The document proposes a new method called Sparse Isotropic Hashing (SIH) to learn compact binary codes for image retrieval. SIH imposes additional constraints of sparsity and isotropic variance on the hash functions to make the learning problem better posed. It formulates SIH as an optimization problem that balances orthogonality, isotropic variance and sparsity, and develops an algorithm to solve it. Experiments on a landmark dataset show SIH achieves comparable retrieval accuracy to the state-of-the-art method while learning hash codes 20 times faster.
The document proposes a new method called Sparse Isotropic Hashing (SIH) to learn compact binary codes for image retrieval. SIH imposes additional constraints of sparsity and isotropic variance on the hash functions to make the learning problem better posed. It formulates SIH as an optimization problem that balances orthogonality, isotropic variance and sparsity, and develops an algorithm to solve it. Experiments on a landmark dataset show SIH achieves comparable retrieval accuracy to the state-of-the-art method while learning hash codes 20 times faster.