Este documento proporciona información sobre cómo crear formularios en Google Drive. Explica que un formulario permite planificar eventos, enviar encuestas o recopilar información de forma eficiente. Detalla los pasos para crear un formulario, incluyendo ir a Drive, seleccionar "Formularios de Google", agregar preguntas y opciones de respuesta como texto, pruebas, casillas de verificación y escalas. También discute las ventajas como la sincronización entre dispositivos y desventajas como la dificultad de controlar quién responde las
湘南ミーティングChallenges for Real-time Activity Recognition報告Sozo Inoue
?
This document discusses using sensors and data sources to understand human behavior and emotions in an international camp setting. It outlines different sensor types that could be used like cameras, wearables, and mobile phone data to collect information on location, activities, and physiological signals. The goals are to get an overview of the emotional state of a region, adapt situations based on environmental information, and make recommendations based on personal behavior patterns. Visualizations of the data could show things like crowd density, stress levels, and activity distributions.
Wekaで分類学習アルゴリズムをCLIから利用するのと同じように,PHPスクリプトから利用する演習付きのスライドです.
NOTE: This presentation is written in Japanese.
This presentation include a process to use Weka classifiers from CLI.
In this presentation, I'll give you a small practice for use a decision tree learner, called J4.8, from Windows command line.
湘南ミーティングChallenges for Real-time Activity Recognition報告Sozo Inoue
?
This document discusses using sensors and data sources to understand human behavior and emotions in an international camp setting. It outlines different sensor types that could be used like cameras, wearables, and mobile phone data to collect information on location, activities, and physiological signals. The goals are to get an overview of the emotional state of a region, adapt situations based on environmental information, and make recommendations based on personal behavior patterns. Visualizations of the data could show things like crowd density, stress levels, and activity distributions.
Wekaで分類学習アルゴリズムをCLIから利用するのと同じように,PHPスクリプトから利用する演習付きのスライドです.
NOTE: This presentation is written in Japanese.
This presentation include a process to use Weka classifiers from CLI.
In this presentation, I'll give you a small practice for use a decision tree learner, called J4.8, from Windows command line.
パソコン向けにだけ Web サイトを作っていた頃はあまり必要性を感じられなかったプロトタイピングも、Webへアクセスする方法が増えてきたころから、その必要性も高まりつつあります。パソコン向けに絞ったとしても複雑なインタラクションを絵だけで共有するのが難しくなってきました。余計な書類を減らし、課題が具体的に見えてくるプロトタイプの魅力と活用を紹介。今回はプロトタイプの中でもペーパープロトタイピングにスポットを当てて、メリット?デメリットを解説します。
DeepRemote: A Smart Remote Controller for Intuitive Control through Home Appl...Yuta Takahashi
?
This document describes DeepRemote, a smart remote controller that uses deep learning for intuitive home appliance selection and control. It consists of a control unit with a camera and buttons and a deep learning unit for appliance recognition. The system was tested for classification accuracy of over 80% on average, response time of under 2 seconds, and faster control times than traditional remotes in user tests. Overall, DeepRemote demonstrates an effective deep learning approach for selecting and controlling home appliances intuitively with a single remote controller.
An Identification Method of IR Signals to Collect Control Logs of Home Applia...Yuta Takahashi
?
This document proposes a method to identify infrared (IR) signals from home appliances in order to collect control logs. It involves preprocessing raw IR signals into pulse width sequences, comparing signals using mean absolute error and sum absolute error, and constructing statistical models to identify appliance type with 95.5% accuracy and command type with 92% accuracy based on a database of 1,400 signals from 14 appliances. A simple simulation shows identification stability is achieved when the database includes 6 or more signals per appliance. The method could help automatically understand user preferences from appliance usage logs.
12. プロトタイピング基礎(I)
決定木による行動識別
? Classify > Classifier > Choose
? 学習器の選択
– weka > classifiers > trees > J48
– Test options > Use training set > start
– Result list > tree.J48 > 右クリック > Visualize tree
12
13. プロトタイピング基礎(I)
学習と評価のオプション
? Use training set
– 学習データとテストデータが一緒
? Supplied test set
– 別ファイルに用意したテストデータを識別
? Cross-validation
– データをm個に分割
– m - 1個を学習, 1個をテストに使用
– テスト用のデータを交換してm回行う
? Percentage split
– 指定した割合のデータを学習
13