際際滷

際際滷Share a Scribd company logo
Dependent Variable: LUONGHANG
Included observations: 20
Variable         Coefficient    Std. Error   t-Statistic    Prob.
GIA              -1.331220      0.086149     -15.45251     0.0000
QUANGCAO         3.578441       1.263821     2.831445       0.0115
C                18.57448       1.327863     13.98825       0.0000
R-squared             0.939080     Mean dependent var 15.30000
Adjusted R-squared 0.931913        S.D. dependent var      2.494204
S.E. of regression   0.650825     Akaike info criterion 2.116
Sum squared resid    7.200735      Schwarz criterion       2.265688
Log likelihood       -18.1632      F-statistic             131.0274
Durbin-Watson stat    2.816702     Prob(F-statistic)       0.000000
Wald Test:
Equation: EQ01
Null Hypothesis:    C(1)= -1
F-statistic   14.78196         Probability   0.001298
Chi-square    14.78196         Probability   0.000121

More Related Content

Viewers also liked (7)

Tng tr動畛ng kinh t畉
Tng tr動畛ng kinh t畉Tng tr動畛ng kinh t畉
Tng tr動畛ng kinh t畉
LyLy Tran
Nghia vu nguoi ban
Nghia vu nguoi banNghia vu nguoi ban
Nghia vu nguoi ban
robodientu
Dam phan bang thu trong xuat nhap khau
Dam phan bang thu trong xuat nhap khauDam phan bang thu trong xuat nhap khau
Dam phan bang thu trong xuat nhap khau
robodientu
Triet hoc 1 full
Triet hoc 1 fullTriet hoc 1 full
Triet hoc 1 full
robodientu
Incoterms2000( l動u y)
Incoterms2000( l動u y)Incoterms2000( l動u y)
Incoterms2000( l動u y)
robodientu
Ngan_hang_cau_hoi_on_thi_triet
Ngan_hang_cau_hoi_on_thi_trietNgan_hang_cau_hoi_on_thi_triet
Ngan_hang_cau_hoi_on_thi_triet
robodientu
Tng tr動畛ng kinh t畉
Tng tr動畛ng kinh t畉Tng tr動畛ng kinh t畉
Tng tr動畛ng kinh t畉
LyLy Tran
Nghia vu nguoi ban
Nghia vu nguoi banNghia vu nguoi ban
Nghia vu nguoi ban
robodientu
Dam phan bang thu trong xuat nhap khau
Dam phan bang thu trong xuat nhap khauDam phan bang thu trong xuat nhap khau
Dam phan bang thu trong xuat nhap khau
robodientu
Triet hoc 1 full
Triet hoc 1 fullTriet hoc 1 full
Triet hoc 1 full
robodientu
Incoterms2000( l動u y)
Incoterms2000( l動u y)Incoterms2000( l動u y)
Incoterms2000( l動u y)
robodientu
Ngan_hang_cau_hoi_on_thi_triet
Ngan_hang_cau_hoi_on_thi_trietNgan_hang_cau_hoi_on_thi_triet
Ngan_hang_cau_hoi_on_thi_triet
robodientu

Similar to Minhhoa bai giang kinh te luong (20)

Sunil1
Sunil1Sunil1
Sunil1
Rakesh Kumar
Output
OutputOutput
Output
Remarkable Shamun
Lampiran error correction model
Lampiran error correction modelLampiran error correction model
Lampiran error correction model
Chenk Alie Patrician
Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production function
Suniya Sheikh
Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production function
Suniya Sheikh
working data(Group5)
working data(Group5)working data(Group5)
working data(Group5)
Kritika Gupta
Econometrics Project
Econometrics ProjectEconometrics Project
Econometrics Project
Uday Tharar
Durbib- Watson D between 0-2 means there is a positive correlati
Durbib- Watson D between 0-2 means there is a positive correlatiDurbib- Watson D between 0-2 means there is a positive correlati
Durbib- Watson D between 0-2 means there is a positive correlati
AlyciaGold776
Lampiran uji kointegrasi
Lampiran uji kointegrasiLampiran uji kointegrasi
Lampiran uji kointegrasi
Chenk Alie Patrician
Regression analysis
Regression analysisRegression analysis
Regression analysis
Arun Prasad R
Lampiran error correction model
Lampiran error correction modelLampiran error correction model
Lampiran error correction model
Chenk Alie Patrician
Regression estimmlkmknkjnkjnnjkjnkjnate.pdf
Regression estimmlkmknkjnkjnnjkjnkjnate.pdfRegression estimmlkmknkjnkjnnjkjnkjnate.pdf
Regression estimmlkmknkjnkjnnjkjnkjnate.pdf
FahadRashdi1
Data equation
Data equation Data equation
Data equation
ressas
Appendix
AppendixAppendix
Appendix
Oryza Sativa
MWD TESET_kelas onlinekkkkkkkkkkkkkkkkkk.pptx
MWD TESET_kelas onlinekkkkkkkkkkkkkkkkkk.pptxMWD TESET_kelas onlinekkkkkkkkkkkkkkkkkk.pptx
MWD TESET_kelas onlinekkkkkkkkkkkkkkkkkk.pptx
Dawam8
Lampiran uji kointegrasi
Lampiran uji kointegrasiLampiran uji kointegrasi
Lampiran uji kointegrasi
Chenk Alie Patrician
Enflasyon forecast
Enflasyon forecastEnflasyon forecast
Enflasyon forecast
mesut bayhan
Multiple Regression Case
Multiple Regression CaseMultiple Regression Case
Multiple Regression Case
Kusuma Arifiani
Regression (II)
Regression (II)Regression (II)
Regression (II)
Paul Gardner
Mung bean susan (1)
Mung bean susan (1)Mung bean susan (1)
Mung bean susan (1)
Faisal Ansari
Lampiran error correction model
Lampiran error correction modelLampiran error correction model
Lampiran error correction model
Chenk Alie Patrician
Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production function
Suniya Sheikh
Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production function
Suniya Sheikh
working data(Group5)
working data(Group5)working data(Group5)
working data(Group5)
Kritika Gupta
Econometrics Project
Econometrics ProjectEconometrics Project
Econometrics Project
Uday Tharar
Durbib- Watson D between 0-2 means there is a positive correlati
Durbib- Watson D between 0-2 means there is a positive correlatiDurbib- Watson D between 0-2 means there is a positive correlati
Durbib- Watson D between 0-2 means there is a positive correlati
AlyciaGold776
Regression analysis
Regression analysisRegression analysis
Regression analysis
Arun Prasad R
Lampiran error correction model
Lampiran error correction modelLampiran error correction model
Lampiran error correction model
Chenk Alie Patrician
Regression estimmlkmknkjnkjnnjkjnkjnate.pdf
Regression estimmlkmknkjnkjnnjkjnkjnate.pdfRegression estimmlkmknkjnkjnnjkjnkjnate.pdf
Regression estimmlkmknkjnkjnnjkjnkjnate.pdf
FahadRashdi1
Data equation
Data equation Data equation
Data equation
ressas
MWD TESET_kelas onlinekkkkkkkkkkkkkkkkkk.pptx
MWD TESET_kelas onlinekkkkkkkkkkkkkkkkkk.pptxMWD TESET_kelas onlinekkkkkkkkkkkkkkkkkk.pptx
MWD TESET_kelas onlinekkkkkkkkkkkkkkkkkk.pptx
Dawam8
Enflasyon forecast
Enflasyon forecastEnflasyon forecast
Enflasyon forecast
mesut bayhan
Multiple Regression Case
Multiple Regression CaseMultiple Regression Case
Multiple Regression Case
Kusuma Arifiani
Regression (II)
Regression (II)Regression (II)
Regression (II)
Paul Gardner
Mung bean susan (1)
Mung bean susan (1)Mung bean susan (1)
Mung bean susan (1)
Faisal Ansari

More from robodientu (13)

Chuong 4 bookbooming
Chuong 4 bookboomingChuong 4 bookbooming
Chuong 4 bookbooming
robodientu
Chuong 3 bookbooming
Chuong 3 bookboomingChuong 3 bookbooming
Chuong 3 bookbooming
robodientu
Chuong 2 gd tmqt
Chuong 2 gd tmqtChuong 2 gd tmqt
Chuong 2 gd tmqt
robodientu
C8 bai giang kinh te luong
C8 bai giang kinh te luongC8 bai giang kinh te luong
C8 bai giang kinh te luong
robodientu
C7 bai giang kinh te luong
C7 bai giang kinh te luongC7 bai giang kinh te luong
C7 bai giang kinh te luong
robodientu
C5
C5C5
C5
robodientu
C4 bai giang kinh te luong
C4 bai giang kinh te luongC4 bai giang kinh te luong
C4 bai giang kinh te luong
robodientu
C3 bai giang kinh te luong
C3 bai giang kinh te luongC3 bai giang kinh te luong
C3 bai giang kinh te luong
robodientu
C2 bai giang kinh te luong
C2 bai giang kinh te luongC2 bai giang kinh te luong
C2 bai giang kinh te luong
robodientu
C1bai giang kinh te luong
C1bai giang kinh te luongC1bai giang kinh te luong
C1bai giang kinh te luong
robodientu
C9 bai giang kinh te luong
C9 bai giang kinh te luongC9 bai giang kinh te luong
C9 bai giang kinh te luong
robodientu
Chuong 4 bookbooming
Chuong 4 bookboomingChuong 4 bookbooming
Chuong 4 bookbooming
robodientu
Chuong 3 bookbooming
Chuong 3 bookboomingChuong 3 bookbooming
Chuong 3 bookbooming
robodientu
Chuong 2 gd tmqt
Chuong 2 gd tmqtChuong 2 gd tmqt
Chuong 2 gd tmqt
robodientu
C8 bai giang kinh te luong
C8 bai giang kinh te luongC8 bai giang kinh te luong
C8 bai giang kinh te luong
robodientu
C7 bai giang kinh te luong
C7 bai giang kinh te luongC7 bai giang kinh te luong
C7 bai giang kinh te luong
robodientu
C4 bai giang kinh te luong
C4 bai giang kinh te luongC4 bai giang kinh te luong
C4 bai giang kinh te luong
robodientu
C3 bai giang kinh te luong
C3 bai giang kinh te luongC3 bai giang kinh te luong
C3 bai giang kinh te luong
robodientu
C2 bai giang kinh te luong
C2 bai giang kinh te luongC2 bai giang kinh te luong
C2 bai giang kinh te luong
robodientu
C1bai giang kinh te luong
C1bai giang kinh te luongC1bai giang kinh te luong
C1bai giang kinh te luong
robodientu
C9 bai giang kinh te luong
C9 bai giang kinh te luongC9 bai giang kinh te luong
C9 bai giang kinh te luong
robodientu

Minhhoa bai giang kinh te luong

  • 1. Dependent Variable: LUONGHANG Included observations: 20 Variable Coefficient Std. Error t-Statistic Prob. GIA -1.331220 0.086149 -15.45251 0.0000 QUANGCAO 3.578441 1.263821 2.831445 0.0115 C 18.57448 1.327863 13.98825 0.0000 R-squared 0.939080 Mean dependent var 15.30000 Adjusted R-squared 0.931913 S.D. dependent var 2.494204 S.E. of regression 0.650825 Akaike info criterion 2.116 Sum squared resid 7.200735 Schwarz criterion 2.265688 Log likelihood -18.1632 F-statistic 131.0274 Durbin-Watson stat 2.816702 Prob(F-statistic) 0.000000
  • 2. Wald Test: Equation: EQ01 Null Hypothesis: C(1)= -1 F-statistic 14.78196 Probability 0.001298 Chi-square 14.78196 Probability 0.000121