7. ? ?? ??
? Seizure: ??, ?? ????? ???? ??? ????? ?? ?? ??
? Epilepsy: ??, ??? ??? ??? ??? ?? ???? ??
[I-1] Seizure Detection
7
Acharya, U. R., Oh, S. L., Hagiwara, Y., Tan, J. H., & Adeli, H. (2017). Deep convolutional neural network for the automated detection and diagnosis of seizure using
EEG signals. Computers in biology and medicine.
9. ? Dataset
? Public dataset [Andrzejak, `01]
? 3 states: Normal, Pre-ictal, and Seizure
? 100 segments for each class
? ??? EEG segment ??
? Single channel EEG signals
? 23.6 sec, Ns = 4097 (Ns: ?? ?)
? Z-score normalization (mean 0, std. 1)
? Architecture
? 13-layer CNN
[I-1] Seizure Detection
9
[Andrzejak ¨01] R.G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, C.E. Elger, Indications of nonlinear deterministic and finite dimensional structures
in time series of brain electrical activity: dependence on recording region and brain state, Phys. Rev. E 64 (2001) 061907.
Color information
- Kernel size
- Max-pooling
- Fully connected layer
12. ? Dataset
? EEG data from 6 different Labs*
? 1308 subjects (mean age 43.38 (18.42 SD) y; range 18C98 y; 47% males)
? Eye-closed (EC) Resting EEG 2 min.
? ??? EEG segment ??
? 24 channels/ 2 sec, Fs = 128 Hz, Ns = 256 (?? ?)/ 1 ???? 40 EEG segments ??
? Band-pass filtering [0.5, 25]
? Architecture
? 6-layer Convolutional Neural Network
[I-2] Gender Prediction
12 *Brain Resource International Database (New York, Rhode Island, Nijmegen, London, Adelaide and Sydney).
13. ? Experimental Validation
? ??? ?? ??? ?? ???? cross-validation? ?? ??
? 1000? ???? ??? (40,000 EEG segments, 47% male)? train??,
308? ???? ??? (12,320 EEG segments, 49% male)? test
? ?? ?? 150 runs* ?? (batch size: 70)
? Results & Discussion
? Accuracy: 81 % (p < 10-5)
? ???? ?? ?, ? ?? ??? ??? (?? layer, ? ? filter size, ?/?? ?? ?)
? Visualization
of six convolutional layers
? Deep dream algorithm
?? [Mahendran, ¨15][Mahendran, ¨16]
? ??? CNN ????
??? (12-25 Hz) ?? ??
? ??? ???
logistic regression model ??
70 % accuracy
[I-2] Gender Prediction
13
[Mahendran, ¨15] Mahendran, A. & Vedaldi, A. Understanding deep image representations by inverting them. in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015).
[Mahendran, `16] Mahendran, A. & Vedaldi, A. Visualizing Deep Convolutional Neural Networks Using Natural Pre-images. Int. J. Comput. Vis. 120, 233C255 (2016).
14. ? Mental-task Imagery
? ???? ???? ???? ?? ??
? ?? ?? ?? (motor imagery), ? ?? (speech imagery) ?? ?? ??
? ???? ??
? [II-1] Motor imagery: Imagination of moving a body part without actual movement
II. Mental-task Imagery
14
15. ? Motivation & Objective
? BCI ???? ?? ?? ?? ??? ????? ????? ??? ???
? ????? ????? `Feature Extraction¨ ??? `Classification¨ ??? ??? ???
?? ?? ?? ? ?????
? Common Spatial Pattern (CSP), Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA), Support Vector Machine (SVM) ?? ??????
? ?? training data ? ?? ???? ???? ?? ??? ?? ?? ?????,
?? ???? ???? BCI ???? ?????? ????? ???? ??? ???
? ??? ? ??? ???? ???? ??? ???
? ? ????? ??? ??? ?? ??? ?? ??? ?? ??? ?? ??
[II-1] Motor Imagery
15 Tabar, Y. R., & Halici, U. (2016). A novel deep learning approach for classification of EEG motor imagery signals. Journal of neural engineering, 14(1), 016003.
23. [III-1] SSVEP Classification
23
Kwak, N. S., M┨ller, K. R., & Lee, S. W. (2017). A convolutional neural network for steady state visual evoked potential classification under ambulatory
environment. PloS one, 12(2), e0172578.
34. ? CNN? ? ??? ??? ???, ??? ??? visual object classifier ???
[IV-2] Transferring Human Visual Capabilities to Machine
34
Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., & Shah, M. (2017, July). Deep learning human mind for automated visual classification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6809-6817).
47. ? Architecture
? A. Learning EEG Manifold
? B. Image Generation
? B-1. Generator
? B-2. Discriminator
[IV-3] EEG-in/ Image-out
47
Input G1 G2 G3 G4 G5
1 x 100
(Random Noise)
+
1 x 128
(EEG Feature)
4 x 4 x 512 8 x 8 x 256 16 x 16 x 128 32 x 32 x 64 64 x 64 x 3
Input DC1 DC2 DC3 DC4 DFC5 DFC6
64 x 64 x 3 32 x 32 x 64 16 x 16 x 128 8 x 8 x 256
4 x 4 x 512
+
4 x 4 x 8
(EEG Feature)
1024 1