際際滷

際際滷Share a Scribd company logo
Jurnal Ilmu Komputer dan Sistem Informasi
PREDIKSI PENERIMAAN SISWABARU PADAMADRASAH
ALIYAHAS-SAYAFIIYAH 02 MENGGUNAKAN METODE
TIME SERIES
Hermawan 1)
1)
Sekolahan Tinggi Manajemen Informatika dan Komputer Mercusuar
Jl. Raya Jatiwaringin 144, Pondok Gede Bekasi 17411 Indonesia
email : hermawanawang@gmail.com
ABSTRACT
Dalam penelitian ini dilakukan untuk
mengindentifikasi dan memprediksikan jumlah siswa
baru tahun 2016/2017, yaitu dengan satu teknik dalam
Data Mining yang digunakan peneliti ini adalah teknik
Time Series untuk memprediksi perolehan jumlah siswa
baru pada tahun 2016/2017 di Madrasah Aliyah As-
Syafiiyah 02, dimana hasil prediksi tersebut dapat
memberikan kemudahan kepada pihak Madrasah
Aliyah As-Syafiiyah 02 dalam menentukan langkah-
langkah strategi dalam mengambil keputusan dan
kebijakan pada tahun yang akan datang.
Berdasarkan hasil penelitian yang telah dilakukan
untuk prediksi jumlah penerimaan siswa baru. Salah
satunya teknik Time Series yang dapat mengetahui
target penerimaan siswa baru yang mengalami tingkat
akurasi prediksi jumlah penerimaan siswa baru di
tahun ajaran 2016/2017. Sehingga dapat membantu
memberikan informasi berharga kepada Madrasah
Aliyah As-Syafiiyah 02 sebagai gambaran dasar
pengambilan keputusan.
Key words
kata kunci, Prediksi, Penerimaan Siswa, Metode Time Series,
Data Mining., Minitab versi 16.
1. Pendahuluan
Sekolah atau lembaga pendidikan formal setiap
tahun rutin mengadakan kegiatan penerimaan siswa
baru. Jumlah siswa baru pada penerimaan siswa tahun
ajaran baru dapat mengalami peningkatan dan dapat
juga mengalami penurunan, sehingga diperlukan
adanya prediksi atau peramalan untuk mengetahui
perolehan jumlah siswa baru, agar semua kebijakan dan
keputusan dalam menyusun perencanaan manajemen ke
depan dapat terpenuhi dengan baik di Madrasah Aliyah
As-Syafiiyah 02 yang telah berupaya melakukan
prediksi jumlah siswa baru berdasarkan pengalaman
tahun sebelumnya, namun hasilnya tidak tepat. Turun
naik jumlah siswa baru tersebut merupakan suatu
masalah yang dihadapi Madrasah Aliyah As-Syafiiyah
02 dalam menentukan langkah-langkah strategis dan
kebijakan terkait dengan promosi sekolah, penyediaan
fasilitas/inprastruktur sekolah dan target penerimaan
siswa baru tahun-tahun selanjutnya.
Beberapa solusi prediksi penerimaan siswa baru
yang dapat diselesaikan dengan data mining adalah
menebak target jumlah siswa baru, melihat pola dari
waktu ke waktu. (Richard, 2011). Berdasarkan
permasalahan di atas dibuatlah prediksi penerimaan
siswa baru menggunakan metode Time Series pada
Madrasah Aliyah As-Syafiiyah 02 sehingga dari
penelitian ini dapat diketahui jumlah siswa baru yang
baik dalam kurun waktu tertentu.
Berdasarkan yang telah diuraikan diatas, maka
rumusan masalah pada penelitian ini adalah
Bagaimana penerapan metode time series dapat
memprediksi jumlah siswa baru di tahun yang akan
datang dan Dari hasil prediksi dapat membantu
Dalam pengambilan keputusan yang baik
2. Sistem Persamaan Linier
2.1 Pengertian Prediksi
Prediksi atau peramalan (Forecasting) adalah
kegiatan memperkirakan atau memprediksi apa yang
akan terjadi pada masa yang akan datang dengan waktu
yang relitif lama. Sedangkan ramalan adalah suatu
situasi atau kondisi yang akan diperkirakan kan terjadi
pada masa yang akan datang (William & Choung,
2014, p. 76)
Menurut Hary Prasetya dan Fitri Lukiastuti (Hary &
Fitri, 2013, p. 43), peramalan atau prediksi adalah seni
dan ilmu untuk meperkirakan kejadian dimasa depan
melalui pengujian di masa lalu. Pengujian tersebut atas
dasar pola-pola di waktu yang lalu dengan melibatkan
pengambilan data masa lalu dan menempatkannya ke
masa yang akan datang dengan model matematis.
1
Jurnal Ilmu Komputer dan Sistem Informasi
Prediksi atau peramalan adalah proses memperkirakan
berapa kebutuhan dimasa datang yang meliputi
kebutuhan kuantitas, kualitas, waktu dan lokasi yang
dibutuhkan dalam rangka memenuhi permintaan barang
atau jasa (Hakim & Prasetyawan, 2013, p. 29).
Peramalan adalah upaya mempekirakan apa yang
terjadi di masa depan, berbasis pada metode ilmiah
(ilmu dan teknologi) serta dilakukan secara sistematis
(Sri Mulyono, 2010, p. 10).
2.2 Pengerian Time Series
Perencanaan dan pembuatan keputusan
membutuhkan dugaan-dugaan tentang apa yang akan
terjadi dimasa yang akan datang. Karena itu analisis
diharapkan untuk membuat ramalan-ramalan, salah
satunya adalah dengan model time series.
Time series adalah serangakain nilai-nilai variabel
yang disusun berdasarkan waktu (Sri Mulyono, 2010, p.
10). Analisis time series mempelajari pola gerakan-
gerakan nilai-nilai variabel pada satu interval waktu
(misal minggu, bulan, dan tahun) yang teratur.
(Soezati, Zanzawi. 2010) mengemukakan bahwa
pendugaan masa depan dilakukan berdasarkan nilai
masa lalu. Tujuan metode peramalan deret berkala
(time series) seperti ini adalah menemukan pola dalam
deret historis dan mengekstrapolasikan pola tersebut
kemasa depan.
Langkah penting dalam memilih suatu deret
berkala (time series) yang tepat adalah dengan
mempertimbangkan jenis pola data, sehingga metode
yang paling tepat dengan pola tersebut dapat diuji. Pola
data menurut Spyros (Soezati, Zanzawi. 2010) dapat
dibedakan menjadi empat jenis siklis dan trend.
a. Pola Harizontal (H)
Terjadi apabila nilai data fluktuasi disekitar nilai
rata-rata yang konstan. Suatu calon mahasiswa baru
yang tidak meningkat dan menurun selama waktu
tertentu, termasuk kedalam pola ini.
b. Pola Musiman
Terjadi apabila suatu deret dipengaruhi oleh
musiman (misal kuartal tahun tertentu)
c. Pola Siklis
Terjadi apabila datanya dipengaruhi oleh fluktuasi
ekonomi jangka panjang seperti yang behubungan
siklis bisnis.
d. Pola Trend
Terjadi apabila terdapat kenaikan atau penurunan
sekuler jangka panjang dalam data.
2.3 Prediksi dengan metode Penghalusan
Eksponensial (exponential smoothing)
Penghalusan eksponensial (exponential
smoothing) adalah suatu tipe teknik peramalan rata-rata
bergerak yang melakukan penimbangan terhadap data
masa lalu dengan cara eksponensial sehingga data
paling akhir mempunyai bobot atau timbangan lebih
besar dalam rata-rata bergerak. (Sriyati, 2010, P, 279).
1. Metode penghalusan eksponensial orde satu (single
exponential smoothing)
Metode penghalusan eksponensial orde satu (single
exponential smoothing) sebenarnya merupakan
perkembangan dari metode rata-rata bergerak
(moving average) sederhana. Metode ini
dipergunakan secara luas di dalam Peramalan
(forecasting) karena sederhana, efisien di dalam
perhitungan dan perubahan ramalan, mudah
disesuaikan dengan perubahan data, dan ketelitian
metode ini cukup besar.
Rumus :
Ket : = Nilai prediksi untuk periode waktu
ke-t
= Nilai actual untuk periode waktu
yang lalu ke-t
= Nilai prediksi untuk satu periode
waktu lalu ke-t
= Konstanta nilai pemulusan
2. Metode penghalusan eksponensial orde dua (double
exponential smoothing)
Metode double exponential smoothing yang dapat
digunakan untuk menyelesaikan trend linier adalah
metode dua paramenter dari Holt. Metode Holt nilai
trend tidak dimuluskan dengan pemulusan ganda
secara langsung, tetapi proses pemulusan trend
dilakukan dengan menggunaka paramenter yang
berbeda dengan paramenter yang digunakan pada
pemulusan data asli. Metode double exponential
smoothing digunakan ketika data menunjukan
adanya trend. Rumus double exponential smoothing
:
Rumus :
Ket : = Nilai pemulusan tunggal
= Nilai sebenarnya pada waktu ke-t
2
Jurnal Ilmu Komputer dan Sistem Informasi
= Pemulusan trend
= Nilai Prediksi
= Periode masa mendatang
= Konstanta dengan nilai antara 0
dan
1
2.4 Penghitungan Manual Pengukuran Akurasi hasil
Prediksi dengan Pemulusan Eksponensial Orde
Satu/Tunggal (Single Eksponential Smoothing)
Dalam penelitian ini, untuk mengukur akurasi
hasil prediksi penulis menggunakan pengukuran Mean
Deviation Absolute (MAD), Mean Squared Error
(MSE) dan Mean Absolute Percentage Error (MAPE).
a. Mean Deviation Absolute (MAD)
MAD merupakan salah satu cara yang dapat
digunakan untuk dapat mengetahui ukuran
kesalahan peramalan. MAD merupakan rata-rata
dari nilai absolute simpangan. Rumus perhitungan
MAD adalah:
Ket :
Xt = Nilai data aktual pada periode t
St = Nilai hasil peramalan pada periode t
t = Periode peramalan
n = Banyaknya data
Sebelum menghitung rata-rata nilai absolute kita
hitung dulu selisih error dimana nilai aktual
dikurangi nilai prediksi/ramalan (data aktual  nilai
prediksi).
b. Mean Squared Error (MSE)
MSE merupakan salah satu cara yang dapat
digunakan untuk dapat mengetahui ukuran
kesalahan peramalan. Memiliki arti rata-rata
kesalahan peramalan yang dikuadratkan. Rumus
perhitungan MSE adalah:
Keterangan:
Xt = Nilai data aktual pada periode t
St = Nilai hasil peramalan pada periode t
t = Periode peramalan
n = Banyaknya data
Sama seperti penghitungan Mean Absolute
Deviation (MAD), sebelum menghitung Mean
Squared Error (MSE) kita hitung dulu jumlah
selisih antara data aktual dengan data peramalan.
c. Mean Absolute Percentage Error (MAPE)
Mean Absolute Percentage Error (MAPE) dihitung
dengan menggunakan kesalahan absolut pada tiap
periode dibagi dengan nilai observasi yang nyata
untuk periode itu. Kemudian, merata-rata kesalahan
persentase absolut tersebut. MAPE merupakan
pengukuran kesalahan yang menghitung ukuran
presentase penyimpangan antara data aktual dengan
data peramalan. Nilai MAPE dapat dihitung dengan
persamaan berikut.
Keterangan:
Xt = Nilai data aktual pada periode t
St = Nilai hasil peramalan pada periode t
t = Periode peramalan
n = Banyaknya data
Untuk menentukan Mean Absolute Percentage
Error (MAPE) kita bisa mengambil data
perhitungan dari Mean Absolute Deviation (MAD)
yang kemudian ditindaklanjuti dengan perhitungan
menggunakan rumus MAPE.
2.5 Program Minitab 16
Perkembangan ilmu pengetahuan dan teknologi
sekarang ini telah menciptakan perangkat yang
memudahkan dan mempersingkat kerja manusia dalam
berbagai hal seperti pengolahan data statistik.Minitab
merupaka salah satu perangkat lunak yang dibuat untuk
mempermudah proses peramalan jika data yang
digunakan sangat banyak. Penggunaan software minitab
dalam kegiatan ini bertujuan agar proses peramalan
mudah dilakukan dan hasil peramalan yang diperoleh
juga lebih akurat. Minitab merupakan perangkat lunak
yang digunakan sebagai media pengolahan data yang
dapat menyediakan berbagai jenis perintah yang
menyediakan perintah dalam proses pemasukan data,
manipulasi data, pembuatan grafik, penganalisaan
numerik, dan analisis statistik ( irwan, Nur. 2000).
Adapun langkahlangkah penggunaan software minitab
dalam melakukan peramlan adalah sebagai berikut.
e. Pemasukan / Input Data ke Dalam Program Minitab
Langkahnya yaitu jalankan software minitab dengan
cara klik Start  Minitab 11 for window 
Minitab, maka akan muncul tampilan seperti di
bawah ini:
Jurnal Ilmu Komputer dan Sistem Informasi
Gambar 1 Tampilan Worksheet Minitab
Untuk memasukan data runtun waktu yang akan kita
olah terlebih dahulu klik pada cell baris 1 kolom C1.
Kemudian ketik data pertama dan seterusnya secara
menurun dalam kolom yang sama. Dengan format
kolom tersebut harus angka/ numerik.
f. Menggambar Grafik Data Runtun Waktu
Langkah-langkahnya adalah:
1) Pilih menu Stat, caranya dengan klik tombol
kiri pada mouse pilih menu Time Series 
Singel Exponential Smooting.
2) Kemudian klik data yang akan digambar
grafiknya misal kolom C1, kemudian klik
Select, maka kolom Y baris pertama akan
muncul tulisan C1. Kalau data yang ingin
digambar grafiknya lebih dari satu. Letakan
kursor pada Y baris 2 dan seterusnya.
Kemudian pilih kolom data yang akan
digambarkan grafiknya. Maka akan muncul
tampilan seperti di bawah ini:
Gambar 2. Pemilihan Menu Singel Exponential Smooting
201620152014201320122011
100
90
80
70
60
50
40
30
20
10
Tahun
JumlahSiswabaru
Alpha 0.1
Smoothing Constant
MAPE 29.261
MAD 15.934
MSD 317.326
Accuracy Measures
Actual
Fits
Forecasts
95.0% PI
Variable
Smoothing Plot for Jumlah Sisw a baru
Single Exponential Method
Gambar 3. Grafik Menggunakan alpha 0.1 Singel Exponential
Smooting
3. Hasil Pembahasan
3.1 Literatur Preview
Penulis mengutip dari jurnal (Fernando & Setiono,
2012) dengan judul  Perancangan Data Warehouse
Dan Penerapan Algoritma Time Series Untuk
Memprediksi Informasi Pertumbuhan Penduduk Di
Provinsi Bengkulu membahas tentang penerapan
algoritma time series untuk memprediksikan
pertumbuhan penduduk di provinsi bengkulu yang
selalu meningkat hal ini menciptakan kondisi data yang
berlimpah tapi minim informasi.
Pada penulisan yang dilakukan oleh (Kristien &
Sofia, 2015) dengan judul Analisa Dan Penerapan
metode Single Exponential Smoothing Untuk Prediksi
Penjualan Pada Periode Tertentu (studi kasus : PT.
Media cemara kreasi) membahas tentang prediksi
barang apa yang harus dijual ditiap bulannya.
Pada penulisan yang dilakukan oleh (Dimas, 2011)
dengan judul Analisis Runtun Waktu Untuk
Meramalkan Jumlah Pasien Yang Berobat Di
Puskesmas Blora Dengan Menggunakan Software
Minitab 14 membahas tentang untuk mengetahui
model analisis runtun waktu yang tepat untuk
peramalan jumlah pasien yang berobat di Puskesmas
Blora dan selanjutnya diketahui besar peramalan jumlah
pasien yang berobat di Puskesmas wilayah Blora pada
periode yang telah ditentukan ke depannya.
Pada penulisan yang dilakukan (Haryadi, 2012)
dengan judul Prediksi Jumlah Penerimaan Siswa SMK
Swasta Tahun Ajaran 2011/2012 membahas tentang
prediksi jumlah siswa Sekolah Menengah Kejuruan
(SMK) swasta modern di sebuah propinsi di
Kalimanatan dengan pendekatan enam metode
forecasting yaitu Linear Regression, Exponential
Smoothing With Trend, Exponential Smoothing,
Weighted Moving Average, Moving Average, dan
Na誰ve Method, selain menggunakan perhitungan secara
4
Jurnal Ilmu Komputer dan Sistem Informasi
Manual juga menggunakan pendekatan QM for
windows, sebagai perbandingan.
Pada penulisan yang dilakukan oleh (Sidik, 2012)
dengan judul Forecasting Volume Produksi Tanaman
Pangan, Tanaman Perkebunan Rakyat Kab. Magelang
Dengan Metode Exponential Smoothing
Berbantu Minitab membahas tentang bagaimana
penggunaan Metode Exponential Smoothing untuk
peramalan volume produksi tanaman pangan, produksi
perkebunan rakyat Kabupaten Magelang dengan
Minitab
3.2 Data Siswa Baru
Pada proses ini data yang digunakan yaitu dari
tahun 2011 sampai dengan tahun 2015 pada Madrasah
Aliyah As-Syafiiyah 02 adalah sebagai berikut :
Tabel 1 Data Siswa Baru dari Tahun 2011-2015
Tahun
penerimaan
Jumlah Siswa Baru
2011 40
2012 39
2013 55
2014 75
2015 80
3.3 Hasil Penerapan Time Series Menggunakan
Aplikasi Minitab 16
Dari hasil penerapan menggunakan algoritma time
series untuk memprediksi penerimaan siswa baru
menggunakan data siswa baru yang di dapat
dariMadrasah Aliyah As-Syafiiyah 02 dengan
menggunakan Minitab 16 adalah sebagai berikut.
1. Langkah Pertma yaitu pengimputan data siswa baru
ditunjukan gambar dibawah ini.
Gambar 4. Tampilan Input Data Jumlah Siswa
2. Langkah kedua yaitu pemilihan stat untuk
memasukan data siswa baru kedalam sistem
algoritma time series yang menggunakan model
singel exponesial smooting dari nilai alpha 0,1, 0,5
dan 0,9, seperti yang ditunjukan pada gambar
dibawah ini.
Gambar 5. Tampilan Algoritma Time Series dengan Model Singel
Exponensial Smooting
3. Yang ketiga yaitu menujukan grafik hasil pengujian
dari perhitungan prediksi menggunakan aplikasi
minitab 16 dengan algoritma time series yang
diperoleh dari model singel exponesial smooting
dari nilai alpha 0,1, 0,5 dan 0,9, seperti yang
ditunjukan pada gambar dibawah ini.
a. Grafik nilai alpha 0,1
Gambar 6. Tampilan Grafik Prediksi Jumlah Siswa Baru Dengan Alpha
0,1
Dari hasil gambar gerafik diatas maka tingkat
akurasi prediksi error untuk nilai alpha 0,1, seperti
yang ditunjukan pada gambar 7.
Jurnal Ilmu Komputer dan Sistem Informasi
Gambar 7. Tampilan Tingkatan Akurasi Kerrorran dan Prediksi Jumlah
Siswa Baru Dengan Alpha 0,1
Dengan demikian hasil prediksi menggunkan
algoritma time series dari perhitungan model singel
exponensial semoting yang menggunakan nilai
alpah 0,1 yaitu denggan tingkat akurasi error untuk
MAPE 29,261, MAD 15,934 dan MSD 317,326
maka perdiksi jumlah siswa baru di tahun 2016
untuk perhitungan menggunakan alpha 0,1 adalah
58,8028 yang dibulatkan menjadi 59 siswa.
b. Grafik nilai alpha 0,5
Gambar 8. Tampilan Grafik Prediksi Jumlah Siswa Baru Dengan Alpha
0,5
Dari hasil gambar gerafik diatas maka tingkat
akurasi prediksi error untuk nilai alpha 0,5, seperti
yang ditunjukan pada gambar 9.
Gambar 9. Tampilan Tingkatan Akurasi Kerrorran dan Prediksi Jumlah
Siswa Baru Dengan Alpha 0,5
Dengan demikian hasil prediksi menggunkan
algoritma time series dari perhitungan model singel
exponensial semoting yang menggunakan nilai
alpah 0,5 yaitu denggan tingkat akurasi error untuk
MAPE 29,243, MAD 16,407 dan MSD 300,797
maka perdiksi jumlah siswa baru di tahun 2016
untuk perhitungan menggunakan alpha 0,1 adalah
71,1188 yang dibulatkan menjadi 71 siswa.
c. Grafik nilai alpha 0,9
Gambar 10. Tampilan Grafik Prediksi Jumlah Siswa Baru Dengan
Alpha 0,9
Dari hasil gambar gerafik diatas maka tingkat
akurasi prediksi error untuk nilai alpha 0,9, seperti
yang ditunjukan gambar dibawah ini.
6
Jurnal Ilmu Komputer dan Sistem Informasi
Gambar 11. Tampilan Tingkatan Akurasi Kerrorran dan Prediksi
Jumlah Siswa Baru Dengan Alpha 0,9
Dengan demikian hasil prediksi menggunkan
algoritma time series dari perhitungan model singel
exponensial semoting yang menggunakan nilai
alpah 0,9 yaitu denggan tingkat akurasi error untuk
MAPE 23,585, MAD 13,006 dan MSD 217,667
maka perdiksi jumlah siswa baru di tahun 2016
untuk perhitungan menggunakan alpha 0,9 adalah
79,2843 yang dibulatkan menjadi 79 siswa.
4. Kesimpulan
Hasil penelitian ini menyimpulkan bahwa data time
series dapat diprediksi dengan menggunakan model
singel exponensial smooting, dengan hasil
perbandingan tingkatan akurasi prediksi ke errorran
terkecil dari nilai alpha 0,1, 0,5 dan 0,9 yaitu terdapat
ditingkatan nilai alpha 0,9 dengan akurasi kerrorran
terkecil sebesar MAPE 23,585, MAD 13,006 dan MSD
217,667. Sehinggga menghasilkan prediksi penerimaan
siswa baru di tahun 2016 sebesar 79 siswa dengan
tingkat keberhasilannya yang diterima mencapai 95%
dan tingkat kegagalanya yang tidak diterima mencapai
5 %, maka disimpulkan bahwa nilai alpha 0,9 lebih
dominan untuk tingkat keberhasilannya, Jika
dibandingkan dengan nilai alpha 0,1 dan 0,5 yang
tingkatan akurasi kerrorrannya sangat tinggi.
REFERENSI
[1] Dimas. (2011). Analisis Runtun Waktu Untuk
Meramalkan Jumlah Pasien Yang Berobat Di Puskesmas
Blora Dengan Menggunakan Software Minitab 14.
Universitas Negeri Semarang
[2] Haryadi. (2012). Prediksi Jumlah Penerimaan Siswa
SMK Swasta Tahun Ajaran 2011/2012. Jakarta Barat
[3] Hary Prasetya, F. L. (2013). Manajemen Operasi.
Jakarta: PT. Buku Kita.
[4] H. N., & Prasetyawan. (2013). Perencanaan dan
Pengendalian Produksi. Yogyakarta: Graha
Ilmu.Castleman, Kenneth R., 1998, Digital Image
Processing, Prentice Hall, New Jersey.
[5] Irwan, Nur. 2000. Mengolah Data Statistik Dengan Muda
h Menggunakan Minitab 14. Yogyakarta: Andi Ofset.
[6] Kristien & Sofian. (2015). Analisa Dan Penerapan
metode Single Exponential Smoothing Untuk Prediksi
Penjualan Pada Periode Tertentu (studi kasus : PT.
Media cemara kreasi). Jakarta
[7] Nur Sidik. (2012). Forecasting Volume Produksi
Tanaman Pangan, Tanaman Perkebunan
Rakyat Kab. Magelang Dengan Metode
Exponential Smoothing Berbantu Minitab. Universitas
Negeri Semarang
[8] Richard. (2011). Perception-Based Approach To Time
Series Data Mining.
[9] Roby , S. A. (2012). Perancangan Data Warehouse
Dan Penerapan Algoritma Time Series Untuk
Memprediksi Informasi Pertumbuhan Penduduk Di
Provinsi Bengkulu. Palembang.
[10] Sri Mulyono. (2010). Analisis Times Series. Jakarta: Elex
Media Komputindo.
[11] Soejati, Zanzawi. 2010. Analisis Runtun Waktu. Jakarta:
Karunia Jakarta.
[12] Sriyati. 2005. Forecasting Jumlah Pelanggan Koran Sore
Wawasan Tahun 2005 Berdasarkan Hasil Promosi di PT.
Sarana Pariwara Semarang Dengan Menggunakan Metode
Exponential Smoothing Berbentu Program Minitab.
Matematika: UNNES.

More Related Content

What's hot (18)

Krm 3043 pengurusan data tugasan 1(norlia bt ismail) d20102043530
Krm 3043 pengurusan data tugasan 1(norlia bt ismail) d20102043530Krm 3043 pengurusan data tugasan 1(norlia bt ismail) d20102043530
Krm 3043 pengurusan data tugasan 1(norlia bt ismail) d20102043530
Nor Lia
Anton azwar ardywinata - j1 f109003
Anton azwar ardywinata - j1 f109003Anton azwar ardywinata - j1 f109003
Anton azwar ardywinata - j1 f109003
Notnaa Originally
Bab 1 (pengertian statistik)
Bab 1 (pengertian statistik)Bab 1 (pengertian statistik)
Bab 1 (pengertian statistik)
fatria anggita
Bahan ajar statistik bisnis
Bahan ajar statistik bisnisBahan ajar statistik bisnis
Bahan ajar statistik bisnis
Nardiman SE.,MM
Siti nurhaliza, hapzi ali, sistem pendukung pengambilan keputusan, umb jakart...
Siti nurhaliza, hapzi ali, sistem pendukung pengambilan keputusan, umb jakart...Siti nurhaliza, hapzi ali, sistem pendukung pengambilan keputusan, umb jakart...
Siti nurhaliza, hapzi ali, sistem pendukung pengambilan keputusan, umb jakart...
Siti Nurhaliza
Statistik
StatistikStatistik
Statistik
Aidia Propitious
67 jurnal skripsi dwi martha - fuzzy mamdani
67 jurnal skripsi dwi martha - fuzzy mamdani67 jurnal skripsi dwi martha - fuzzy mamdani
67 jurnal skripsi dwi martha - fuzzy mamdani
irhdy
Analisa klasifikasi biaya pasien rawat inap menggunakan teknik data mining at...
Analisa klasifikasi biaya pasien rawat inap menggunakan teknik data mining at...Analisa klasifikasi biaya pasien rawat inap menggunakan teknik data mining at...
Analisa klasifikasi biaya pasien rawat inap menggunakan teknik data mining at...
Koltiva
Makalah statistika
Makalah statistikaMakalah statistika
Makalah statistika
Bonz D's
Espa4123 statistika modul 2
Espa4123 statistika   modul 2Espa4123 statistika   modul 2
Espa4123 statistika modul 2
Ratzman III
Intisari emy fitryani
Intisari emy fitryaniIntisari emy fitryani
Intisari emy fitryani
ekaputragunartha
3 konsep data statistik c
3 konsep data statistik c3 konsep data statistik c
3 konsep data statistik c
Ishaq Madeamin
Nominal nombor
Nominal nomborNominal nombor
Nominal nombor
ngasi
Peranan statistik dalam kehidupan sehari
Peranan statistik dalam kehidupan sehariPeranan statistik dalam kehidupan sehari
Peranan statistik dalam kehidupan sehari
Oki Mentari
Rat sat statistika ekonomi
Rat sat statistika ekonomiRat sat statistika ekonomi
Rat sat statistika ekonomi
Ratzman III
Bab03 ukuranpemusatan-090318095104-phpapp02-110702093055-phpapp02
Bab03 ukuranpemusatan-090318095104-phpapp02-110702093055-phpapp02Bab03 ukuranpemusatan-090318095104-phpapp02-110702093055-phpapp02
Bab03 ukuranpemusatan-090318095104-phpapp02-110702093055-phpapp02
Wayan Sudiarta
Jurnal biaya pasien rawat inap penyakit jantung
Jurnal biaya pasien rawat inap penyakit jantungJurnal biaya pasien rawat inap penyakit jantung
Jurnal biaya pasien rawat inap penyakit jantung
Andy Murtanto
Statistika presentasi: untuk mahasiswa PKN LPKIA
Statistika presentasi: untuk mahasiswa PKN LPKIAStatistika presentasi: untuk mahasiswa PKN LPKIA
Statistika presentasi: untuk mahasiswa PKN LPKIA
guest232a662
Krm 3043 pengurusan data tugasan 1(norlia bt ismail) d20102043530
Krm 3043 pengurusan data tugasan 1(norlia bt ismail) d20102043530Krm 3043 pengurusan data tugasan 1(norlia bt ismail) d20102043530
Krm 3043 pengurusan data tugasan 1(norlia bt ismail) d20102043530
Nor Lia
Anton azwar ardywinata - j1 f109003
Anton azwar ardywinata - j1 f109003Anton azwar ardywinata - j1 f109003
Anton azwar ardywinata - j1 f109003
Notnaa Originally
Bab 1 (pengertian statistik)
Bab 1 (pengertian statistik)Bab 1 (pengertian statistik)
Bab 1 (pengertian statistik)
fatria anggita
Bahan ajar statistik bisnis
Bahan ajar statistik bisnisBahan ajar statistik bisnis
Bahan ajar statistik bisnis
Nardiman SE.,MM
Siti nurhaliza, hapzi ali, sistem pendukung pengambilan keputusan, umb jakart...
Siti nurhaliza, hapzi ali, sistem pendukung pengambilan keputusan, umb jakart...Siti nurhaliza, hapzi ali, sistem pendukung pengambilan keputusan, umb jakart...
Siti nurhaliza, hapzi ali, sistem pendukung pengambilan keputusan, umb jakart...
Siti Nurhaliza
67 jurnal skripsi dwi martha - fuzzy mamdani
67 jurnal skripsi dwi martha - fuzzy mamdani67 jurnal skripsi dwi martha - fuzzy mamdani
67 jurnal skripsi dwi martha - fuzzy mamdani
irhdy
Analisa klasifikasi biaya pasien rawat inap menggunakan teknik data mining at...
Analisa klasifikasi biaya pasien rawat inap menggunakan teknik data mining at...Analisa klasifikasi biaya pasien rawat inap menggunakan teknik data mining at...
Analisa klasifikasi biaya pasien rawat inap menggunakan teknik data mining at...
Koltiva
Makalah statistika
Makalah statistikaMakalah statistika
Makalah statistika
Bonz D's
Espa4123 statistika modul 2
Espa4123 statistika   modul 2Espa4123 statistika   modul 2
Espa4123 statistika modul 2
Ratzman III
3 konsep data statistik c
3 konsep data statistik c3 konsep data statistik c
3 konsep data statistik c
Ishaq Madeamin
Nominal nombor
Nominal nomborNominal nombor
Nominal nombor
ngasi
Peranan statistik dalam kehidupan sehari
Peranan statistik dalam kehidupan sehariPeranan statistik dalam kehidupan sehari
Peranan statistik dalam kehidupan sehari
Oki Mentari
Rat sat statistika ekonomi
Rat sat statistika ekonomiRat sat statistika ekonomi
Rat sat statistika ekonomi
Ratzman III
Bab03 ukuranpemusatan-090318095104-phpapp02-110702093055-phpapp02
Bab03 ukuranpemusatan-090318095104-phpapp02-110702093055-phpapp02Bab03 ukuranpemusatan-090318095104-phpapp02-110702093055-phpapp02
Bab03 ukuranpemusatan-090318095104-phpapp02-110702093055-phpapp02
Wayan Sudiarta
Jurnal biaya pasien rawat inap penyakit jantung
Jurnal biaya pasien rawat inap penyakit jantungJurnal biaya pasien rawat inap penyakit jantung
Jurnal biaya pasien rawat inap penyakit jantung
Andy Murtanto
Statistika presentasi: untuk mahasiswa PKN LPKIA
Statistika presentasi: untuk mahasiswa PKN LPKIAStatistika presentasi: untuk mahasiswa PKN LPKIA
Statistika presentasi: untuk mahasiswa PKN LPKIA
guest232a662

Similar to Jurnal prediksi penerimaan siswa baru pada madrasah aliyah as syafi'iyah 02 menggunakan metode time series (20)

2007 2-00543 bab 3
2007 2-00543 bab 32007 2-00543 bab 3
2007 2-00543 bab 3
Abidatur Rofifah
Components of a Time Series/Abshor.Marantika/Kelompok 9
Components of a Time Series/Abshor.Marantika/Kelompok 9Components of a Time Series/Abshor.Marantika/Kelompok 9
Components of a Time Series/Abshor.Marantika/Kelompok 9
RikiYosafat
Manajemen Operasi Bab 4 Kelompok 2 3AKT
Manajemen Operasi Bab 4 Kelompok 2 3AKTManajemen Operasi Bab 4 Kelompok 2 3AKT
Manajemen Operasi Bab 4 Kelompok 2 3AKT
Emilia Wati
Meramal kebijakan
Meramal kebijakan Meramal kebijakan
Meramal kebijakan
Erta Erta
rasch model untuk penelitian sosial kuantitatif
rasch model untuk penelitian sosial kuantitatifrasch model untuk penelitian sosial kuantitatif
rasch model untuk penelitian sosial kuantitatif
Savitri Stratavia
際際滷 PPT Trend dan Variasi Musim forecasting
際際滷 PPT Trend dan Variasi Musim forecasting際際滷 PPT Trend dan Variasi Musim forecasting
際際滷 PPT Trend dan Variasi Musim forecasting
AhmadSaifi6
Makalah arima tpb
Makalah arima tpbMakalah arima tpb
Makalah arima tpb
perdana sinaga
ALGORITMA LINIER BERGANDA.pptx
ALGORITMA LINIER BERGANDA.pptxALGORITMA LINIER BERGANDA.pptx
ALGORITMA LINIER BERGANDA.pptx
AndriePratama8
Modul statistik 2019 2020
Modul statistik 2019 2020 Modul statistik 2019 2020
Modul statistik 2019 2020
iankurniawan019
Kepedulian mahasiswa dan mahasiswi ilmu komputer fakultas matematika dan ilmu...
Kepedulian mahasiswa dan mahasiswi ilmu komputer fakultas matematika dan ilmu...Kepedulian mahasiswa dan mahasiswi ilmu komputer fakultas matematika dan ilmu...
Kepedulian mahasiswa dan mahasiswi ilmu komputer fakultas matematika dan ilmu...
aidafauzia
Bab Tiga
Bab TigaBab Tiga
Bab Tiga
Eko Mardianto
Forecasting Management.pptx
Forecasting Management.pptxForecasting Management.pptx
Forecasting Management.pptx
agushermawan702359
Bab iii
Bab iiiBab iii
Bab iii
ERNING KAROMAH
19611180_Lathifah AP_Laporan 1.pdf
19611180_Lathifah AP_Laporan 1.pdf19611180_Lathifah AP_Laporan 1.pdf
19611180_Lathifah AP_Laporan 1.pdf
LathifahAliyaPratiwi
analisis data berkala
analisis data berkalaanalisis data berkala
analisis data berkala
khairun nisa
manajemen operasional
manajemen operasionalmanajemen operasional
manajemen operasional
Auliya Azzura
Analisis deret waktu-Time series forecasting
Analisis deret waktu-Time series forecastingAnalisis deret waktu-Time series forecasting
Analisis deret waktu-Time series forecasting
desri4
Quantitative approaches to forecasting
Quantitative approaches to forecastingQuantitative approaches to forecasting
Quantitative approaches to forecasting
MeilissaD
Makalah Kelompok 8 Penelitian Pendidikan.pdf
Makalah Kelompok 8 Penelitian Pendidikan.pdfMakalah Kelompok 8 Penelitian Pendidikan.pdf
Makalah Kelompok 8 Penelitian Pendidikan.pdf
FitriAnisaFathurohma
Components of a Time Series/Abshor.Marantika/Kelompok 9
Components of a Time Series/Abshor.Marantika/Kelompok 9Components of a Time Series/Abshor.Marantika/Kelompok 9
Components of a Time Series/Abshor.Marantika/Kelompok 9
RikiYosafat
Manajemen Operasi Bab 4 Kelompok 2 3AKT
Manajemen Operasi Bab 4 Kelompok 2 3AKTManajemen Operasi Bab 4 Kelompok 2 3AKT
Manajemen Operasi Bab 4 Kelompok 2 3AKT
Emilia Wati
Meramal kebijakan
Meramal kebijakan Meramal kebijakan
Meramal kebijakan
Erta Erta
rasch model untuk penelitian sosial kuantitatif
rasch model untuk penelitian sosial kuantitatifrasch model untuk penelitian sosial kuantitatif
rasch model untuk penelitian sosial kuantitatif
Savitri Stratavia
際際滷 PPT Trend dan Variasi Musim forecasting
際際滷 PPT Trend dan Variasi Musim forecasting際際滷 PPT Trend dan Variasi Musim forecasting
際際滷 PPT Trend dan Variasi Musim forecasting
AhmadSaifi6
ALGORITMA LINIER BERGANDA.pptx
ALGORITMA LINIER BERGANDA.pptxALGORITMA LINIER BERGANDA.pptx
ALGORITMA LINIER BERGANDA.pptx
AndriePratama8
Modul statistik 2019 2020
Modul statistik 2019 2020 Modul statistik 2019 2020
Modul statistik 2019 2020
iankurniawan019
Kepedulian mahasiswa dan mahasiswi ilmu komputer fakultas matematika dan ilmu...
Kepedulian mahasiswa dan mahasiswi ilmu komputer fakultas matematika dan ilmu...Kepedulian mahasiswa dan mahasiswi ilmu komputer fakultas matematika dan ilmu...
Kepedulian mahasiswa dan mahasiswi ilmu komputer fakultas matematika dan ilmu...
aidafauzia
Forecasting Management.pptx
Forecasting Management.pptxForecasting Management.pptx
Forecasting Management.pptx
agushermawan702359
19611180_Lathifah AP_Laporan 1.pdf
19611180_Lathifah AP_Laporan 1.pdf19611180_Lathifah AP_Laporan 1.pdf
19611180_Lathifah AP_Laporan 1.pdf
LathifahAliyaPratiwi
analisis data berkala
analisis data berkalaanalisis data berkala
analisis data berkala
khairun nisa
manajemen operasional
manajemen operasionalmanajemen operasional
manajemen operasional
Auliya Azzura
Analisis deret waktu-Time series forecasting
Analisis deret waktu-Time series forecastingAnalisis deret waktu-Time series forecasting
Analisis deret waktu-Time series forecasting
desri4
Quantitative approaches to forecasting
Quantitative approaches to forecastingQuantitative approaches to forecasting
Quantitative approaches to forecasting
MeilissaD
Makalah Kelompok 8 Penelitian Pendidikan.pdf
Makalah Kelompok 8 Penelitian Pendidikan.pdfMakalah Kelompok 8 Penelitian Pendidikan.pdf
Makalah Kelompok 8 Penelitian Pendidikan.pdf
FitriAnisaFathurohma

Recently uploaded (20)

PELAKSANAAN + Link2 MATERI Pelatihan *"PTK 007 (Rev-5 Thn 2023) + Perhitungan...
PELAKSANAAN + Link2 MATERI Pelatihan *"PTK 007 (Rev-5 Thn 2023) + Perhitungan...PELAKSANAAN + Link2 MATERI Pelatihan *"PTK 007 (Rev-5 Thn 2023) + Perhitungan...
PELAKSANAAN + Link2 MATERI Pelatihan *"PTK 007 (Rev-5 Thn 2023) + Perhitungan...
Kanaidi ken
PELAKSANAAN RPI MURID PENDIDIKAN KHASS.ppt
PELAKSANAAN RPI MURID PENDIDIKAN KHASS.pptPELAKSANAAN RPI MURID PENDIDIKAN KHASS.ppt
PELAKSANAAN RPI MURID PENDIDIKAN KHASS.ppt
ALEENMPP
PPT PAI-Kelompok 3-X MIPA 1-Sumber-sumber Hukum Islam (Ijtihad).pptx
PPT PAI-Kelompok 3-X MIPA 1-Sumber-sumber Hukum Islam (Ijtihad).pptxPPT PAI-Kelompok 3-X MIPA 1-Sumber-sumber Hukum Islam (Ijtihad).pptx
PPT PAI-Kelompok 3-X MIPA 1-Sumber-sumber Hukum Islam (Ijtihad).pptx
SausanHidayahNova
SOAL LATIHAN PJOK KELAS 4 SD KURIKULUM MERDEKA
SOAL LATIHAN PJOK KELAS 4 SD KURIKULUM MERDEKASOAL LATIHAN PJOK KELAS 4 SD KURIKULUM MERDEKA
SOAL LATIHAN PJOK KELAS 4 SD KURIKULUM MERDEKA
azizwidyamukti02
Buku Mengokohkan Karakter Pancasila Melalui Integrasi Nilai nilai Keagamaan
Buku Mengokohkan Karakter Pancasila Melalui Integrasi Nilai nilai KeagamaanBuku Mengokohkan Karakter Pancasila Melalui Integrasi Nilai nilai Keagamaan
Buku Mengokohkan Karakter Pancasila Melalui Integrasi Nilai nilai Keagamaan
ssuser521b2e1
keutamaanDiskusi kelompok berlangsung dengan baik, dengan setiap siswa merasa...
keutamaanDiskusi kelompok berlangsung dengan baik, dengan setiap siswa merasa...keutamaanDiskusi kelompok berlangsung dengan baik, dengan setiap siswa merasa...
keutamaanDiskusi kelompok berlangsung dengan baik, dengan setiap siswa merasa...
ssuser327180
Panduan Entry Nilai Rapor untuk Operator SD_MI 2025.pptx (1).pdf
Panduan Entry Nilai Rapor untuk Operator SD_MI 2025.pptx (1).pdfPanduan Entry Nilai Rapor untuk Operator SD_MI 2025.pptx (1).pdf
Panduan Entry Nilai Rapor untuk Operator SD_MI 2025.pptx (1).pdf
Fajar Baskoro
Dari pesantren ke dunia maya (diskusi berkala UAS Kencong Jember0.pptx
Dari pesantren ke dunia maya (diskusi berkala UAS Kencong Jember0.pptxDari pesantren ke dunia maya (diskusi berkala UAS Kencong Jember0.pptx
Dari pesantren ke dunia maya (diskusi berkala UAS Kencong Jember0.pptx
Syarifatul Marwiyah
Seleksi Penerimaan Murid Baru 2025.pptx
Seleksi Penerimaan Murid Baru  2025.pptxSeleksi Penerimaan Murid Baru  2025.pptx
Seleksi Penerimaan Murid Baru 2025.pptx
Fajar Baskoro
Manual DIVI Builder (Bahasa Indonesia).pdf
Manual DIVI Builder (Bahasa Indonesia).pdfManual DIVI Builder (Bahasa Indonesia).pdf
Manual DIVI Builder (Bahasa Indonesia).pdf
Igen D
1.2 Algoritma SAINS KOMPUTER TINGKATAN 4
1.2 Algoritma SAINS KOMPUTER TINGKATAN 41.2 Algoritma SAINS KOMPUTER TINGKATAN 4
1.2 Algoritma SAINS KOMPUTER TINGKATAN 4
NORMUHAMADBINYAACOBK
Rancangan Pembelajaran Semester Kartografi
Rancangan Pembelajaran Semester KartografiRancangan Pembelajaran Semester Kartografi
Rancangan Pembelajaran Semester Kartografi
khairizal2005
Proposal Kegiatan Santunan Anak Yatim.docx
Proposal Kegiatan Santunan Anak Yatim.docxProposal Kegiatan Santunan Anak Yatim.docx
Proposal Kegiatan Santunan Anak Yatim.docx
tuminsa934
PPT Qurdis Bab 4 kelas IX MTs/SMP SMT 2.pptx
PPT Qurdis Bab 4 kelas IX MTs/SMP SMT 2.pptxPPT Qurdis Bab 4 kelas IX MTs/SMP SMT 2.pptx
PPT Qurdis Bab 4 kelas IX MTs/SMP SMT 2.pptx
hendipurnama1
Keragaman Alam Indonesia materi IPS.pptx
Keragaman Alam Indonesia materi IPS.pptxKeragaman Alam Indonesia materi IPS.pptx
Keragaman Alam Indonesia materi IPS.pptx
aifi3
SENARAI & JADWAL PEMBICARA Ramadan Masjid Kampus UGM 1446 Hijriah.docx
SENARAI & JADWAL PEMBICARA Ramadan Masjid Kampus UGM 1446 Hijriah.docxSENARAI & JADWAL PEMBICARA Ramadan Masjid Kampus UGM 1446 Hijriah.docx
SENARAI & JADWAL PEMBICARA Ramadan Masjid Kampus UGM 1446 Hijriah.docx
Mirza836129
Farmakologi (antibiotik, antivirus, antijamur).pptx
Farmakologi (antibiotik, antivirus, antijamur).pptxFarmakologi (antibiotik, antivirus, antijamur).pptx
Farmakologi (antibiotik, antivirus, antijamur).pptx
michellepikachuuu
Kiraan Kadar Nadi Karvonen nadi mak nadi rehat
Kiraan Kadar Nadi Karvonen nadi mak nadi rehatKiraan Kadar Nadi Karvonen nadi mak nadi rehat
Kiraan Kadar Nadi Karvonen nadi mak nadi rehat
ssuser7d8dcb
PPT STASE 1nbdjwbjdhjsankswjiswjiwjsoasaosqoskq.pdf
PPT STASE 1nbdjwbjdhjsankswjiswjiwjsoasaosqoskq.pdfPPT STASE 1nbdjwbjdhjsankswjiswjiwjsoasaosqoskq.pdf
PPT STASE 1nbdjwbjdhjsankswjiswjiwjsoasaosqoskq.pdf
ListiawatiAMdKeb
Danantara: Pesimis atau Optimis? Podcast Ikatan Alumni Lemhannas RI IKAL Lem...
Danantara:  Pesimis atau Optimis? Podcast Ikatan Alumni Lemhannas RI IKAL Lem...Danantara:  Pesimis atau Optimis? Podcast Ikatan Alumni Lemhannas RI IKAL Lem...
Danantara: Pesimis atau Optimis? Podcast Ikatan Alumni Lemhannas RI IKAL Lem...
Dadang Solihin
PELAKSANAAN + Link2 MATERI Pelatihan *"PTK 007 (Rev-5 Thn 2023) + Perhitungan...
PELAKSANAAN + Link2 MATERI Pelatihan *"PTK 007 (Rev-5 Thn 2023) + Perhitungan...PELAKSANAAN + Link2 MATERI Pelatihan *"PTK 007 (Rev-5 Thn 2023) + Perhitungan...
PELAKSANAAN + Link2 MATERI Pelatihan *"PTK 007 (Rev-5 Thn 2023) + Perhitungan...
Kanaidi ken
PELAKSANAAN RPI MURID PENDIDIKAN KHASS.ppt
PELAKSANAAN RPI MURID PENDIDIKAN KHASS.pptPELAKSANAAN RPI MURID PENDIDIKAN KHASS.ppt
PELAKSANAAN RPI MURID PENDIDIKAN KHASS.ppt
ALEENMPP
PPT PAI-Kelompok 3-X MIPA 1-Sumber-sumber Hukum Islam (Ijtihad).pptx
PPT PAI-Kelompok 3-X MIPA 1-Sumber-sumber Hukum Islam (Ijtihad).pptxPPT PAI-Kelompok 3-X MIPA 1-Sumber-sumber Hukum Islam (Ijtihad).pptx
PPT PAI-Kelompok 3-X MIPA 1-Sumber-sumber Hukum Islam (Ijtihad).pptx
SausanHidayahNova
SOAL LATIHAN PJOK KELAS 4 SD KURIKULUM MERDEKA
SOAL LATIHAN PJOK KELAS 4 SD KURIKULUM MERDEKASOAL LATIHAN PJOK KELAS 4 SD KURIKULUM MERDEKA
SOAL LATIHAN PJOK KELAS 4 SD KURIKULUM MERDEKA
azizwidyamukti02
Buku Mengokohkan Karakter Pancasila Melalui Integrasi Nilai nilai Keagamaan
Buku Mengokohkan Karakter Pancasila Melalui Integrasi Nilai nilai KeagamaanBuku Mengokohkan Karakter Pancasila Melalui Integrasi Nilai nilai Keagamaan
Buku Mengokohkan Karakter Pancasila Melalui Integrasi Nilai nilai Keagamaan
ssuser521b2e1
keutamaanDiskusi kelompok berlangsung dengan baik, dengan setiap siswa merasa...
keutamaanDiskusi kelompok berlangsung dengan baik, dengan setiap siswa merasa...keutamaanDiskusi kelompok berlangsung dengan baik, dengan setiap siswa merasa...
keutamaanDiskusi kelompok berlangsung dengan baik, dengan setiap siswa merasa...
ssuser327180
Panduan Entry Nilai Rapor untuk Operator SD_MI 2025.pptx (1).pdf
Panduan Entry Nilai Rapor untuk Operator SD_MI 2025.pptx (1).pdfPanduan Entry Nilai Rapor untuk Operator SD_MI 2025.pptx (1).pdf
Panduan Entry Nilai Rapor untuk Operator SD_MI 2025.pptx (1).pdf
Fajar Baskoro
Dari pesantren ke dunia maya (diskusi berkala UAS Kencong Jember0.pptx
Dari pesantren ke dunia maya (diskusi berkala UAS Kencong Jember0.pptxDari pesantren ke dunia maya (diskusi berkala UAS Kencong Jember0.pptx
Dari pesantren ke dunia maya (diskusi berkala UAS Kencong Jember0.pptx
Syarifatul Marwiyah
Seleksi Penerimaan Murid Baru 2025.pptx
Seleksi Penerimaan Murid Baru  2025.pptxSeleksi Penerimaan Murid Baru  2025.pptx
Seleksi Penerimaan Murid Baru 2025.pptx
Fajar Baskoro
Manual DIVI Builder (Bahasa Indonesia).pdf
Manual DIVI Builder (Bahasa Indonesia).pdfManual DIVI Builder (Bahasa Indonesia).pdf
Manual DIVI Builder (Bahasa Indonesia).pdf
Igen D
1.2 Algoritma SAINS KOMPUTER TINGKATAN 4
1.2 Algoritma SAINS KOMPUTER TINGKATAN 41.2 Algoritma SAINS KOMPUTER TINGKATAN 4
1.2 Algoritma SAINS KOMPUTER TINGKATAN 4
NORMUHAMADBINYAACOBK
Rancangan Pembelajaran Semester Kartografi
Rancangan Pembelajaran Semester KartografiRancangan Pembelajaran Semester Kartografi
Rancangan Pembelajaran Semester Kartografi
khairizal2005
Proposal Kegiatan Santunan Anak Yatim.docx
Proposal Kegiatan Santunan Anak Yatim.docxProposal Kegiatan Santunan Anak Yatim.docx
Proposal Kegiatan Santunan Anak Yatim.docx
tuminsa934
PPT Qurdis Bab 4 kelas IX MTs/SMP SMT 2.pptx
PPT Qurdis Bab 4 kelas IX MTs/SMP SMT 2.pptxPPT Qurdis Bab 4 kelas IX MTs/SMP SMT 2.pptx
PPT Qurdis Bab 4 kelas IX MTs/SMP SMT 2.pptx
hendipurnama1
Keragaman Alam Indonesia materi IPS.pptx
Keragaman Alam Indonesia materi IPS.pptxKeragaman Alam Indonesia materi IPS.pptx
Keragaman Alam Indonesia materi IPS.pptx
aifi3
SENARAI & JADWAL PEMBICARA Ramadan Masjid Kampus UGM 1446 Hijriah.docx
SENARAI & JADWAL PEMBICARA Ramadan Masjid Kampus UGM 1446 Hijriah.docxSENARAI & JADWAL PEMBICARA Ramadan Masjid Kampus UGM 1446 Hijriah.docx
SENARAI & JADWAL PEMBICARA Ramadan Masjid Kampus UGM 1446 Hijriah.docx
Mirza836129
Farmakologi (antibiotik, antivirus, antijamur).pptx
Farmakologi (antibiotik, antivirus, antijamur).pptxFarmakologi (antibiotik, antivirus, antijamur).pptx
Farmakologi (antibiotik, antivirus, antijamur).pptx
michellepikachuuu
Kiraan Kadar Nadi Karvonen nadi mak nadi rehat
Kiraan Kadar Nadi Karvonen nadi mak nadi rehatKiraan Kadar Nadi Karvonen nadi mak nadi rehat
Kiraan Kadar Nadi Karvonen nadi mak nadi rehat
ssuser7d8dcb
PPT STASE 1nbdjwbjdhjsankswjiswjiwjsoasaosqoskq.pdf
PPT STASE 1nbdjwbjdhjsankswjiswjiwjsoasaosqoskq.pdfPPT STASE 1nbdjwbjdhjsankswjiswjiwjsoasaosqoskq.pdf
PPT STASE 1nbdjwbjdhjsankswjiswjiwjsoasaosqoskq.pdf
ListiawatiAMdKeb
Danantara: Pesimis atau Optimis? Podcast Ikatan Alumni Lemhannas RI IKAL Lem...
Danantara:  Pesimis atau Optimis? Podcast Ikatan Alumni Lemhannas RI IKAL Lem...Danantara:  Pesimis atau Optimis? Podcast Ikatan Alumni Lemhannas RI IKAL Lem...
Danantara: Pesimis atau Optimis? Podcast Ikatan Alumni Lemhannas RI IKAL Lem...
Dadang Solihin

Jurnal prediksi penerimaan siswa baru pada madrasah aliyah as syafi'iyah 02 menggunakan metode time series

  • 1. Jurnal Ilmu Komputer dan Sistem Informasi PREDIKSI PENERIMAAN SISWABARU PADAMADRASAH ALIYAHAS-SAYAFIIYAH 02 MENGGUNAKAN METODE TIME SERIES Hermawan 1) 1) Sekolahan Tinggi Manajemen Informatika dan Komputer Mercusuar Jl. Raya Jatiwaringin 144, Pondok Gede Bekasi 17411 Indonesia email : hermawanawang@gmail.com ABSTRACT Dalam penelitian ini dilakukan untuk mengindentifikasi dan memprediksikan jumlah siswa baru tahun 2016/2017, yaitu dengan satu teknik dalam Data Mining yang digunakan peneliti ini adalah teknik Time Series untuk memprediksi perolehan jumlah siswa baru pada tahun 2016/2017 di Madrasah Aliyah As- Syafiiyah 02, dimana hasil prediksi tersebut dapat memberikan kemudahan kepada pihak Madrasah Aliyah As-Syafiiyah 02 dalam menentukan langkah- langkah strategi dalam mengambil keputusan dan kebijakan pada tahun yang akan datang. Berdasarkan hasil penelitian yang telah dilakukan untuk prediksi jumlah penerimaan siswa baru. Salah satunya teknik Time Series yang dapat mengetahui target penerimaan siswa baru yang mengalami tingkat akurasi prediksi jumlah penerimaan siswa baru di tahun ajaran 2016/2017. Sehingga dapat membantu memberikan informasi berharga kepada Madrasah Aliyah As-Syafiiyah 02 sebagai gambaran dasar pengambilan keputusan. Key words kata kunci, Prediksi, Penerimaan Siswa, Metode Time Series, Data Mining., Minitab versi 16. 1. Pendahuluan Sekolah atau lembaga pendidikan formal setiap tahun rutin mengadakan kegiatan penerimaan siswa baru. Jumlah siswa baru pada penerimaan siswa tahun ajaran baru dapat mengalami peningkatan dan dapat juga mengalami penurunan, sehingga diperlukan adanya prediksi atau peramalan untuk mengetahui perolehan jumlah siswa baru, agar semua kebijakan dan keputusan dalam menyusun perencanaan manajemen ke depan dapat terpenuhi dengan baik di Madrasah Aliyah As-Syafiiyah 02 yang telah berupaya melakukan prediksi jumlah siswa baru berdasarkan pengalaman tahun sebelumnya, namun hasilnya tidak tepat. Turun naik jumlah siswa baru tersebut merupakan suatu masalah yang dihadapi Madrasah Aliyah As-Syafiiyah 02 dalam menentukan langkah-langkah strategis dan kebijakan terkait dengan promosi sekolah, penyediaan fasilitas/inprastruktur sekolah dan target penerimaan siswa baru tahun-tahun selanjutnya. Beberapa solusi prediksi penerimaan siswa baru yang dapat diselesaikan dengan data mining adalah menebak target jumlah siswa baru, melihat pola dari waktu ke waktu. (Richard, 2011). Berdasarkan permasalahan di atas dibuatlah prediksi penerimaan siswa baru menggunakan metode Time Series pada Madrasah Aliyah As-Syafiiyah 02 sehingga dari penelitian ini dapat diketahui jumlah siswa baru yang baik dalam kurun waktu tertentu. Berdasarkan yang telah diuraikan diatas, maka rumusan masalah pada penelitian ini adalah Bagaimana penerapan metode time series dapat memprediksi jumlah siswa baru di tahun yang akan datang dan Dari hasil prediksi dapat membantu Dalam pengambilan keputusan yang baik 2. Sistem Persamaan Linier 2.1 Pengertian Prediksi Prediksi atau peramalan (Forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relitif lama. Sedangkan ramalan adalah suatu situasi atau kondisi yang akan diperkirakan kan terjadi pada masa yang akan datang (William & Choung, 2014, p. 76) Menurut Hary Prasetya dan Fitri Lukiastuti (Hary & Fitri, 2013, p. 43), peramalan atau prediksi adalah seni dan ilmu untuk meperkirakan kejadian dimasa depan melalui pengujian di masa lalu. Pengujian tersebut atas dasar pola-pola di waktu yang lalu dengan melibatkan pengambilan data masa lalu dan menempatkannya ke masa yang akan datang dengan model matematis. 1
  • 2. Jurnal Ilmu Komputer dan Sistem Informasi Prediksi atau peramalan adalah proses memperkirakan berapa kebutuhan dimasa datang yang meliputi kebutuhan kuantitas, kualitas, waktu dan lokasi yang dibutuhkan dalam rangka memenuhi permintaan barang atau jasa (Hakim & Prasetyawan, 2013, p. 29). Peramalan adalah upaya mempekirakan apa yang terjadi di masa depan, berbasis pada metode ilmiah (ilmu dan teknologi) serta dilakukan secara sistematis (Sri Mulyono, 2010, p. 10). 2.2 Pengerian Time Series Perencanaan dan pembuatan keputusan membutuhkan dugaan-dugaan tentang apa yang akan terjadi dimasa yang akan datang. Karena itu analisis diharapkan untuk membuat ramalan-ramalan, salah satunya adalah dengan model time series. Time series adalah serangakain nilai-nilai variabel yang disusun berdasarkan waktu (Sri Mulyono, 2010, p. 10). Analisis time series mempelajari pola gerakan- gerakan nilai-nilai variabel pada satu interval waktu (misal minggu, bulan, dan tahun) yang teratur. (Soezati, Zanzawi. 2010) mengemukakan bahwa pendugaan masa depan dilakukan berdasarkan nilai masa lalu. Tujuan metode peramalan deret berkala (time series) seperti ini adalah menemukan pola dalam deret historis dan mengekstrapolasikan pola tersebut kemasa depan. Langkah penting dalam memilih suatu deret berkala (time series) yang tepat adalah dengan mempertimbangkan jenis pola data, sehingga metode yang paling tepat dengan pola tersebut dapat diuji. Pola data menurut Spyros (Soezati, Zanzawi. 2010) dapat dibedakan menjadi empat jenis siklis dan trend. a. Pola Harizontal (H) Terjadi apabila nilai data fluktuasi disekitar nilai rata-rata yang konstan. Suatu calon mahasiswa baru yang tidak meningkat dan menurun selama waktu tertentu, termasuk kedalam pola ini. b. Pola Musiman Terjadi apabila suatu deret dipengaruhi oleh musiman (misal kuartal tahun tertentu) c. Pola Siklis Terjadi apabila datanya dipengaruhi oleh fluktuasi ekonomi jangka panjang seperti yang behubungan siklis bisnis. d. Pola Trend Terjadi apabila terdapat kenaikan atau penurunan sekuler jangka panjang dalam data. 2.3 Prediksi dengan metode Penghalusan Eksponensial (exponential smoothing) Penghalusan eksponensial (exponential smoothing) adalah suatu tipe teknik peramalan rata-rata bergerak yang melakukan penimbangan terhadap data masa lalu dengan cara eksponensial sehingga data paling akhir mempunyai bobot atau timbangan lebih besar dalam rata-rata bergerak. (Sriyati, 2010, P, 279). 1. Metode penghalusan eksponensial orde satu (single exponential smoothing) Metode penghalusan eksponensial orde satu (single exponential smoothing) sebenarnya merupakan perkembangan dari metode rata-rata bergerak (moving average) sederhana. Metode ini dipergunakan secara luas di dalam Peramalan (forecasting) karena sederhana, efisien di dalam perhitungan dan perubahan ramalan, mudah disesuaikan dengan perubahan data, dan ketelitian metode ini cukup besar. Rumus : Ket : = Nilai prediksi untuk periode waktu ke-t = Nilai actual untuk periode waktu yang lalu ke-t = Nilai prediksi untuk satu periode waktu lalu ke-t = Konstanta nilai pemulusan 2. Metode penghalusan eksponensial orde dua (double exponential smoothing) Metode double exponential smoothing yang dapat digunakan untuk menyelesaikan trend linier adalah metode dua paramenter dari Holt. Metode Holt nilai trend tidak dimuluskan dengan pemulusan ganda secara langsung, tetapi proses pemulusan trend dilakukan dengan menggunaka paramenter yang berbeda dengan paramenter yang digunakan pada pemulusan data asli. Metode double exponential smoothing digunakan ketika data menunjukan adanya trend. Rumus double exponential smoothing : Rumus : Ket : = Nilai pemulusan tunggal = Nilai sebenarnya pada waktu ke-t 2
  • 3. Jurnal Ilmu Komputer dan Sistem Informasi = Pemulusan trend = Nilai Prediksi = Periode masa mendatang = Konstanta dengan nilai antara 0 dan 1 2.4 Penghitungan Manual Pengukuran Akurasi hasil Prediksi dengan Pemulusan Eksponensial Orde Satu/Tunggal (Single Eksponential Smoothing) Dalam penelitian ini, untuk mengukur akurasi hasil prediksi penulis menggunakan pengukuran Mean Deviation Absolute (MAD), Mean Squared Error (MSE) dan Mean Absolute Percentage Error (MAPE). a. Mean Deviation Absolute (MAD) MAD merupakan salah satu cara yang dapat digunakan untuk dapat mengetahui ukuran kesalahan peramalan. MAD merupakan rata-rata dari nilai absolute simpangan. Rumus perhitungan MAD adalah: Ket : Xt = Nilai data aktual pada periode t St = Nilai hasil peramalan pada periode t t = Periode peramalan n = Banyaknya data Sebelum menghitung rata-rata nilai absolute kita hitung dulu selisih error dimana nilai aktual dikurangi nilai prediksi/ramalan (data aktual nilai prediksi). b. Mean Squared Error (MSE) MSE merupakan salah satu cara yang dapat digunakan untuk dapat mengetahui ukuran kesalahan peramalan. Memiliki arti rata-rata kesalahan peramalan yang dikuadratkan. Rumus perhitungan MSE adalah: Keterangan: Xt = Nilai data aktual pada periode t St = Nilai hasil peramalan pada periode t t = Periode peramalan n = Banyaknya data Sama seperti penghitungan Mean Absolute Deviation (MAD), sebelum menghitung Mean Squared Error (MSE) kita hitung dulu jumlah selisih antara data aktual dengan data peramalan. c. Mean Absolute Percentage Error (MAPE) Mean Absolute Percentage Error (MAPE) dihitung dengan menggunakan kesalahan absolut pada tiap periode dibagi dengan nilai observasi yang nyata untuk periode itu. Kemudian, merata-rata kesalahan persentase absolut tersebut. MAPE merupakan pengukuran kesalahan yang menghitung ukuran presentase penyimpangan antara data aktual dengan data peramalan. Nilai MAPE dapat dihitung dengan persamaan berikut. Keterangan: Xt = Nilai data aktual pada periode t St = Nilai hasil peramalan pada periode t t = Periode peramalan n = Banyaknya data Untuk menentukan Mean Absolute Percentage Error (MAPE) kita bisa mengambil data perhitungan dari Mean Absolute Deviation (MAD) yang kemudian ditindaklanjuti dengan perhitungan menggunakan rumus MAPE. 2.5 Program Minitab 16 Perkembangan ilmu pengetahuan dan teknologi sekarang ini telah menciptakan perangkat yang memudahkan dan mempersingkat kerja manusia dalam berbagai hal seperti pengolahan data statistik.Minitab merupaka salah satu perangkat lunak yang dibuat untuk mempermudah proses peramalan jika data yang digunakan sangat banyak. Penggunaan software minitab dalam kegiatan ini bertujuan agar proses peramalan mudah dilakukan dan hasil peramalan yang diperoleh juga lebih akurat. Minitab merupakan perangkat lunak yang digunakan sebagai media pengolahan data yang dapat menyediakan berbagai jenis perintah yang menyediakan perintah dalam proses pemasukan data, manipulasi data, pembuatan grafik, penganalisaan numerik, dan analisis statistik ( irwan, Nur. 2000). Adapun langkahlangkah penggunaan software minitab dalam melakukan peramlan adalah sebagai berikut. e. Pemasukan / Input Data ke Dalam Program Minitab Langkahnya yaitu jalankan software minitab dengan cara klik Start Minitab 11 for window Minitab, maka akan muncul tampilan seperti di bawah ini:
  • 4. Jurnal Ilmu Komputer dan Sistem Informasi Gambar 1 Tampilan Worksheet Minitab Untuk memasukan data runtun waktu yang akan kita olah terlebih dahulu klik pada cell baris 1 kolom C1. Kemudian ketik data pertama dan seterusnya secara menurun dalam kolom yang sama. Dengan format kolom tersebut harus angka/ numerik. f. Menggambar Grafik Data Runtun Waktu Langkah-langkahnya adalah: 1) Pilih menu Stat, caranya dengan klik tombol kiri pada mouse pilih menu Time Series Singel Exponential Smooting. 2) Kemudian klik data yang akan digambar grafiknya misal kolom C1, kemudian klik Select, maka kolom Y baris pertama akan muncul tulisan C1. Kalau data yang ingin digambar grafiknya lebih dari satu. Letakan kursor pada Y baris 2 dan seterusnya. Kemudian pilih kolom data yang akan digambarkan grafiknya. Maka akan muncul tampilan seperti di bawah ini: Gambar 2. Pemilihan Menu Singel Exponential Smooting 201620152014201320122011 100 90 80 70 60 50 40 30 20 10 Tahun JumlahSiswabaru Alpha 0.1 Smoothing Constant MAPE 29.261 MAD 15.934 MSD 317.326 Accuracy Measures Actual Fits Forecasts 95.0% PI Variable Smoothing Plot for Jumlah Sisw a baru Single Exponential Method Gambar 3. Grafik Menggunakan alpha 0.1 Singel Exponential Smooting 3. Hasil Pembahasan 3.1 Literatur Preview Penulis mengutip dari jurnal (Fernando & Setiono, 2012) dengan judul Perancangan Data Warehouse Dan Penerapan Algoritma Time Series Untuk Memprediksi Informasi Pertumbuhan Penduduk Di Provinsi Bengkulu membahas tentang penerapan algoritma time series untuk memprediksikan pertumbuhan penduduk di provinsi bengkulu yang selalu meningkat hal ini menciptakan kondisi data yang berlimpah tapi minim informasi. Pada penulisan yang dilakukan oleh (Kristien & Sofia, 2015) dengan judul Analisa Dan Penerapan metode Single Exponential Smoothing Untuk Prediksi Penjualan Pada Periode Tertentu (studi kasus : PT. Media cemara kreasi) membahas tentang prediksi barang apa yang harus dijual ditiap bulannya. Pada penulisan yang dilakukan oleh (Dimas, 2011) dengan judul Analisis Runtun Waktu Untuk Meramalkan Jumlah Pasien Yang Berobat Di Puskesmas Blora Dengan Menggunakan Software Minitab 14 membahas tentang untuk mengetahui model analisis runtun waktu yang tepat untuk peramalan jumlah pasien yang berobat di Puskesmas Blora dan selanjutnya diketahui besar peramalan jumlah pasien yang berobat di Puskesmas wilayah Blora pada periode yang telah ditentukan ke depannya. Pada penulisan yang dilakukan (Haryadi, 2012) dengan judul Prediksi Jumlah Penerimaan Siswa SMK Swasta Tahun Ajaran 2011/2012 membahas tentang prediksi jumlah siswa Sekolah Menengah Kejuruan (SMK) swasta modern di sebuah propinsi di Kalimanatan dengan pendekatan enam metode forecasting yaitu Linear Regression, Exponential Smoothing With Trend, Exponential Smoothing, Weighted Moving Average, Moving Average, dan Na誰ve Method, selain menggunakan perhitungan secara 4
  • 5. Jurnal Ilmu Komputer dan Sistem Informasi Manual juga menggunakan pendekatan QM for windows, sebagai perbandingan. Pada penulisan yang dilakukan oleh (Sidik, 2012) dengan judul Forecasting Volume Produksi Tanaman Pangan, Tanaman Perkebunan Rakyat Kab. Magelang Dengan Metode Exponential Smoothing Berbantu Minitab membahas tentang bagaimana penggunaan Metode Exponential Smoothing untuk peramalan volume produksi tanaman pangan, produksi perkebunan rakyat Kabupaten Magelang dengan Minitab 3.2 Data Siswa Baru Pada proses ini data yang digunakan yaitu dari tahun 2011 sampai dengan tahun 2015 pada Madrasah Aliyah As-Syafiiyah 02 adalah sebagai berikut : Tabel 1 Data Siswa Baru dari Tahun 2011-2015 Tahun penerimaan Jumlah Siswa Baru 2011 40 2012 39 2013 55 2014 75 2015 80 3.3 Hasil Penerapan Time Series Menggunakan Aplikasi Minitab 16 Dari hasil penerapan menggunakan algoritma time series untuk memprediksi penerimaan siswa baru menggunakan data siswa baru yang di dapat dariMadrasah Aliyah As-Syafiiyah 02 dengan menggunakan Minitab 16 adalah sebagai berikut. 1. Langkah Pertma yaitu pengimputan data siswa baru ditunjukan gambar dibawah ini. Gambar 4. Tampilan Input Data Jumlah Siswa 2. Langkah kedua yaitu pemilihan stat untuk memasukan data siswa baru kedalam sistem algoritma time series yang menggunakan model singel exponesial smooting dari nilai alpha 0,1, 0,5 dan 0,9, seperti yang ditunjukan pada gambar dibawah ini. Gambar 5. Tampilan Algoritma Time Series dengan Model Singel Exponensial Smooting 3. Yang ketiga yaitu menujukan grafik hasil pengujian dari perhitungan prediksi menggunakan aplikasi minitab 16 dengan algoritma time series yang diperoleh dari model singel exponesial smooting dari nilai alpha 0,1, 0,5 dan 0,9, seperti yang ditunjukan pada gambar dibawah ini. a. Grafik nilai alpha 0,1 Gambar 6. Tampilan Grafik Prediksi Jumlah Siswa Baru Dengan Alpha 0,1 Dari hasil gambar gerafik diatas maka tingkat akurasi prediksi error untuk nilai alpha 0,1, seperti yang ditunjukan pada gambar 7.
  • 6. Jurnal Ilmu Komputer dan Sistem Informasi Gambar 7. Tampilan Tingkatan Akurasi Kerrorran dan Prediksi Jumlah Siswa Baru Dengan Alpha 0,1 Dengan demikian hasil prediksi menggunkan algoritma time series dari perhitungan model singel exponensial semoting yang menggunakan nilai alpah 0,1 yaitu denggan tingkat akurasi error untuk MAPE 29,261, MAD 15,934 dan MSD 317,326 maka perdiksi jumlah siswa baru di tahun 2016 untuk perhitungan menggunakan alpha 0,1 adalah 58,8028 yang dibulatkan menjadi 59 siswa. b. Grafik nilai alpha 0,5 Gambar 8. Tampilan Grafik Prediksi Jumlah Siswa Baru Dengan Alpha 0,5 Dari hasil gambar gerafik diatas maka tingkat akurasi prediksi error untuk nilai alpha 0,5, seperti yang ditunjukan pada gambar 9. Gambar 9. Tampilan Tingkatan Akurasi Kerrorran dan Prediksi Jumlah Siswa Baru Dengan Alpha 0,5 Dengan demikian hasil prediksi menggunkan algoritma time series dari perhitungan model singel exponensial semoting yang menggunakan nilai alpah 0,5 yaitu denggan tingkat akurasi error untuk MAPE 29,243, MAD 16,407 dan MSD 300,797 maka perdiksi jumlah siswa baru di tahun 2016 untuk perhitungan menggunakan alpha 0,1 adalah 71,1188 yang dibulatkan menjadi 71 siswa. c. Grafik nilai alpha 0,9 Gambar 10. Tampilan Grafik Prediksi Jumlah Siswa Baru Dengan Alpha 0,9 Dari hasil gambar gerafik diatas maka tingkat akurasi prediksi error untuk nilai alpha 0,9, seperti yang ditunjukan gambar dibawah ini. 6
  • 7. Jurnal Ilmu Komputer dan Sistem Informasi Gambar 11. Tampilan Tingkatan Akurasi Kerrorran dan Prediksi Jumlah Siswa Baru Dengan Alpha 0,9 Dengan demikian hasil prediksi menggunkan algoritma time series dari perhitungan model singel exponensial semoting yang menggunakan nilai alpah 0,9 yaitu denggan tingkat akurasi error untuk MAPE 23,585, MAD 13,006 dan MSD 217,667 maka perdiksi jumlah siswa baru di tahun 2016 untuk perhitungan menggunakan alpha 0,9 adalah 79,2843 yang dibulatkan menjadi 79 siswa. 4. Kesimpulan Hasil penelitian ini menyimpulkan bahwa data time series dapat diprediksi dengan menggunakan model singel exponensial smooting, dengan hasil perbandingan tingkatan akurasi prediksi ke errorran terkecil dari nilai alpha 0,1, 0,5 dan 0,9 yaitu terdapat ditingkatan nilai alpha 0,9 dengan akurasi kerrorran terkecil sebesar MAPE 23,585, MAD 13,006 dan MSD 217,667. Sehinggga menghasilkan prediksi penerimaan siswa baru di tahun 2016 sebesar 79 siswa dengan tingkat keberhasilannya yang diterima mencapai 95% dan tingkat kegagalanya yang tidak diterima mencapai 5 %, maka disimpulkan bahwa nilai alpha 0,9 lebih dominan untuk tingkat keberhasilannya, Jika dibandingkan dengan nilai alpha 0,1 dan 0,5 yang tingkatan akurasi kerrorrannya sangat tinggi. REFERENSI [1] Dimas. (2011). Analisis Runtun Waktu Untuk Meramalkan Jumlah Pasien Yang Berobat Di Puskesmas Blora Dengan Menggunakan Software Minitab 14. Universitas Negeri Semarang [2] Haryadi. (2012). Prediksi Jumlah Penerimaan Siswa SMK Swasta Tahun Ajaran 2011/2012. Jakarta Barat [3] Hary Prasetya, F. L. (2013). Manajemen Operasi. Jakarta: PT. Buku Kita. [4] H. N., & Prasetyawan. (2013). Perencanaan dan Pengendalian Produksi. Yogyakarta: Graha Ilmu.Castleman, Kenneth R., 1998, Digital Image Processing, Prentice Hall, New Jersey. [5] Irwan, Nur. 2000. Mengolah Data Statistik Dengan Muda h Menggunakan Minitab 14. Yogyakarta: Andi Ofset. [6] Kristien & Sofian. (2015). Analisa Dan Penerapan metode Single Exponential Smoothing Untuk Prediksi Penjualan Pada Periode Tertentu (studi kasus : PT. Media cemara kreasi). Jakarta [7] Nur Sidik. (2012). Forecasting Volume Produksi Tanaman Pangan, Tanaman Perkebunan Rakyat Kab. Magelang Dengan Metode Exponential Smoothing Berbantu Minitab. Universitas Negeri Semarang [8] Richard. (2011). Perception-Based Approach To Time Series Data Mining. [9] Roby , S. A. (2012). Perancangan Data Warehouse Dan Penerapan Algoritma Time Series Untuk Memprediksi Informasi Pertumbuhan Penduduk Di Provinsi Bengkulu. Palembang. [10] Sri Mulyono. (2010). Analisis Times Series. Jakarta: Elex Media Komputindo. [11] Soejati, Zanzawi. 2010. Analisis Runtun Waktu. Jakarta: Karunia Jakarta. [12] Sriyati. 2005. Forecasting Jumlah Pelanggan Koran Sore Wawasan Tahun 2005 Berdasarkan Hasil Promosi di PT. Sarana Pariwara Semarang Dengan Menggunakan Metode Exponential Smoothing Berbentu Program Minitab. Matematika: UNNES.