Il seguente materiale 竪 stato presentato in data 8 Aprile 2016, all'interno della conferenza 'Medicina Futura: il Domani 竪 Oggi' tenuta presso il Policlino Umberto I, Roma e organizzata dal SISM, sede di Roma, La Sapienza.
This document discusses a project that aims to improve decision-making by using wearable biosensors and machine learning to understand a person's cognitive state. Physiological signals like heart rate and skin temperature are collected from wearables during a calibration task to induce different cognitive workload levels. The FlyLoop framework extracts features from the raw sensor data and uses them to train a classifier, like SVM, to recognize states of high or low workload. This calibrated model could then be used to adaptively deliver decisions in a way that accounts for a person's workload, with the goal of improving their decision-making.
Consumer Electronics Show 2015 - A healthcare summaryGary Monk
油
A summary of the latest health technology, advances in remote medicine and pharma cases from the 2015 Consumer Electronics Show (CES) in Las Vegas. Outputs from the health exhibition and digital health sessions
What if Wearable Tech was like Press-on Nails?ctorgan
油
Imagine if wearable tech was more wearable, like press-on nails and fingernail polish. A look into the future at what wearable tech might become, what tech can learn from the press-on nails market, what sensor technology currently exists, and what trackers we might have in the future.
WearDuino presentation for Portland Wearables MeetupMark Leavitt
油
This document describes WearDuino, an open source wearable wireless sensor. It can be worn in various locations on the body through accessories like hats, shirts, wristbands, or socks. The core hardware consists of a small board with Bluetooth, sensors, and a battery. Optional sensor boards can add capabilities like heartbeat or flexion detection. The system is designed to be customizable so users can build exactly what they need. It aims to give users control over their own health and activity data.
This document discusses medical wearable devices and related topics. It covers the key technologies that enable medical wearables like sensors, computing, and connectivity. It also addresses regulatory considerations regarding whether a device is classified as a medical device or general wellness product based on its intended use and claims. Finally, it provides examples of medical wearables already on the market, including devices that monitor bio-data, glucose levels, and provide pain relief through electrotherapy.
The Future of Wearable Tech report in collaboration with iQ by intel identifies 10 trends and three major themes that point to the evolving form and function of wearable devices and their influence on the way we live, work and socialize. In our Connected Intimacy theme, we explore how wearables are revolutionizing the way we communicate information about ourselves and maintain relationships over any distance. With the Tailored Ecosystem theme, we look at how these devices are personalizing the world around us and adapting to our ever-changing needs. While the Co-Evolved Possibilities theme considers the potential and promise of a closer union between humans and technology and its impacts on our natural abilities.
Within these themes, we take an in-depth look at each of the key trends, bringing them to life with best-in-class examples and connecting the dots with takeaways to help spark thinking and discussion. As you click through the following slides, we hope you find inspiration and innovation that you can leverage and share within your own organization.
For more information about the report visit:
http://www.psfk.com/publishing/future-of-wearable-tech
Want to Learn More About This Topic or Any Other?
Go to labs.psfk.com to learn more about accessing in-depth trend reports on industries, markets, and topics, database access, workshops, presentati
Wearable and Mobile Computing for Health and WellnessBarracca
油
New wireless technology for tele-home-care purposes gives new possibilities for
monitoring of vital parameters with wearable biomedical sensors, and will give the patient
the freedom to be mobile and still be under continuously monitoring and thereby to better
quality of patient care. This paper describes a new concept for wireless and wearable
electrocardiogram (ECG) sensor transmitting signals to a diagnostic station at the hospital,
and this concept is intended for detecting rarely occurrences of cardiac arrhythmias and to
follow up critical patients from their home while they are carrying out daily activities
Infervision Coronavirus Neural Network Study (ICONS)CristinaDiNicola2
油
Several different artificial intelligence (AI) tools, built upon Machine Learning (ML) algorithms, are employed in order to analyse data and decision-making processes; these technologies are playing an important role in SARS-COV-2 pandemic, being able to study epidemiology, molecular research, drug development, medical diagnosis treatment, socioeconomics, and more.
An example of AI commercial tool for radiologist in COVID-19 evaluation, in codifying lung volumes on CT, is InferRead TM CT Lung Covid 19 (InferVision Europe, Wiesbaden, Germany), presented in this manuscript and tested.
Net hospital technoscience premio forum pa sanita 2021 template pptFelicePaoloArcuri1
油
Sistema di monitoraggio continuo e remoto dei pazienti, con controllo automatico di alcuni parametri, una base di predittivit ed un sistema di intelligenza artificiale
Net hospital technoscience premio forum pa sanita 2021 template pptFelice Paolo Arcuri
油
Sistema di monitoraggio continuo e remoto dei pazienti, con controllo automatico di alcuni parametri, una base di predittivit ed un sistema di intelligenza artificiale
Fiera del Levante - Presentazione dei progetti di ricerca e innovazione nella Spazio Ottagono della Ricerca e dell'Innovazione del padiglione 152 della Regione Puglia. 19 settembre 2013
Il brevetto protegge il metodo (e il dispositivo ad esso associato) per ottimizzare il posizionamento di sensori di pressione allinterno di una soletta ingegnerizzata per restituire il centro di pressione e la pressione plantare.
Realizzazione di un laboratorio clinico per la produzione di Dispositivi Medici personalizzati in stam,pa 3D per immobilizzazioni prolungate in ambito pediatrico
Intellisystem Technologies - Telemedicina applicata allo studio del morbo di ...Cristian Randieri PhD
油
Sistemi per le telerefertazione e telediagnostica a distanza
Sistemi modulari per il telecontrollo distribuito
Creazione di nuovi strumenti e tools per lanalisi delle capacit motorie e comportamentali del modello topo tuitcer
Applicazioni nel caso della leucodistrofia di Krabbe
Grazie a queste tecnologie e alla capillarizzazione della diffusione di Internet 竪 possibile:
Diagnosticare a distanza la malattia da parte di un esperto che fisicamente potrebbe trovarsi anche a diverse migliaia di Km (Es. esperienza di Grazia Sacco)
Monitorare a distanza diversi parametri vitali del paziente direttamente a casa propria limitando lo stress del soggetto e dei familiari.
By Ing. Cristian Randieri - Intellisystem Technologies
mHealth Technologies s.r.l. is a spin-off of the University of Bologna. We are a team of expert researchers in the fields of movement analysis, signal processing, algorithm development, wearable sensors, and data mining.mHT solutions provide relevant outcomes to the clinician and effective feedback to the users. Users become proactive in their health management.
mHT solutions are easy-to-use systems. Depending on the specific motor impairment, we use smartphones, tablet and ad hoc sensors.
We can also fully customize our systems in order to answer your specific needs, and we can provide support and data analysis service.
More Related Content
Similar to eHealth: La Rivoluzione dei Dispositivi Indossabili (20)
Wearable and Mobile Computing for Health and WellnessBarracca
油
New wireless technology for tele-home-care purposes gives new possibilities for
monitoring of vital parameters with wearable biomedical sensors, and will give the patient
the freedom to be mobile and still be under continuously monitoring and thereby to better
quality of patient care. This paper describes a new concept for wireless and wearable
electrocardiogram (ECG) sensor transmitting signals to a diagnostic station at the hospital,
and this concept is intended for detecting rarely occurrences of cardiac arrhythmias and to
follow up critical patients from their home while they are carrying out daily activities
Infervision Coronavirus Neural Network Study (ICONS)CristinaDiNicola2
油
Several different artificial intelligence (AI) tools, built upon Machine Learning (ML) algorithms, are employed in order to analyse data and decision-making processes; these technologies are playing an important role in SARS-COV-2 pandemic, being able to study epidemiology, molecular research, drug development, medical diagnosis treatment, socioeconomics, and more.
An example of AI commercial tool for radiologist in COVID-19 evaluation, in codifying lung volumes on CT, is InferRead TM CT Lung Covid 19 (InferVision Europe, Wiesbaden, Germany), presented in this manuscript and tested.
Net hospital technoscience premio forum pa sanita 2021 template pptFelicePaoloArcuri1
油
Sistema di monitoraggio continuo e remoto dei pazienti, con controllo automatico di alcuni parametri, una base di predittivit ed un sistema di intelligenza artificiale
Net hospital technoscience premio forum pa sanita 2021 template pptFelice Paolo Arcuri
油
Sistema di monitoraggio continuo e remoto dei pazienti, con controllo automatico di alcuni parametri, una base di predittivit ed un sistema di intelligenza artificiale
Fiera del Levante - Presentazione dei progetti di ricerca e innovazione nella Spazio Ottagono della Ricerca e dell'Innovazione del padiglione 152 della Regione Puglia. 19 settembre 2013
Il brevetto protegge il metodo (e il dispositivo ad esso associato) per ottimizzare il posizionamento di sensori di pressione allinterno di una soletta ingegnerizzata per restituire il centro di pressione e la pressione plantare.
Realizzazione di un laboratorio clinico per la produzione di Dispositivi Medici personalizzati in stam,pa 3D per immobilizzazioni prolungate in ambito pediatrico
Intellisystem Technologies - Telemedicina applicata allo studio del morbo di ...Cristian Randieri PhD
油
Sistemi per le telerefertazione e telediagnostica a distanza
Sistemi modulari per il telecontrollo distribuito
Creazione di nuovi strumenti e tools per lanalisi delle capacit motorie e comportamentali del modello topo tuitcer
Applicazioni nel caso della leucodistrofia di Krabbe
Grazie a queste tecnologie e alla capillarizzazione della diffusione di Internet 竪 possibile:
Diagnosticare a distanza la malattia da parte di un esperto che fisicamente potrebbe trovarsi anche a diverse migliaia di Km (Es. esperienza di Grazia Sacco)
Monitorare a distanza diversi parametri vitali del paziente direttamente a casa propria limitando lo stress del soggetto e dei familiari.
By Ing. Cristian Randieri - Intellisystem Technologies
mHealth Technologies s.r.l. is a spin-off of the University of Bologna. We are a team of expert researchers in the fields of movement analysis, signal processing, algorithm development, wearable sensors, and data mining.mHT solutions provide relevant outcomes to the clinician and effective feedback to the users. Users become proactive in their health management.
mHT solutions are easy-to-use systems. Depending on the specific motor impairment, we use smartphones, tablet and ad hoc sensors.
We can also fully customize our systems in order to answer your specific needs, and we can provide support and data analysis service.
3. Contesto
Il termine tecnologia
indossabile indica
ogni accessorio o
capo dabbigliamento
dotato di capacit di
calcolo, sensori e/o
trasmettitori.
CASIO DATABANK (anni 80)
6. Monitoraggio remoto
息 2016Vital Connect | www.vitalconnect.com/vitalpatch
5
VitalPatch, il biosensore usa e getta per favorire il
monitoraggio remoto dei pazienti.
Sensori
ECG
Accelerometro a 3 assi
Termistore
Batteria
Zinco-aria usa e getta
Durata: 3-4 gg
7. Una scarpa per diabetici
息 2015 EPFL | cole polytechnique f辿d辿rale de Lausanne
6
8. Una scarpa per diabetici
息 2015 EPFL | cole polytechnique f辿d辿rale de Lausanne
7
12. Il Segnale PPG
Il segnale PPG contiene due componenti principali:
Una componente DC che riflette le propriet ottiche dei tessuti sottostanti;
Una componente AC che mostra le variazioni di volume sanguigno durante il
ciclo cardiaco.
10
14. Obiettivo della Ricerca
Fusco, A., et al. "On how to extract breathing rate from PPG signal using wearable devices." BioCAS, IEEE, 2015.
12
Ci siamo posti come obiettivo lestrazione della frequenza
respiratoria tramite strumenti non convenzionali.
15. Algoritmo per estrazione BR
Fusco, A., et al. "On how to extract breathing rate from PPG signal using wearable devices." BioCAS, IEEE, 2015.
13
16. Algoritmo per estrazione BR
Fusco, A., et al. "On how to extract breathing rate from PPG signal using wearable devices." BioCAS, IEEE, 2015.
Il segnale viene filtrato passabanda con filtro FIR
(0.08 1.5 Hz)
14
17. Algoritmo per estrazione BR
Fusco, A., et al. "On how to extract breathing rate from PPG signal using wearable devices." BioCAS, IEEE, 2015.
15
18. Algoritmo per estrazione BR
Fusco, A., et al. "On how to extract breathing rate from PPG signal using wearable devices." BioCAS, IEEE, 2015.
16
19. Dati di Ricerca
Fusco, A., et al. "On how to extract breathing rate from PPG signal using wearable devices." BioCAS, IEEE, 2015.
Database Sperimentale
Registrazioni su soggetti adulti sani durante
sessioni notturne.
b) Fascia toracica per il respirogramma
a) Smartwatch per registrare il PPG
17
20. Dati di Ricerca
Fusco, A., et al. "On how to extract breathing rate from PPG signal using wearable devices." BioCAS, IEEE, 2015.
Database Sperimentale
Registrazioni su soggetti adulti sani durante
sessioni notturne.
b) Fascia toracica per il respirogramma
a) Smartwatch per registrare il PPG
18
Risultati
MAE (Respiri al minuto) 0.1586
s 0.9618
21. Riassumendo
Fusco, A., et al. "On how to extract breathing rate from PPG signal using wearable devices." BioCAS, IEEE, 2015.
19
In breve, la nostra ricerca ha prodotto un algoritmo in grado di estrarre
la frequenza respiratoria da segnale PPG. Le caratteristiche sono:
buona accuratezza;
basso costo computazionale;
elaborazione real-time per applicazioni wearable.
22. Per concludere 20
息 2015 | www.yole.fr | Sensors forWearable Electronics & Mobile Healthcare