Resting EEG 2 min. ? ??? EEG segment ?? ? 24 channels/ 2 sec, Fs = 128 Hz, Ns = 256 (?? ?)/ 1 ???? 40 EEG segments ?? ? Band-pass filtering [0.5, 25] ? Architecture ? 6-layer Convolutional Neural Network [I-2] Gender Prediction 12 *Brain Resource International Database (New York, Rhode Island, Nijmegen, London, Adelaide and Sydney).
  • 13. ? Experimental Validation ? ??? ?? ??? ?? ???? cross-validation? ?? ?? ? 1000? ???? ??? (40,000 EEG segments, 47% male)? train??, 308? ???? ??? (12,320 EEG segments, 49% male)? test ? ?? ?? 150 runs* ?? (batch size: 70) ? Results & Discussion ? Accuracy: 81 % (p < 10-5) ? ???? ?? ?, ? ?? ??? ??? (?? layer, ? ? filter size, ?/?? ?? ?) ? Visualization of six convolutional layers ? Deep dream algorithm ?? [Mahendran, ¨15][Mahendran, ¨16] ? ??? CNN ???? ??? (12-25 Hz) ?? ?? ? ??? ??? logistic regression model ?? 70 % accuracy [I-2] Gender Prediction 13 [Mahendran, ¨15] Mahendran, A. & Vedaldi, A. Understanding deep image representations by inverting them. in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015). [Mahendran, `16] Mahendran, A. & Vedaldi, A. Visualizing Deep Convolutional Neural Networks Using Natural Pre-images. Int. J. Comput. Vis. 120, 233C255 (2016).
  • 14. ? Mental-task Imagery ? ???? ???? ???? ?? ?? ? ?? ?? ?? (motor imagery), ? ?? (speech imagery) ?? ?? ?? ? ???? ?? ? [II-1] Motor imagery: Imagination of moving a body part without actual movement II. Mental-task Imagery 14
  • 15. ? Motivation & Objective ? BCI ???? ?? ?? ?? ??? ????? ????? ??? ??? ? ????? ????? `Feature Extraction¨ ??? `Classification¨ ??? ??? ??? ?? ?? ?? ? ????? ? Common Spatial Pattern (CSP), Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) ?? ?????? ? ?? training data ? ?? ???? ???? ?? ??? ?? ?? ?????, ?? ???? ???? BCI ???? ?????? ????? ???? ??? ??? ? ??? ? ??? ???? ???? ??? ??? ? ? ????? ??? ??? ?? ??? ?? ??? ?? ??? ?? ?? [II-1] Motor Imagery 15 Tabar, Y. R., & Halici, U. (2016). A novel deep learning approach for classification of EEG motor imagery signals. Journal of neural engineering, 14(1), 016003.
  • 16. ? Dataset ? Public dataset (BCI Competition IV dataset 2b) ? 9? ???? ???? ?? ?? ??? ?? ?? ? ??? EEG segment ?? ? 3 channels (C3, Cz, C4) ? 2 sec (cue? ??? ? 0.5~2.5? ?? ??? ??), Fs = 250 Hz ? 1 ???? 400 EEG segments ?? ? Input image form ? ?? (time), ??? (frequency), ?? (channel location) ??? ??? ??? ?? ? ? Short-time Fourier transform (STFT) ?? (window size: 64, time lapses = 14) ? 1 channel EEG segment (Ns = 500) ? STFT ? frequency-time image (257 x 32) ? ??? ??? ????? ???? mu ??(8-13 Hz) ? beta ??(17-30 Hz) ? ?? ? 3?? (C3, Cz, C4) ??? ?? Frequency-Time images (size of 31 x 32) ? ?? input ? 3??? ?? ??? ? ???? ?? (size of 93 x 32) [II-1] Motor Imagery 16
  • 17. ? Architecture ? Convolutional Neural Network (CNN) ? ?? ???? Convolution ?? ? ?? 30? ??, ? ?? ???? (93 x 3) ? ?? ? Max-pooling? (10 x 1) ? ?? ?? ? Batch size = 50?? 300 runs ?? ?? [II-1] Motor Imagery 17
  • 18. ? Architecture ? Convolutional Neural Network (CNN) ? Stacked Auto Encoder (SAE) ? 6 ?? ??? AE? ??? ???? ? SAE? ???? ??? AE ?? unsupervised ??? ?? ????? ???? ? ??? AE? Batch size = 20? 200 runs ?? ??? ?, Fine tuning ???? batch size = 40? 200 runs ?? ???? [II-1] Motor Imagery 18
  • 19. ? Architecture ? Convolutional Neural Network (CNN) ? Stacked Auto Encoder (SAE) ? Combined CNN-SAE ? CNN?? ??? convolutional layer ??? SAE? ??? ?? [II-1] Motor Imagery 19
  • 20. ? Architecture ? Convolutional Neural Network (CNN) ? ?? ???? Convolution ?? ? ?? 30? ??, ? ?? ???? (93 x 3) ? ?? ? Max-pooling? (10 x 1) ? ?? ?? ? Batch size = 50?? 300 runs ?? ?? ? Stacked Auto Encoder (SAE) ? 6 ?? ??? AE? ??? ???? ? SAE? ???? ??? AE ?? unsupervised ??? ?? ????? ???? ? ??? AE? Batch size = 20? 200 runs ?? ??? ?, Fine tuning ???? batch size = 40? 200 runs ?? ???? ? Combined CNN-SAE ? CNN?? ??? convolutional layer ??? SAE? ??? ?? [II-1] Motor Imagery 20
  • 21. ? Experimental Validation ? 10 x 10 Fold Cross-validation ? ? ???? 400 Trials? Random?? 10 ???? ???, 9 ?? train ? ?? 1 ?? test ?? ??? ?? ??? ??? 10? ?? ? Random ?? 10 ???? ??? ???? ??? ??? 10? ?? ? Results & Discussion ? CNN-SAE ? ?? ?? ??? ????, ??? ????? ?? ??? ???. ? CNN?? ??? ?? 30? ?? ? ??? Feature? ?? ??, ?? ??? ?? ? ??? ???? ?? ?? ?? ???? [II-1] Motor Imagery 21
  • 22. ? Steady-state Evoked Potential (SSEP) ? ??/ ??/ ?? ??? ????? ??? ? ???? ?? ? ?? ??? ???? ??? ?? ?? ? ???? ?? ? [III-1] SSVEP Classification III. Steady-state Evoked Potential 22 Flickering Light (20 Hz) Oscillatory Response (20 Hz)
  • 23. [III-1] SSVEP Classification 23 Kwak, N. S., M┨ller, K. R., & Lee, S. W. (2017). A convolutional neural network for steady state visual evoked potential classification under ambulatory environment. PloS one, 12(2), e0172578.
  • 24. ? Dataset ? 7? ???? ???? ?? ?? ? ???? ? Random auditory cue? ???? 3? ?? start beep? ??? ???? 5?? ?? LED ?? ? Cue: ?? 9 Hz, ??? 11 Hz, ???? 13 Hz, ??? 15 Hz, ?? 17 Hz (5 classes) ? Task 1 (Static SSVEP): ??? ??? ???? cue? ?? (? class ? 10??, ? 50?) ? Task 2 (Ambulatory SSVEP): ??? ???? ??? cue ? ?? (? class ? 50??, ? 250 ?) ? ??? EEG segment ?? ? 8 channels (?? ?? ???) ? BPF [4 - 40 Hz] ??? EEG ??? 2 sec (Fs = 1000 Hz) ??? segment? ?? ? ??? ?? ? ??? FFT ? [5 - 35 Hz]? ???? 120 samples ?? ? 0-1 Normalization ? ? EEG segment? size? (120 x 8) ? ?? ?? ??? ???? ?? ??? ?? ? 2 sec sliding window with different shift sizes (60, 30, 20, 15, 12, 10 msec) ? ??? ? (50, 100, 150, 200, 250, 300 data samples) [III-1] SSVEP Classification 24 ´ Shift size
  • 25. ? Architecture ? CNN-1 ? [C1] Convolution? ????? 8? channels ???? ?? ? [C2] Convolution? ?????? 11 frequency samples ???? ?? [III-1] SSVEP Classification 25
  • 26. ? Architecture ? CNN-1 ? CNN-2 ? CNN-1? ?? ?? ?????, F3 layer? 3? ??? ???? Visualization ??? ?? [III-1] SSVEP Classification 26
  • 27. ? Architecture ? CNN-1 ? CNN-2 ? NN [III-1] SSVEP Classification 27
  • 28. ? Architecture ? CNN-1/ CNN-2/ NN ? Experimental Validation ? ? ??? ?? 2?? static/ ambulatory SSVEP ??? ??? 10-fold CV ?? ? ?? ?? ??? ???? ?? ??? ?? ? Learning rate = 0.1 / Learning iterations = 50? (10? ?? ??? error rate? 0.5 % ??? ???? ?? ??) [III-1] SSVEP Classification 28
  • 29. ? Results & Discussion ? static/ ambulatory ???? ??? ???? ?? ?, ??? ???? ??? ?? ?? ? Feature Representation (CNN-2 ?? ?? ??) [IV-1] SSVEP Classification 29
  • 30. ? Event Related Potential (ERP) ? ??/ ??/ ?? ?? ??? ???? ? ?? ? ??????, P300 ??? ??? ??? ??? ?? ?? ? ???? ?? ? [IV-1] P300 Speller ? [IV-2] Transferring Human Visual Capabilities to Machine ? [IV-3] EEG-in/ Image-out IV. Event Related Potential 30
  • 31. ? P300 Speller? ?? ? ??? ?? (a) P300 detection: ??? ?? ?? P300 ??? ?? ??? (b) Character Recognition: ???? ?? ??? ???? ??? [IV-1] P300 Speller 31 Cecotti, H., & Graser, A. (2011). Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE transactions on pattern analysis and machine intelligence, 33(3), 433-445.
  • 32. ? Dataset ? Public dataset (Data set II from the third BCI competition) ? 2? ???? ???? P300 Speller ?? ?? ? Training database: ? 85 characters / Test database: ? 100 characters ? 12? (6 rows, 6 columns) ?? ?????, ? 12? ???? 15? ?? ? ??? EEG segment ?? ? 64 channels ? 650 msec (cue? ??? ? 0 ~ 650 msec ??? ??), Fs = 120 Hz ? ? ?? ? ?? Standardization ? Architecture ? [L0] Input size: 64 Ch. x 78 Ns ? [L1] Convolution ? (1x64) ??? ?? 10? ? 10@78x1 ? [L2] Convolution + Subsampling ? (13x1) ??? ?? 5? ? 50@6x1 ? [L3, L4] Fully connected ? 300 nodes C 100 nodes C 2 output [IV-1] P300 Speller 32
  • 33. ? Experimental Validation ? ? ??? ?? ??? training dataset ?? ????, test dataset?? ??? ?? ? Training dataset ? 95 % training, 5 %? validation ? Validation ???? ?? least mean square error ? ???? ??? ?? ?? (CNN ??? ??? variation ? ? ???? ??? ??? ??? ?????) ? Results & Discussion ? ??? ???? ???? ??? ?? ?? ? (A) P300 Detection (B) Character Recognition [IV-1] P300 Speller 33
  • 34. ? CNN? ? ??? ??? ???, ??? ??? visual object classifier ??? [IV-2] Transferring Human Visual Capabilities to Machine 34 Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., & Shah, M. (2017, July). Deep learning human mind for automated visual classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6809-6817).
  • 35. ? Objective & Contribution ? ?? ??? ?? ??? ??? ?? ??? ERP ??? ??? ? ?? ??? ?? ? ERP ?? ????? ?? visual descriptor? ??? computer vision ??? ?? ? ? ??? EEG ????? ?? ???? ? trained model ? publicly release ?? [IV-2] Transferring Human Visual Capabilities to Machine 35
  • 36. Part 1. ?? ??? ??? ?? ERP ??? ? Dataset ? 6? ???? ???? ?? ?? ? ???? ? ImageNet ???? 40 classes 2,000 images (50 from each class) ?? ? 10 ? ???? ??? ???? 0.5 ?? ???? ???? EEG Recording ? ??? EEG segment ?? ? 128 channels ? BPF [14 - 71 Hz] ??? EEG ??? 440 msec (Fs = 1000 Hz) ?? ? Beta (15-31 Hz), Gamma (32-70 Hz) ??? ?? ?? ? cognitive process? ?? ? ??? ??? ?? 0.5 ? ??? ?? ?? 40 msec ??? 440 msec ??? ?? ? ? EEG segment? size? (128 x 440) [IV-2] Transferring Human Visual Capabilities to Machine 36
  • 37. Part 1. ?? ??? ??? ?? ERP ??? ? Architecture ? a) Common LSTM ? Common? ??: ?? EEG ??(128?)? ???? ?? LSTM layer? ???? ?? [IV-2] Transferring Human Visual Capabilities to Machine 37
  • 38. Part 1. ?? ??? ??? ?? ERP ??? ? Architecture ? a) Common LSTM ? b) Channel LSTM + Common LSTM ? ??? single EEG ???? LSTM ??? ????, ??? inter-channel analysis ? ???? ?? common LSTM ? ??? ?? [IV-2] Transferring Human Visual Capabilities to Machine 38
  • 39. Part 1. ?? ??? ??? ?? ERP ??? ? Architecture ? a) Common LSTM ? b) Channel LSTM + Common LSTM ? c) Common LSTM + output layer ? ?? ??? a) common LSTM? ?????, ? ??? output layer? LSTM? ?? input?? ?? ?? (ReLU) ?? ???? ?? [IV-2] Transferring Human Visual Capabilities to Machine 39
  • 40. Part 1. ?? ??? ??? ?? ERP ??? ? Experimental Validation ? Training 80 % (1,600 images), validation 10 % (200), test 10 % (200) ? Results & Discussion [IV-2] Transferring Human Visual Capabilities to Machine 40
  • 41. Part 2. ???? EEG ?? Feature? ???? CNN-based Regression ? ?? ?? 2?? ? Approach 1. End-to-end training ? Pre-trained AlexNet CNN? weights? initialization? ?? ? GoogleNet, VGG? ?? ??? ??; ?? ????? ????? ???? ?? ? ? ? ??? layer? ?? softmax ???? regression layer? ?? ? Regression layer ?? ?? ?? EEG feature vector dimension? ?? ?? ? ?? ??? Euclidean loss? ?? ?? ?? [IV-2] Transferring Human Visual Capabilities to Machine 41
  • 42. Part 2. ???? EEG ?? Feature? ???? CNN-based Regression ? ?? ?? 2?? ? Approach 2. Deep feature extraction followed by regressor training ? Pre-trained AlexNet, GoogleNet, VGG? weights? initialization? ?? ? ? ??? CNN ??? ???? ??? ??? ???? regression methods ? ?? ? k-NN regression, ridge regression, random forest regression ? CNN ???? ??? ??? ??? EEG feature vector? ?? [IV-2] Transferring Human Visual Capabilities to Machine 42
  • 43. Part 2. ???? EEG ?? Feature? ???? CNN-based Regression ? Experimental Validation ? ?? Part 1?? ?? ??? ?? 128 Common + 128 Output ? feature vector ?? ? ? 2000 ?? ???? ??, CNN? regression ?? ?? `confusing¨ ? ???? ??? ??? ????? ??? EEG feature vector? ???? ?? ? ? ?? ???? ??? ?? ? Average: 6 ? ???? ? ???? ?? ??? feature vector? average ?? ? Best: ??? ???? ???, 6 ? ???? EEG feature vectors ??? ?? ?? classification loss? ?? ?? feature vector ??? ?? ? Result & Discussion ? Mean-square error? ?? ?? ? Approach 2? [GoogleNet + k-NN regression + Average EEG feature vector]? ?? ?? [IV-2] Transferring Human Visual Capabilities to Machine 43
  • 44. Part 3. Automated Visual Classification ? Experimental Validation ? ?? Part 1, Part 2?? ?? ??? ?? ???? ?? ?? ? GoogleNet + k-NN + Average EEG feature vector + 128 Common, 128 Output ? ??? ??? ? ?? Test data (10 %, 200? ???)?? 89.7 % ?? ??? ? ???? ?? Caltech-101? 30 class? ?? ?? ?? ?? ? GoogleNet/ VGG/ ??? ??? feature extractor? ?? ? Multiclass SVM classifier? ?? ???? ?? ??? ?? ? Result & Discussion ? Human Brain-driven Automated Visual Classification ? GoogleNet? ????? ??? ????, VGG?? ??? ?? ?? ? EEG encoder? regressor? ???? ?? ?? ????? ??? ???? ???? `impressive¨ ?? ?? [IV-2] Transferring Human Visual Capabilities to Machine 44
  • 45. ? Read the Mind, Generate the Image ???? ???? ??? ? ????? ? ??? ??? ???? ????? [IV-3] EEG-in/ Image-out 45 Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., & Shah, M. (2017, October). Generative Adversarial Networks Conditioned by Brain Signals. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3410-3418).
  • 46. ? Objective & Contribution ? Generative model? ??? ??? ??? ? ?? ???? ?? ? ??? ???? ? ??? ???? ?? ??, ??? ??? ????? ? ?? ?? ? Condition Generative Adversarial Network (cGAN) [IV-3] EEG-in/ Image-out 46
  • 47. ? Architecture ? A. Learning EEG Manifold ? B. Image Generation ? B-1. Generator ? B-2. Discriminator [IV-3] EEG-in/ Image-out 47 Input G1 G2 G3 G4 G5 1 x 100 (Random Noise) + 1 x 128 (EEG Feature) 4 x 4 x 512 8 x 8 x 256 16 x 16 x 128 32 x 32 x 64 64 x 64 x 3 Input DC1 DC2 DC3 DC4 DFC5 DFC6 64 x 64 x 3 32 x 32 x 64 16 x 16 x 128 8 x 8 x 256 4 x 4 x 512 + 4 x 4 x 8 (EEG Feature) 1024 1
  • 48. ? Experimental Validation ? Condition GAN ????? ?????, ?? ??? ?? ?? (40 class, 50 images) ? ???, ? ??? ??? ?? ????? ? 1??: EEG feature? zero vector? ??, non-conditional GAN ??? 100 epochs ?? ?? ? 2??: EEG feature vector? ?? ???? conditional GAN ??? 50 epochs ???? ? ??? ???? ??: inception score ? inception classification accuracy ? Results & Discussion ? ??? ???? ?? inception network classification ?? 43 % ??? ?? ? ?? ???? ????, 40 class ? ?? 43 % ?? ????? ?? (1/40 = 2.5 %) [IV-3] EEG-in/ Image-out 48 Good Results: Jack-o¨-Lantern & Panda Bad results: Banana & Bolete
  • 49. ? ??? ??? ??? ???? ???? 4?? ????? 7?? ?? ?? Conclusive Remarks 49 ?? ???? ?? ??? ??? ?? EEG domain I. Resting State EEG 1. Seizure Detection 1-D 13-L CNN ?? 2. Gender Prediction 6-L CNN ??-?? II. Mental-task Imagery 3. Motor Imagery (L/ R) CNN + SAE ??-??-??? III. Steady-state Evoked Potential 4. SSVEP Classification CNN & Visualization using 3 nodes ???-?? IV. Event Related Potential 5. P300 Speller CNN ??-?? 6. Human Visual Capabilities to Machine LSTM & CNN-regression ??-?? 7. EEG-in/ Image-out LSTM & (conditional) GAN ??-??