際際滷

際際滷Share a Scribd company logo
FORMULARIO GENERAL DE CLCULO



Derivadas:


 d                                 d
    c=0                               x =1
 dx                                dx

 d         du                      d                   du   dv
    cu = c                            ( u + v + ...) =    +    + ...
 dx        dx                      dx                  dx   dx

 d n                               d n            du
    x = nx n1                        u = nu n 1
 dx                                dx             dx

                                                   du     dv
                                               v      u
 d         dv    du                d 錚 u 錚         dx     dx
    uv = u    +v                      錚 錚=
 dx        dx    dx                dx 錚 v 錚           v 2




           du
 d                                 d u             du
       u = dx                         a = au l n a
 dx       2 u                      dx              dx

 d              du                 d                  du
    senu = cosu                       cosu = s e n u
 dx             dx                 dx                 dx

 d                du               d                  du
    tanu = sec2 u                     cotu =  csc2 u
 dx               dx               dx                 dx

 d                  du             d                    du
    secu = tanusecu                   cscu =  cotucscu
 dx                 dx             dx                   dx

          du
 d                                 d u       du
    lnu = dx                          e = eu
 dx       u                        dx        dx




                               1
du                                                         du
 d                     dx                                d                        dx
    arc senu =                                              arccosu = 
 dx                   1  u2                             dx                      1  u2

              du                                                        du
 d                                                       d
    arctanu = dx 2                                          arccotu =  dx 2
 dx          1+ u                                        dx            1+ u

                          du                                                        du
 d                        dx                             d                          dx
    arc secu =                                              arccscu = 
 dx            u          u2  1                         dx             u           u2  1




Integrales:


 dx = x + c                                              cudx = c  udx
              x n+1
 x dx =            +c             para n  1
   n

              n+1

    dx
   x
       = ln x + c                                         ( u + v + ...) dx =  u d x +  v d x + ...
              u n +1
 u du =             +c            para u  1
   n

              n +1

    du
      = lnu + c                                          e du = e      +c
                                                            u        u

    u


    u + a dx =
       2      2 u
                2
                            u +a +
                               2   a2
                                   2
                                      ln u +
                                      2
                                                 (       u 2 + a2   )+ c
    u  a du =
       2      2 u
                2
                             u a 
                               2    a2
                                     2
                                      2
                                       ln u +    (       u2  a2    )+ c


                                                     2
u                   a2        u
     a u           du =        a u       +    arc sen + c
            2    2               2      2

                          2                   2         a


     u +a
            du
            2    2       (
                     = ln u +                )
                                  u 2 + a2 + c



     u a
            du
            2    2       (
                     = ln u +     u 2  a2   )+ c
            du                   u
     a2  u2
                     = arc sen
                                 a
                                   +c


      du     1        u
   u +a
      2  2 =
             a
               arctan
                      a
                        +c

      du     1     ua
   u a
      2  2 =
             2a
                ln
                   u+a
                       +c

      du     1     a+u
   a u
      2  2 =
             2a
                ln
                   au
                       +c


   sen u d u =  cosu + c                               cosudu = sen u + c
 tanudu = ln secu + c                                   cotudu = ln senu + c
 secu du = ln (tanu + secu ) + c                        cscudu = ln ( cscu  cotu ) + c
 sec       u d u = tanu + c                             csc u du =  cotu + c
        2                                                    2




 tanusecu du = tanu + c                                 cotucscudu =  cscu + c

principales identidades utilizadas en las integrales trigonom辿tricas:


sen2 x + cos 2 x = 1                                    tan 2 x + 1 = sec2 x
                                                                   1
cot 2 x + 1 = csc 2 x                                   sen2 x =     (1  cos 2x )
                                                                   2




                                                    3
1
cos 2 x =      (1 + cos 2 x )                             sen 2 x = 2 sen x cosx
             2

            sen x                                                    cosx
tanx =                                                    cot x =
            cosx                                                     sen x

              1                                                        1
secx =                                                    cscx =
            cos x                                                    sen x




integraci坦n por partes:               udv = uv   vdu


cambios de variable trigonom辿tricos:



                          para el radical        hacer el cambio

                                                           b
                                a 2x 2 + b 2       x=        tan t
                                                           a

                                                           b
                                a2 x 2  b2        x=        sect
                                                           a

                                                           b
                                b 2  a 2 x2       x=        sent
                                                           a




                                                  4
Ad

Recommended

Formulario integrales
Formulario integrales
shakalu
Formulario calculo integral
Formulario calculo integral
ORCI ALBUQUERQUE
Integrales sustituciones-trigonometricas
Integrales sustituciones-trigonometricas
Fabiana Carnicelli
Integral parsial tanzalin2
Integral parsial tanzalin2
Efuansyah Fizr
Matematica2 8
Matematica2 8
D辿bora Bastos
Formulario derivadas e integrales[1]
Formulario derivadas e integrales[1]
Israel Corona
Pertemuan 8 metode integrasi
Pertemuan 8 metode integrasi
Iwan Saputra
201-bai-tap-phuong-trinh-vi-phan
201-bai-tap-phuong-trinh-vi-phan
S董n DC
[Math educare] 201-bai-tap-phuong-trinh-vi-phan 1
[Math educare] 201-bai-tap-phuong-trinh-vi-phan 1
Nguyen Vietnam
Integration Formulas
Integration Formulas
hannagrauser1
2.4.tich phan ham_luong_giac_co_ban
2.4.tich phan ham_luong_giac_co_ban
Quyen Le
C担ng th畛c t鱈ch ph但n
C担ng th畛c t鱈ch ph但n
diemthic3
GRFICAS DE FUNCIONES
GRFICAS DE FUNCIONES
Gabriel Ayala
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
Jelena Dobrivojevic
Integration formulas
Integration formulas
Muhammad Hassam
Soal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRAL
Nurul Shufa
Logaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacine
Jelena Dobrivojevic
Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8
Quyen Le
Bi t畉p t鱈ch ph但n- nguy棚n hm
Bi t畉p t鱈ch ph但n- nguy棚n hm
diemthic3
Cong thuc-tich-phan
Cong thuc-tich-phan
Quoc Tuan
[123doc.vn] cac bai toan ve nhi thuc newton (autosaved)
[123doc.vn] cac bai toan ve nhi thuc newton (autosaved)
Ngoc Diep Ngocdiep
Tema 3 (Soluciones c叩lculo de derivadas)
Tema 3 (Soluciones c叩lculo de derivadas)
jhbenito
Formulario para calculo completo
William Hernandez Hdez
Formulario general de calculo
Formulario general de calculo
gian cristian
Formulas de transformada de laplace
Alejandro Bernardo
C叩lculo y Transformadas de Laplace
Fernando Antonio
Formulario de Matem叩ticas
Fernando Antonio
Ejercicios transformada de laplace
Jean Carlos Quispe Avila

More Related Content

What's hot (16)

201-bai-tap-phuong-trinh-vi-phan
201-bai-tap-phuong-trinh-vi-phan
S董n DC
[Math educare] 201-bai-tap-phuong-trinh-vi-phan 1
[Math educare] 201-bai-tap-phuong-trinh-vi-phan 1
Nguyen Vietnam
Integration Formulas
Integration Formulas
hannagrauser1
2.4.tich phan ham_luong_giac_co_ban
2.4.tich phan ham_luong_giac_co_ban
Quyen Le
C担ng th畛c t鱈ch ph但n
C担ng th畛c t鱈ch ph但n
diemthic3
GRFICAS DE FUNCIONES
GRFICAS DE FUNCIONES
Gabriel Ayala
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
Jelena Dobrivojevic
Integration formulas
Integration formulas
Muhammad Hassam
Soal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRAL
Nurul Shufa
Logaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacine
Jelena Dobrivojevic
Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8
Quyen Le
Bi t畉p t鱈ch ph但n- nguy棚n hm
Bi t畉p t鱈ch ph但n- nguy棚n hm
diemthic3
Cong thuc-tich-phan
Cong thuc-tich-phan
Quoc Tuan
[123doc.vn] cac bai toan ve nhi thuc newton (autosaved)
[123doc.vn] cac bai toan ve nhi thuc newton (autosaved)
Ngoc Diep Ngocdiep
Tema 3 (Soluciones c叩lculo de derivadas)
Tema 3 (Soluciones c叩lculo de derivadas)
jhbenito
201-bai-tap-phuong-trinh-vi-phan
201-bai-tap-phuong-trinh-vi-phan
S董n DC
[Math educare] 201-bai-tap-phuong-trinh-vi-phan 1
[Math educare] 201-bai-tap-phuong-trinh-vi-phan 1
Nguyen Vietnam
Integration Formulas
Integration Formulas
hannagrauser1
2.4.tich phan ham_luong_giac_co_ban
2.4.tich phan ham_luong_giac_co_ban
Quyen Le
C担ng th畛c t鱈ch ph但n
C担ng th畛c t鱈ch ph但n
diemthic3
GRFICAS DE FUNCIONES
GRFICAS DE FUNCIONES
Gabriel Ayala
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
Jelena Dobrivojevic
Soal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRAL
Nurul Shufa
Logaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacine
Jelena Dobrivojevic
Tich phan 216_tung_phan_8
Tich phan 216_tung_phan_8
Quyen Le
Bi t畉p t鱈ch ph但n- nguy棚n hm
Bi t畉p t鱈ch ph但n- nguy棚n hm
diemthic3
Cong thuc-tich-phan
Cong thuc-tich-phan
Quoc Tuan
[123doc.vn] cac bai toan ve nhi thuc newton (autosaved)
[123doc.vn] cac bai toan ve nhi thuc newton (autosaved)
Ngoc Diep Ngocdiep
Tema 3 (Soluciones c叩lculo de derivadas)
Tema 3 (Soluciones c叩lculo de derivadas)
jhbenito

Viewers also liked (7)

Formulario para calculo completo
William Hernandez Hdez
Formulario general de calculo
Formulario general de calculo
gian cristian
Formulas de transformada de laplace
Alejandro Bernardo
C叩lculo y Transformadas de Laplace
Fernando Antonio
Formulario de Matem叩ticas
Fernando Antonio
Ejercicios transformada de laplace
Jean Carlos Quispe Avila
Tutorial dise単o geometrico de carreteras con autocad civil 3 d 2016 dg 2014
Roberto Vargas
Formulario para calculo completo
William Hernandez Hdez
Formulario general de calculo
Formulario general de calculo
gian cristian
Formulas de transformada de laplace
Alejandro Bernardo
C叩lculo y Transformadas de Laplace
Fernando Antonio
Formulario de Matem叩ticas
Fernando Antonio
Ejercicios transformada de laplace
Jean Carlos Quispe Avila
Tutorial dise単o geometrico de carreteras con autocad civil 3 d 2016 dg 2014
Roberto Vargas
Ad

Formulario general de calculo

  • 1. FORMULARIO GENERAL DE CLCULO Derivadas: d d c=0 x =1 dx dx d du d du dv cu = c ( u + v + ...) = + + ... dx dx dx dx dx d n d n du x = nx n1 u = nu n 1 dx dx dx du dv v u d dv du d 錚 u 錚 dx dx uv = u +v 錚 錚= dx dx dx dx 錚 v 錚 v 2 du d d u du u = dx a = au l n a dx 2 u dx dx d du d du senu = cosu cosu = s e n u dx dx dx dx d du d du tanu = sec2 u cotu = csc2 u dx dx dx dx d du d du secu = tanusecu cscu = cotucscu dx dx dx dx du d d u du lnu = dx e = eu dx u dx dx 1
  • 2. du du d dx d dx arc senu = arccosu = dx 1 u2 dx 1 u2 du du d d arctanu = dx 2 arccotu = dx 2 dx 1+ u dx 1+ u du du d dx d dx arc secu = arccscu = dx u u2 1 dx u u2 1 Integrales: dx = x + c cudx = c udx x n+1 x dx = +c para n 1 n n+1 dx x = ln x + c ( u + v + ...) dx = u d x + v d x + ... u n +1 u du = +c para u 1 n n +1 du = lnu + c e du = e +c u u u u + a dx = 2 2 u 2 u +a + 2 a2 2 ln u + 2 ( u 2 + a2 )+ c u a du = 2 2 u 2 u a 2 a2 2 2 ln u + ( u2 a2 )+ c 2
  • 3. u a2 u a u du = a u + arc sen + c 2 2 2 2 2 2 a u +a du 2 2 ( = ln u + ) u 2 + a2 + c u a du 2 2 ( = ln u + u 2 a2 )+ c du u a2 u2 = arc sen a +c du 1 u u +a 2 2 = a arctan a +c du 1 ua u a 2 2 = 2a ln u+a +c du 1 a+u a u 2 2 = 2a ln au +c sen u d u = cosu + c cosudu = sen u + c tanudu = ln secu + c cotudu = ln senu + c secu du = ln (tanu + secu ) + c cscudu = ln ( cscu cotu ) + c sec u d u = tanu + c csc u du = cotu + c 2 2 tanusecu du = tanu + c cotucscudu = cscu + c principales identidades utilizadas en las integrales trigonom辿tricas: sen2 x + cos 2 x = 1 tan 2 x + 1 = sec2 x 1 cot 2 x + 1 = csc 2 x sen2 x = (1 cos 2x ) 2 3
  • 4. 1 cos 2 x = (1 + cos 2 x ) sen 2 x = 2 sen x cosx 2 sen x cosx tanx = cot x = cosx sen x 1 1 secx = cscx = cos x sen x integraci坦n por partes: udv = uv vdu cambios de variable trigonom辿tricos: para el radical hacer el cambio b a 2x 2 + b 2 x= tan t a b a2 x 2 b2 x= sect a b b 2 a 2 x2 x= sent a 4