Machine Learning Basics for Web Application DevelopersEtsuji Nakai
?
This document provides an overview of machine learning basics for web application developers. It discusses linear binary classifiers and logistic regression, how to measure model fitness with loss functions, and graphical understandings of linear classifiers. It then covers linear multiclass classifiers using softmax functions, image classification with neural networks, and ways to improve accuracy using convolutional neural networks. Finally, it discusses client applications that use pre-trained machine learning models through API services and examples of smile detection and cucumber classification.
Your first TensorFlow programming with JupyterEtsuji Nakai
?
This document provides an introduction and overview of TensorFlow and how to use it with Jupyter notebooks on Google Cloud Platform (GCP). It explains that TensorFlow is Google's open source library for machine learning and was launched in 2015. It is used for many production machine learning projects. Jupyter is introduced as an interactive web-based platform for data analysis that can also be used as a TensorFlow runtime environment. The document then provides details on the programming paradigm and model of TensorFlow, giving an example of using it for a least squares method problem to predict temperatures. It explains the key components of defining a model, loss function, and training algorithm to optimize variables in a session.
Bot と Wiki を使った試験的な並列プログラミング環境およびプログラム例を示す。情報セキュリティ担当者が頭を悩ませていた悪性Botの耐障害性と超並列性を、科学技術計算や一般的な計算を行うために有益な方向に利用することを目指す。例として動的計画法を用いて最小経路問題を解く並列プログラムを示す。ここで、必要な計算資源(BotとWebページの数)はノード数に比例し、最小経路を計算するのに必要な時間は、求まる最小経路の弧の数に比例する。
Introducton to Convolutional Nerural Network with TensorFlowEtsuji Nakai
?
Explaining basic mechanism of the Convolutional Neural Network with sample TesnsorFlow codes.
Sample codes: https://github.com/enakai00/cnn_introduction
This document provides an introduction to deep Q-networks (DQN) for beginners. It explains that DQNs can be used to learn optimal actions in video games by collecting data on screen states, player actions, rewards, and next states without knowing the game's rules. The key idea is to approximate a "Q function" that represents the total expected rewards if optimal actions are taken from each state onward. A deep neural network is used as the candidate function, and its parameters are adjusted using an error function to satisfy the Q-learning equation. To collect the necessary state-action data, the game is played with a mix of random exploration and exploiting the current best actions from the Q-network.
レッドハット 朝活セミナー(1/15, 2/18)の下記セッションでの発表予定資料です。
「Red Hat Enterprise Linux OpenStack Platform環境でのDocker活用テクニック」
https://www.redhat.com/ja/about/events/red-hat-asakatsu-seminar-2016
11. 11
Python 機械学習プログラミング
データの取り込み
■
Webで公開されているcsvデータをpandasのデータフレームに取り込みます。
- 取り込んだデータの説明は下記に記載されています。
●
http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3info.txt
- 数値自体に意味のないデータが数値で表現されている場合、誤った(意味のない)統計量を計算
しないように、データ型を文字列型に変換しておきます。いまの場合、「pclass(社会的地
位)」は数値で表現されていますが、この値の「平均値」を取っても特に意味はありません。
In [1]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from pandas import Series, DataFrame
In [2]: data = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic3.csv')
data['pclass'] = data['pclass'].map(str) # pclassの型を文字列型に変換
VARIABLE DESCRIPTIONS:
pclass Passenger Class
(1 = 1st; 2 = 2nd; 3 = 3rd)
survived Survival
(0 = No; 1 = Yes)
name Name
sex Sex
age Age
sibsp Number of Siblings/Spouses Aboard
parch Number of Parents/Children Aboard
ticket Ticket Number
fare Passenger Fare
cabin Cabin
embarked Port of Embarkation
(C = Cherbourg; Q = Queenstown; S = Southampton)
boat Lifeboat
body Body Identification Number
home.dest Home/Destination
タイタニック号の乗船名簿の情報に、
沈没による死亡情報を加えたものです。