ݺߣ

ݺߣShare a Scribd company logo
알아두면 쓸데있는
신기한 강화습
김태훈
carpedm20
저는
졸업
머신러닝 엔지니어
+
20+
강화 습
Reinforcement Learning (RL)
알아두면 쓸데있는 신기한 강화습 NAVER 2017
Environment
Agent
Environment
Agent
State 𝑠"
Environment
Agent
State 𝑠" Action 𝑎" = 2
Environment
Agent
Action 𝑎" = 2State 𝑠" Reward 𝑟" = 1
Environment
Agent
Action 𝑎" = 2State 𝑠" Reward 𝑟" = 1
Environment
Agent
Action 𝑎" = 0State 𝑠" Reward 𝑟" = −1
Environment
Agent
Action 𝑎" = 0State 𝑠" Reward 𝑟" = −1
행동을 하고 시행착오를 겪으며 습
강화 습
최근 강화 습 연구들
https://deepmind.com/blog/agents-imagine-and-plan/
https://blog.openai.com/learning-to-cooperate-compete-and-communicate/
2017.08.09
알아두면 쓸데있는 신기한 강화습 NAVER 2017
2017.08.11
알아두면 쓸데있는 신기한 강화습 NAVER 2017
https://sites.google.com/view/nips17assembly/home
/carpedm20/ai-67616630
2014
Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533.
Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489.
Vinyals, Oriol, et al. "StarCraft II: A New Challenge for Reinforcement Learning."
2016
2017
2014
2016
이전의 강화습은 잘 알려진 반면..
2014
2016
이후의 강화습?
그래서
최근 강화 습17.08.16
다섯 가지 트렌드
1.Multi Agent
2.Planning
3.Meta Learning
4.Guided RL
5.ETC Exploration, Continuous action, Imitation learning …
1.여러 로봇 습하기
2.전략 세우기
3.배경 지식 활용하기
4.명령에 따라 다르게 행동하기
5.그 외 다양한 시도, 연속적인 행동, 따라하기, …
WARNING
강화 습이 처음이신 분께 다소 어려울 수 있기 때문에
전체적인 흐름 파악에만 집중해 주세요
하나씩 얕고 좁게..
1. 여러 로봇 습하기
Multi Agent RL
Single Agent
https://deepmind.com/research/alphago/alphago-vs-alphago-self-play-games/
협업 or 경쟁이 필요한 Multi Agent
자율 주행 자동차, 대화 AI, 대규모 공장 로봇 …
Starcraft
Peng, Peng, et al. "Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games." arXiv preprint arXiv:1703.10069 (2017).
Multi-Agent RL
다중 에이전트 강화 습
Single Agent 습 방식을
그대로 쓰기 어렵다
Deep Q­learning, Policy Gradient …
다양한 어려움이 있지만..
Multi-Agent RL
Non stationary environment
다른 Agent 때문에 생기는 불확실성 때문에 습이 어렵고 기존의 경험을 바로 활용하기 어렵다
B
A
B에 가까이 갈 때 +1 reward
B
A
+1
+1-1
-1
B에 가까이 갈 때 +1 reward
B
A
+1+1-1+1+1+1
Q( ) = +2
Q(𝑎") : 각 행동 𝑎"가 가져울 미래 가치
B
A
+1+1-1+1+1+1
Q( ) = +2
+1+1-1+1+1+1
Q( ) = +4
Q(𝑎") : 각 행동 𝑎"가 가져울 미래 가치
B
A
+1+1-1+1+1+1
Q( ) = +2
+1+1-1+1+1+1
Q( ) = +4
-1-1-1+1-1+1
Q( ) = -2
-1+1-1-1-1-1
Q( ) = -4
Q(𝑎") : 각 행동 𝑎"가 가져울 미래 가치
B
A
+1+1-1+1+1+1
Q( ) = +2
+1+1-1+1+1+1
Q( ) = +4
-1-1-1+1-1+1
Q( ) = -2
-1+1-1-1-1-1
Q( ) = -4
Q(𝑎") : 각 행동 𝑎"가 가져울 미래 가치
B
A
B가 갑자기 움직이기 시작한다면?
B
B
A
Q( ) = ?
Q( ) = ?Q( ) = ?
Q( ) = ?
A가 이전에 배웠던 Q(𝑎")는 무쓸모
B
A
B
예를 들어 B가 갑자기 순간 이동을 한다고 했을때
B가 다른 reward를 받는 Agent라면?
습하면서 행동을 바꾼다면
B
B
Q( ) = ?
Q( ) = ?Q( ) = ?
Q( ) = ?
A
Q-value 습이 굉장히 불안정해 질 것
B
B
Q( ) = ?
Q( ) = ?Q( ) = ?
Q( ) = ?
A
다양한 시도
Multi-Agent RL
Communication
Mordatch, Igor, and Pieter Abbeel. "Emergence of Grounded Compositional Language in Multi-Agent Populations." arXiv preprint arXiv:1703.04908 (2017)
https://blog.openai.com/learning-to-communicate/
다른 모든 Agent에게 메세지 전달
Actor-Critic + Centralized Q-value
다른 Agent의 내부 정보를 공유
Lowe, Ryan, et al. "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments." arXiv preprint arXiv:1706.02275 (2017)
https://blog.openai.com/learning-to-cooperate-compete-and-communicate/
Centralized Q-value
2. 전략 세우기
Hierarchical RL + Model-based RL
Reward가 자주 생겨서 습이 쉬움
Reward가 너무 드물어서 습이 어려움
Sparse Reward
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016.
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017).
30번 정도의 올바른 행동 후에 0이 아닌 Reward을 얻음
Feedback
밧줄을 타고 내려가서 해골을 피하고 사다리를 타서 열쇠를 얻어야 100점 얻음
Hierarchical RL
계층 강화 습
A
Non-hierarchical RL
A
행동 𝑎"
Non-hierarchical RL
A
행동 𝑎"Reward 𝑟"
Non-hierarchical RL
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
A A
행동 𝑎"Reward 𝑟"
Non-hierarchical RL Hierarchical RL
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
A A
행동 𝑎"Reward 𝑟"
Non-hierarchical RL Hierarchical RL
목표1 목표2 목표3
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
A A
행동 𝑎"Reward 𝑟"
Non-hierarchical RL Hierarchical RL
밧줄 잡기
목표1 목표2 목표3
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
A A
행동 𝑎"Reward 𝑟"
Non-hierarchical RL Hierarchical RL
밧줄 잡기 사다리 내려가기
목표1 목표2 목표3
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
A A
행동 𝑎"Reward 𝑟"
Non-hierarchical RL Hierarchical RL
밧줄 잡기 사다리 내려가기 점프 하기
목표1 목표2 목표3
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
목표1 목표2 목표3
A A
행동 𝑎"Reward 𝑟"
𝑎*,"𝑎,,"
Non-hierarchical RL Hierarchical RL
𝑎-,"
밧줄 잡기 사다리 내려가기 점프 하기
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
목표1 목표2 목표3
- - ON
A A
목표 Ω
행동 𝑎"Reward 𝑟"
Non-hierarchical RL Hierarchical RL
𝑎*,"𝑎,," 𝑎-,"
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
목표1 목표2 목표3
- - ON
A A
목표 Ω
행동 𝑎-,"행동 𝑎"Reward 𝑟"
𝑎*,"𝑎,,"
Non-hierarchical RL Hierarchical RL
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
목표1 목표2 목표3
- - ON
A A
목표 Ω
행동 𝑎-,"행동 𝑎"Reward 𝑟" Reward 𝑟"
𝑎*,"𝑎,,"
Non-hierarchical RL Hierarchical RL
Montezuma 잘 풀었다
Kulkarni, Tejas D., et al. "Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation." Advances in Neural Information Processing Systems. 2016
Vezhnevets, Alexander Sasha, et al. "Feudal networks for hierarchical reinforcement learning." arXiv preprint arXiv:1703.01161 (2017)
Bacon, Pierre-Luc, Jean Harb, and Doina Precup. "The Option-Critic Architecture." AAAI. 2017
.짶.만.
하지만, 암기로 풀 수 있음
암기로 풀 수 없는 문제
Weber, Théophane, et al. "Imagination-Augmented Agents for Deep Reinforcement Learning." arXiv preprint arXiv:1707.06203 (2017).
https://deepmind.com/blog/agents-imagine-and-plan/
Weber, Théophane, et al. "Imagination-Augmented Agents for Deep Reinforcement Learning." arXiv preprint arXiv:1707.06203 (2017).
https://deepmind.com/blog/agents-imagine-and-plan/
실제로 일어날 일을 시뮬레이션으로 (internal simulation) 상상해 보고 행동
Model-free RL + Model-based RL
Deep Q-learning
Policy Gradient
…
Model-free RL + Model-based RL
Imagination
Weber, Théophane, et al. "Imagination-Augmented Agents for Deep Reinforcement Learning." arXiv preprint arXiv:1707.06203 (2017).
https://deepmind.com/blog/agents-imagine-and-plan/
3. 배경 지식 활용하기
Meta Learning
사람처럼 기존의 경험을 활용해
새로운 환경에서 어떻게 잘 적응을 할 수 있을까?
Meta Learning
여러가지 접근법
Meta Learning
Weight Update를 빠르게 하려면?
http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
최적의 네트워크를 찾으려면?
http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
작은 데이터만 보고도 잘 분류하려면?
http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
한번도 안 본 게임도 잘 클리어 하려면?
http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
Meta Learning + RL
Meta Learning
http://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/
Meta Learning + RL
Meta Reinforcement Learning
한번도 안 본 게임도 잘 클리어 하려면?
Duan, Yan, et al. "RL $^ 2$: Fast Reinforcement Learning via Slow Reinforcement Learning." arXiv preprint arXiv:1611.02779 (2016).
https://www.youtube.com/playlist?list=PLp24ODExrsVeA-ZnOQhdhX6X7ed5H_W4q
Duan, Yan, et al. "RL $^ 2$: Fast Reinforcement Learning via Slow Reinforcement Learning." arXiv preprint arXiv:1611.02779 (2016).
한판 = 한 Episode
Duan, Yan, et al. "RL $^ 2$: Fast Reinforcement Learning via Slow Reinforcement Learning." arXiv preprint arXiv:1611.02779 (2016).
Episode가 끝나도 정보를 리셋하지 않고 계속 사용
Duan, Yan, et al. "RL $^ 2$: Fast Reinforcement Learning via Slow Reinforcement Learning." arXiv preprint arXiv:1611.02779 (2016).
N번의 Episode를 하나의 Trial로 정의
N번의 Episode를 통해서 최적의 플레이를 찾는 방법을 습
Duan, Yan, et al. "RL $^ 2$: Fast Reinforcement Learning via Slow Reinforcement Learning." arXiv preprint arXiv:1611.02779 (2016).
새로운 시도에는 새로운 게임(여기서는 새로운 맵)을 플레이
Duan, Yan, et al. "RL $^ 2$: Fast Reinforcement Learning via Slow Reinforcement Learning." arXiv preprint arXiv:1611.02779 (2016).
새로운 시도에는 새로운 게임(여기서는 새로운 맵)을 플레이
좀 더 현실적인 예시: 마리오를 N번 플레이 내에 끝까지 클리어
알아두면 쓸데있는 신기한 강화습 NAVER 2017
알아두면 쓸데있는 신기한 강화습 NAVER 2017
알아두면 쓸데있는 신기한 강화습 NAVER 2017
다양한 마리오 게임을 습하고 습하지 않았던 마리오 게임을 플레이
다양한 레이싱 게임을 습하고 습하지 않았던 레이싱 게임을 플레이
ex. GTA, 실제 자율 주행 자동차
다양한 시도
Meta RL
RL2: Recurrent Network
Duan, Yan, et al. "RL $^ 2$: Fast Reinforcement Learning via Slow Reinforcement Learning." arXiv preprint arXiv:1611.02779 (2016).
https://www.youtube.com/playlist?list=PLp24ODExrsVeA-ZnOQhdhX6X7ed5H_W4q
Episode의 Return이 아닌 Trial의 Return을 optimize
Model-Agnostic Meta-Learning
Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks." arXiv preprint arXiv:1703.03400 (2017).
여러 Task를 동시에 습해 weight의 central point를 찾음
그리고 1번의 gradient update로 새 Task에 적응
4. 명령에 따라 다르게 행동하기
단 한가지 목표
단 한가지 목표 자율 주행 = 무한가지 목표
학교까지 주행
앞 차를 따라서 주행
주차장에 주차
...
Guided RL
명령에 따라 다르게 행동하도록 Agent를 습
+ Guided RL
Teaching Machines to Understand Visual Manuals
via Attention Supervision for Object Assembly
Taehoon Kim1, Youngwoon Lee2, Joseph Lim2
1
2
왜?
사람처럼 새로운 환경에서 잘 적응하려면?
Generalization in Reinforcement Learning
http://www.ikea.com/ms/en_US/customer_service/assembly_instructions.html
의자 조립을 배운 사람
http://www.ikea.com/ms/en_US/customer_service/assembly_instructions.html
책상을 매뉴얼 없이 조립할 수 있을까?
http://www.ikea.com/ms/en_US/customer_service/assembly_instructions.html
하지만 매뉴얼이 있다면?
사람도 새로운 문제를 풀기 위해서는
매뉴얼을 봐야한다
무엇을?
칠교 퍼즐 가구 조립
Hierarchical Planning이 필요한 문제
State 𝑠"
State 𝑠" Manual 𝑚&ܴdz;
어떻게?
두가지 방법으로 접근
알아두면 쓸데있는 신기한 강화습 NAVER 2017
…
…
…
Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. "Pointer networks." Advances in Neural Information Processing Systems. 2015.
…
…
Pointer Network
𝒔 𝒩,"
	
𝝅
𝑽
	
𝑎"5,
	
𝑒𝑛𝑐
	
	
…
𝒔*,"
𝒔,,"
…
⟨𝑔⟩
… …
𝑠<,"
,
𝑠<,"
*
𝑠<,"
𝒮
𝑝<,"
,
𝑝<,"
𝒫5,
𝑴"
Image segmentation + Pointer Network
하지만 Pointer Network 습을 위해
추가적인 Supervision 필요
단점
몇 번째 segment가 매뉴얼 조각을 포함하는지
…
…
Attention
Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." International Conference on Machine Learning. 2015.
메뉴얼에 해당하는 부분에 집중(ٳٱԳپDz)
Query
Attention maps
Guided
Attention
π
V
Manual
State
Context Fusion
Map Fusion
…
…
…
…
…
Guided Attention + A3C
그리고 복잡한 습 과정을 거쳐서..
Curriculum Learning
Semi-supervised Learning
Self-supervision
…
결과
https://sites.google.com/view/nips17assembly/home
: 입력
https://sites.google.com/view/nips17assembly/home
: 입력
https://sites.google.com/view/nips17assembly/home
: 입력
다른 Guided RL 연구들
Text as Manual
Gated-Attention + A3C
Hermann, Karl Moritz, et al. "Grounded language learning in a simulated 3D world." arXiv preprint arXiv:1706.06551 (2017)
https://sites.google.com/view/gated-attention/home
Self-Supervision + A3C
Chaplot, Devendra Singh, et al. "Gated-Attention Architectures for Task-Oriented Language Grounding." arXiv preprint arXiv:1706.07230 (2017)
https://www.youtube.com/watch?v=wJjdu1bPJ04
물체들의 관계까지 이해해야 하는 Agent
5. ETC
Exploration, Continuous action, Imitation learning
Exploration
지금까지 좋다고 생각했던 행동이 아닌 모험(랜덤 행동)을 하는 것
Exploration
랜덤으로 모험(행동)을 하는 것
Exploration
랜덤으로 모험(행동)을 하는 것
Exploitation
지금까지 배운 최선의 행동을 하는 것
Exploration
Pathak,	Deepak,	et	al.	"Curiosity-driven	exploration	by	self-supervised	prediction." arXiv	preprint	arXiv:1705.05363 (2017)
https://pathak22.github.io/noreward-rl/
Curiosity reward
+
Inverse Dynamics Model
Curriculum Learning
쉬운 문제부터 어려운 문제까지 차근차근 난이도를 올려가며 습
습 시간
난이도 하 중 상
Non-curriculum learning
특정 난이도의 문제 뽑을 확률
습 시간
난이도 하 중 상
습 처음부터 끝까지 모든 난이도를 동일한 확률로 뽑기
Non-curriculum learning
습 시간
난이도 하 중 상
Curriculum learning
처음에는 가장 쉬운 문제를 많이 습
습 시간
난이도 하 중 상 하 중 상
Curriculum learning
특정 조건 달성 이후 좀 더 어려운 문제 풀기 시작
문제 하 성공률 80% 달성
습 시간
난이도 하 중 상 하 중 상 하 중 상
문제 하 성공률 80% 달성 문제 중 성공률 80% 달성
Curriculum learning
특정 조건 달성 이후 좀 더 어려운 문제 풀기 시작
Curriculum Learning + GAN
Held,	David,	et	al.	"Automatic	Goal	Generation	for	Reinforcement	Learning	Agents." arXiv	preprint	arXiv:1705.06366 (2017)
https://sites.google.com/view/goalgeneration4rl
Continuous Action
연속적인 행동을 가진 Agent의 습 (ex. 로봇)
Discrete	Action	 𝑎"
<
∈ {0,1}
위 아래
ON -
Continuous	Action	−1 ≤ 𝑎"
<
≤ 1Discrete	Action	 𝑎"
<
∈ {0,1}
어깨 무릎 허리
0.1 -0.2 0.5
위 아래
ON -
Continuous Action
Schulman,	John,	et	al.	"Proximal	Policy	Optimization	Algorithms." arXiv	preprint	arXiv:1707.06347 (2017)
https://blog.openai.com/openai-baselines-ppo/
PPO
Continuous Action
Heess,	Nicolas,	et	al.	"Emergence	of	Locomotion	Behaviours	in	Rich	Environments." arXiv	preprint	arXiv:1707.02286 (2017)
https://www.youtube.com/watch?v=hx_bgoTF7bs
Distributed PPO
이 외에도..
문제는 여전히 많다
네.
강화 습 캉화 습 강화 습 강화 습
강화 습 강화 습 강화 습 강화 습
강화 습 강화 습 강화 습 강화 습
강화 습 강화 습 강화 습 감화 습
강화 습 강화 습 강화 습 강화 습
강회 습 강화 습 강화 습 강화 습
Neural Turing Machine
Differentiable Neural Computer
Neural Module Network
Neural Programmer-Interpreter
Programmable Agent
…
강화 습 외에도 관심있는 분야
Graves, Alex, Greg Wayne, and Ivo Danihelka. "Neural turing machines." arXiv preprint arXiv:1410.5401 (2014).
Graves, Alex, et al. "Hybrid computing using a neural network with dynamic external memory." Nature 538.7626 (2016): 471-476.
Andreas, Jacob, et al. "Neural module networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
Reed, Scott, and Nando De Freitas. "Neural programmer-interpreters." arXiv preprint arXiv:1511.06279 (2015).
Denil, Misha, et al. "Programmable agents." arXiv preprint arXiv:1706.06383(2017).
다 이야기하고 싶지만 오늘읶..
Generative Model
GAN이라던가..
Berthelot, David, Tom Schumm, and Luke Metz. "Began: Boundary equilibrium generative adversarial networks." arXiv preprint arXiv:1703.10717 (2017).
https://github.com/carpedm20/BEGAN-tensorflow
Kim, Taeksoo, et al. "Learning to discover cross-domain relations with generative adversarial networks." arXiv preprint arXiv:1703.05192 (2017).
https://github.com/carpedm20/DiscoGAN-pytorch
Shrivastava, Ashish, et al. "Learning from simulated and unsupervised images through adversarial training." arXiv preprint arXiv:1612.07828 (2016).
https://github.com/carpedm20/simulated-unsupervised-tensorflow
Generative Model + Audio
Generative Model + Audio
카카오뱅크가 개시 5일만에 100만 계좌를 돌파하면서 돌풍을 일으키고 있다.
CVPR2017 현장 풍경입니다. 많은 컴퓨터비전 연구자들이 네이버랩스 부스를 찾았습니다.
오늘의 날씨는 어제보다 3도 높습니다. 총 3개의 일정이 등록되어 있습니다.
.voice
Voice Synthesis Technologies for Developers
더 자세한건...
알아두면 쓸데있는 신기한 강화습 NAVER 2017
http://www.devsisters.com/jobs/
END
http://carpedm20.github.io/

More Related Content

What's hot (20)

오토인코더의 모든 것
오토인코더의 모든 것오토인코더의 모든 것
오토인코더의 모든 것
NAVER Engineering
강화습 알고리즘의 흐름도 Part 2
강화습 알고리즘의 흐름도 Part 2강화습 알고리즘의 흐름도 Part 2
강화습 알고리즘의 흐름도 Part 2
Dongmin Lee
상상을 현실로 만드는, 이미지 생성 모델을 위한 엔지니어링
상상을 현실로 만드는, 이미지 생성 모델을 위한 엔지니어링상상을 현실로 만드는, 이미지 생성 모델을 위한 엔지니어링
상상을 현실로 만드는, 이미지 생성 모델을 위한 엔지니어링
Taehoon Kim
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
Yongho Ha
딥러닝 - 역사와 이론적 기초
딥러닝 - 역사와 이론적 기초딥러닝 - 역사와 이론적 기초
딥러닝 - 역사와 이론적 기초
Hyungsoo Ryoo
Introduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement LearningIntroduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement Learning
NAVER Engineering
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
NAVER Engineering
인공지능 방법론 - Deep Learning 쉽게 이해하기
인공지능 방법론 - Deep Learning 쉽게 이해하기인공지능 방법론 - Deep Learning 쉽게 이해하기
인공지능 방법론 - Deep Learning 쉽게 이해하기
Byoung-Hee Kim
RLCode와 A3C 쉽고 깊게 이해하기
RLCode와 A3C 쉽고 깊게 이해하기RLCode와 A3C 쉽고 깊게 이해하기
RLCode와 A3C 쉽고 깊게 이해하기
Woong won Lee
Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)
Dongmin Lee
알아두면 쓸데있는 신비한 딥러닝 이야기
알아두면 쓸데있는 신비한 딥러닝 이야기알아두면 쓸데있는 신비한 딥러닝 이야기
알아두면 쓸데있는 신비한 딥러닝 이야기
Kwangsik Lee
Wasserstein GAN 수학 이해하기 I
Wasserstein GAN 수학 이해하기 IWasserstein GAN 수학 이해하기 I
Wasserstein GAN 수학 이해하기 I
Sungbin Lim
강화습 해부학 교실: Rainbow 이론부터 구현까지 (2nd dlcat in Daejeon)
강화습 해부학 교실: Rainbow 이론부터 구현까지 (2nd dlcat in Daejeon)강화습 해부학 교실: Rainbow 이론부터 구현까지 (2nd dlcat in Daejeon)
강화습 해부학 교실: Rainbow 이론부터 구현까지 (2nd dlcat in Daejeon)
Kyunghwan Kim
기계습 / 딥러닝이란 무엇인가
기계습 / 딥러닝이란 무엇인가기계습 / 딥러닝이란 무엇인가
기계습 / 딥러닝이란 무엇인가
Yongha Kim
딥러닝의 기본
딥러닝의 기본딥러닝의 기본
딥러닝의 기본
deepseaswjh
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
Taehoon Kim
딥 러닝 자연어 처리를 습을 위한 파워포인트. (Deep Learning for Natural Language Processing)
딥 러닝 자연어 처리를 습을 위한 파워포인트. (Deep Learning for Natural Language Processing)딥 러닝 자연어 처리를 습을 위한 파워포인트. (Deep Learning for Natural Language Processing)
딥 러닝 자연어 처리를 습을 위한 파워포인트. (Deep Learning for Natural Language Processing)
WON JOON YOO
알파고 (바둑 인공지능)의 작동 원리
알파고 (바둑 인공지능)의 작동 원리알파고 (바둑 인공지능)의 작동 원리
알파고 (바둑 인공지능)의 작동 원리
Shane (Seungwhan) Moon
머신러닝 해외 취업 준비: 닳고 닳은 이력서와 고통스러웠던 면접을 돌아보며 SNU 2018
머신러닝 해외 취업 준비: 닳고 닳은 이력서와 고통스러웠던 면접을 돌아보며 SNU 2018머신러닝 해외 취업 준비: 닳고 닳은 이력서와 고통스러웠던 면접을 돌아보며 SNU 2018
머신러닝 해외 취업 준비: 닳고 닳은 이력서와 고통스러웠던 면접을 돌아보며 SNU 2018
Taehoon Kim
분산 강화습 논문(DeepMind IMPALA) 구현
분산 강화습 논문(DeepMind IMPALA) 구현분산 강화습 논문(DeepMind IMPALA) 구현
분산 강화습 논문(DeepMind IMPALA) 구현
정주 김
강화습 알고리즘의 흐름도 Part 2
강화습 알고리즘의 흐름도 Part 2강화습 알고리즘의 흐름도 Part 2
강화습 알고리즘의 흐름도 Part 2
Dongmin Lee
상상을 현실로 만드는, 이미지 생성 모델을 위한 엔지니어링
상상을 현실로 만드는, 이미지 생성 모델을 위한 엔지니어링상상을 현실로 만드는, 이미지 생성 모델을 위한 엔지니어링
상상을 현실로 만드는, 이미지 생성 모델을 위한 엔지니어링
Taehoon Kim
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
자습해도 모르겠던 딥러닝, 머리속에 인스톨 시켜드립니다.
Yongho Ha
딥러닝 - 역사와 이론적 기초
딥러닝 - 역사와 이론적 기초딥러닝 - 역사와 이론적 기초
딥러닝 - 역사와 이론적 기초
Hyungsoo Ryoo
Introduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement LearningIntroduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement Learning
NAVER Engineering
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
1시간만에 GAN(Generative Adversarial Network) 완전 정복하기
NAVER Engineering
인공지능 방법론 - Deep Learning 쉽게 이해하기
인공지능 방법론 - Deep Learning 쉽게 이해하기인공지능 방법론 - Deep Learning 쉽게 이해하기
인공지능 방법론 - Deep Learning 쉽게 이해하기
Byoung-Hee Kim
RLCode와 A3C 쉽고 깊게 이해하기
RLCode와 A3C 쉽고 깊게 이해하기RLCode와 A3C 쉽고 깊게 이해하기
RLCode와 A3C 쉽고 깊게 이해하기
Woong won Lee
Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)
Dongmin Lee
알아두면 쓸데있는 신비한 딥러닝 이야기
알아두면 쓸데있는 신비한 딥러닝 이야기알아두면 쓸데있는 신비한 딥러닝 이야기
알아두면 쓸데있는 신비한 딥러닝 이야기
Kwangsik Lee
Wasserstein GAN 수학 이해하기 I
Wasserstein GAN 수학 이해하기 IWasserstein GAN 수학 이해하기 I
Wasserstein GAN 수학 이해하기 I
Sungbin Lim
강화습 해부학 교실: Rainbow 이론부터 구현까지 (2nd dlcat in Daejeon)
강화습 해부학 교실: Rainbow 이론부터 구현까지 (2nd dlcat in Daejeon)강화습 해부학 교실: Rainbow 이론부터 구현까지 (2nd dlcat in Daejeon)
강화습 해부학 교실: Rainbow 이론부터 구현까지 (2nd dlcat in Daejeon)
Kyunghwan Kim
기계습 / 딥러닝이란 무엇인가
기계습 / 딥러닝이란 무엇인가기계습 / 딥러닝이란 무엇인가
기계습 / 딥러닝이란 무엇인가
Yongha Kim
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
텐서플로우 설치도 했고 튜토리얼도 봤고 기초 예제도 짜봤다면 TensorFlow KR Meetup 2016
Taehoon Kim
딥 러닝 자연어 처리를 습을 위한 파워포인트. (Deep Learning for Natural Language Processing)
딥 러닝 자연어 처리를 습을 위한 파워포인트. (Deep Learning for Natural Language Processing)딥 러닝 자연어 처리를 습을 위한 파워포인트. (Deep Learning for Natural Language Processing)
딥 러닝 자연어 처리를 습을 위한 파워포인트. (Deep Learning for Natural Language Processing)
WON JOON YOO
알파고 (바둑 인공지능)의 작동 원리
알파고 (바둑 인공지능)의 작동 원리알파고 (바둑 인공지능)의 작동 원리
알파고 (바둑 인공지능)의 작동 원리
Shane (Seungwhan) Moon
머신러닝 해외 취업 준비: 닳고 닳은 이력서와 고통스러웠던 면접을 돌아보며 SNU 2018
머신러닝 해외 취업 준비: 닳고 닳은 이력서와 고통스러웠던 면접을 돌아보며 SNU 2018머신러닝 해외 취업 준비: 닳고 닳은 이력서와 고통스러웠던 면접을 돌아보며 SNU 2018
머신러닝 해외 취업 준비: 닳고 닳은 이력서와 고통스러웠던 면접을 돌아보며 SNU 2018
Taehoon Kim
분산 강화습 논문(DeepMind IMPALA) 구현
분산 강화습 논문(DeepMind IMPALA) 구현분산 강화습 논문(DeepMind IMPALA) 구현
분산 강화습 논문(DeepMind IMPALA) 구현
정주 김

Viewers also liked (20)

Differentiable Neural Computer
Differentiable Neural ComputerDifferentiable Neural Computer
Differentiable Neural Computer
Taehoon Kim
머신러닝 + 주식 삽질기
머신러닝 + 주식 삽질기머신러닝 + 주식 삽질기
머신러닝 + 주식 삽질기
HoChul Shin
[NDC2017 : 박준철] Python 게임 서버 안녕하십니까 - 몬스터 슈퍼리그 게임 서버
[NDC2017 : 박준철] Python 게임 서버 안녕하십니까 - 몬스터 슈퍼리그 게임 서버[NDC2017 : 박준철] Python 게임 서버 안녕하십니까 - 몬스터 슈퍼리그 게임 서버
[NDC2017 : 박준철] Python 게임 서버 안녕하십니까 - 몬스터 슈퍼리그 게임 서버
준철 박
[IGC 2016] 넷게임즈 김복식 - 중국 모바일 게임과 캐주얼 게임 디자인
[IGC 2016] 넷게임즈 김복식 - 중국 모바일 게임과 캐주얼 게임 디자인[IGC 2016] 넷게임즈 김복식 - 중국 모바일 게임과 캐주얼 게임 디자인
[IGC 2016] 넷게임즈 김복식 - 중국 모바일 게임과 캐주얼 게임 디자인
강 민우
[해외세미나]서울-키에프시 교통정책 및 빅데이터솔루션 지식공유 워크샵 강연
 [해외세미나]서울-키에프시 교통정책 및 빅데이터솔루션 지식공유 워크샵 강연 [해외세미나]서울-키에프시 교통정책 및 빅데이터솔루션 지식공유 워크샵 강연
[해외세미나]서울-키에프시 교통정책 및 빅데이터솔루션 지식공유 워크샵 강연
bigdatacampus
빅데이터캠퍼스 소개및데이터설명 최종
빅데이터캠퍼스 소개및데이터설명 최종빅데이터캠퍼스 소개및데이터설명 최종
빅데이터캠퍼스 소개및데이터설명 최종
bigdatacampus
Variational inference intro. (korean ver.)
Variational inference intro. (korean ver.)Variational inference intro. (korean ver.)
Variational inference intro. (korean ver.)
Kiho Hong
서울시 빅데이터캠퍼스 안내
서울시 빅데이터캠퍼스 안내서울시 빅데이터캠퍼스 안내
서울시 빅데이터캠퍼스 안내
bigdatacampus
네이버 오픈소스세미나 - 오픈소스 바르게 시작하기 NAVER 강희숙
네이버 오픈소스세미나 - 오픈소스 바르게 시작하기 NAVER 강희숙네이버 오픈소스세미나 - 오픈소스 바르게 시작하기 NAVER 강희숙
네이버 오픈소스세미나 - 오픈소스 바르게 시작하기 NAVER 강희숙
NAVER Engineering
네이버 오픈소스 세미나 - 나의코드에서 모두의 코드로 UNIST 이한
네이버 오픈소스 세미나 - 나의코드에서 모두의 코드로 UNIST 이한네이버 오픈소스 세미나 - 나의코드에서 모두의 코드로 UNIST 이한
네이버 오픈소스 세미나 - 나의코드에서 모두의 코드로 UNIST 이한
NAVER Engineering
네이버 오픈소스 세미나 - 오픈소스 프로젝트 참여하기 NAVER 박은정
네이버 오픈소스 세미나 - 오픈소스 프로젝트 참여하기 NAVER 박은정네이버 오픈소스 세미나 - 오픈소스 프로젝트 참여하기 NAVER 박은정
네이버 오픈소스 세미나 - 오픈소스 프로젝트 참여하기 NAVER 박은정
NAVER Engineering
딥러닝프레임워크비교
딥러닝프레임워크비교딥러닝프레임워크비교
딥러닝프레임워크비교
Junyi Song
Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)
Tae Young Lee
[데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기
[데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기 [데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기
[데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기
choi kyumin
20141223 머하웃(mahout) 협업필터링_추천시스템구현
20141223 머하웃(mahout) 협업필터링_추천시스템구현20141223 머하웃(mahout) 협업필터링_추천시스템구현
20141223 머하웃(mahout) 협업필터링_추천시스템구현
Tae Young Lee
Scala dreaded underscore
Scala dreaded underscoreScala dreaded underscore
Scala dreaded underscore
RUDDER
1.introduction
1.introduction1.introduction
1.introduction
Haesun Park
카카오스토리 웹팀의 코드리뷰 경험
카카오스토리 웹팀의 코드리뷰 경험카카오스토리 웹팀의 코드리뷰 경험
카카오스토리 웹팀의 코드리뷰 경험
Ohgyun Ahn
Docker (Compose) 활용 - 개발 환경 구성하기
Docker (Compose) 활용 - 개발 환경 구성하기Docker (Compose) 활용 - 개발 환경 구성하기
Docker (Compose) 활용 - 개발 환경 구성하기
raccoony
Differentiable Neural Computer
Differentiable Neural ComputerDifferentiable Neural Computer
Differentiable Neural Computer
Taehoon Kim
머신러닝 + 주식 삽질기
머신러닝 + 주식 삽질기머신러닝 + 주식 삽질기
머신러닝 + 주식 삽질기
HoChul Shin
[NDC2017 : 박준철] Python 게임 서버 안녕하십니까 - 몬스터 슈퍼리그 게임 서버
[NDC2017 : 박준철] Python 게임 서버 안녕하십니까 - 몬스터 슈퍼리그 게임 서버[NDC2017 : 박준철] Python 게임 서버 안녕하십니까 - 몬스터 슈퍼리그 게임 서버
[NDC2017 : 박준철] Python 게임 서버 안녕하십니까 - 몬스터 슈퍼리그 게임 서버
준철 박
[IGC 2016] 넷게임즈 김복식 - 중국 모바일 게임과 캐주얼 게임 디자인
[IGC 2016] 넷게임즈 김복식 - 중국 모바일 게임과 캐주얼 게임 디자인[IGC 2016] 넷게임즈 김복식 - 중국 모바일 게임과 캐주얼 게임 디자인
[IGC 2016] 넷게임즈 김복식 - 중국 모바일 게임과 캐주얼 게임 디자인
강 민우
[해외세미나]서울-키에프시 교통정책 및 빅데이터솔루션 지식공유 워크샵 강연
 [해외세미나]서울-키에프시 교통정책 및 빅데이터솔루션 지식공유 워크샵 강연 [해외세미나]서울-키에프시 교통정책 및 빅데이터솔루션 지식공유 워크샵 강연
[해외세미나]서울-키에프시 교통정책 및 빅데이터솔루션 지식공유 워크샵 강연
bigdatacampus
빅데이터캠퍼스 소개및데이터설명 최종
빅데이터캠퍼스 소개및데이터설명 최종빅데이터캠퍼스 소개및데이터설명 최종
빅데이터캠퍼스 소개및데이터설명 최종
bigdatacampus
Variational inference intro. (korean ver.)
Variational inference intro. (korean ver.)Variational inference intro. (korean ver.)
Variational inference intro. (korean ver.)
Kiho Hong
서울시 빅데이터캠퍼스 안내
서울시 빅데이터캠퍼스 안내서울시 빅데이터캠퍼스 안내
서울시 빅데이터캠퍼스 안내
bigdatacampus
네이버 오픈소스세미나 - 오픈소스 바르게 시작하기 NAVER 강희숙
네이버 오픈소스세미나 - 오픈소스 바르게 시작하기 NAVER 강희숙네이버 오픈소스세미나 - 오픈소스 바르게 시작하기 NAVER 강희숙
네이버 오픈소스세미나 - 오픈소스 바르게 시작하기 NAVER 강희숙
NAVER Engineering
네이버 오픈소스 세미나 - 나의코드에서 모두의 코드로 UNIST 이한
네이버 오픈소스 세미나 - 나의코드에서 모두의 코드로 UNIST 이한네이버 오픈소스 세미나 - 나의코드에서 모두의 코드로 UNIST 이한
네이버 오픈소스 세미나 - 나의코드에서 모두의 코드로 UNIST 이한
NAVER Engineering
네이버 오픈소스 세미나 - 오픈소스 프로젝트 참여하기 NAVER 박은정
네이버 오픈소스 세미나 - 오픈소스 프로젝트 참여하기 NAVER 박은정네이버 오픈소스 세미나 - 오픈소스 프로젝트 참여하기 NAVER 박은정
네이버 오픈소스 세미나 - 오픈소스 프로젝트 참여하기 NAVER 박은정
NAVER Engineering
딥러닝프레임워크비교
딥러닝프레임워크비교딥러닝프레임워크비교
딥러닝프레임워크비교
Junyi Song
Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)Tensorflow for Deep Learning(SK Planet)
Tensorflow for Deep Learning(SK Planet)
Tae Young Lee
[데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기
[데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기 [데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기
[데이터야놀자2107] 강남 출근길에 판교/정자역에 내릴 사람 예측하기
choi kyumin
20141223 머하웃(mahout) 협업필터링_추천시스템구현
20141223 머하웃(mahout) 협업필터링_추천시스템구현20141223 머하웃(mahout) 협업필터링_추천시스템구현
20141223 머하웃(mahout) 협업필터링_추천시스템구현
Tae Young Lee
Scala dreaded underscore
Scala dreaded underscoreScala dreaded underscore
Scala dreaded underscore
RUDDER
카카오스토리 웹팀의 코드리뷰 경험
카카오스토리 웹팀의 코드리뷰 경험카카오스토리 웹팀의 코드리뷰 경험
카카오스토리 웹팀의 코드리뷰 경험
Ohgyun Ahn
Docker (Compose) 활용 - 개발 환경 구성하기
Docker (Compose) 활용 - 개발 환경 구성하기Docker (Compose) 활용 - 개발 환경 구성하기
Docker (Compose) 활용 - 개발 환경 구성하기
raccoony

More from Taehoon Kim (7)

LLM에서 배우는 이미지 생성 모델 ZERO부터 습하기 Training Large-Scale Diffusion Model from Scr...
LLM에서 배우는 이미지 생성 모델 ZERO부터 습하기 Training Large-Scale Diffusion Model from Scr...LLM에서 배우는 이미지 생성 모델 ZERO부터 습하기 Training Large-Scale Diffusion Model from Scr...
LLM에서 배우는 이미지 생성 모델 ZERO부터 습하기 Training Large-Scale Diffusion Model from Scr...
Taehoon Kim
Random Thoughts on Paper Implementations [KAIST 2018]
Random Thoughts on Paper Implementations [KAIST 2018]Random Thoughts on Paper Implementations [KAIST 2018]
Random Thoughts on Paper Implementations [KAIST 2018]
Taehoon Kim
Continuous control with deep reinforcement learning (DDPG)
Continuous control with deep reinforcement learning (DDPG)Continuous control with deep reinforcement learning (DDPG)
Continuous control with deep reinforcement learning (DDPG)
Taehoon Kim
Dueling network architectures for deep reinforcement learning
Dueling network architectures for deep reinforcement learningDueling network architectures for deep reinforcement learning
Dueling network architectures for deep reinforcement learning
Taehoon Kim
Deep Reasoning
Deep ReasoningDeep Reasoning
Deep Reasoning
Taehoon Kim
쉽게 쓰여진 Django
쉽게 쓰여진 Django쉽게 쓰여진 Django
쉽게 쓰여진 Django
Taehoon Kim
영화 서비스에 대한 생각
영화 서비스에 대한 생각영화 서비스에 대한 생각
영화 서비스에 대한 생각
Taehoon Kim
LLM에서 배우는 이미지 생성 모델 ZERO부터 습하기 Training Large-Scale Diffusion Model from Scr...
LLM에서 배우는 이미지 생성 모델 ZERO부터 습하기 Training Large-Scale Diffusion Model from Scr...LLM에서 배우는 이미지 생성 모델 ZERO부터 습하기 Training Large-Scale Diffusion Model from Scr...
LLM에서 배우는 이미지 생성 모델 ZERO부터 습하기 Training Large-Scale Diffusion Model from Scr...
Taehoon Kim
Random Thoughts on Paper Implementations [KAIST 2018]
Random Thoughts on Paper Implementations [KAIST 2018]Random Thoughts on Paper Implementations [KAIST 2018]
Random Thoughts on Paper Implementations [KAIST 2018]
Taehoon Kim
Continuous control with deep reinforcement learning (DDPG)
Continuous control with deep reinforcement learning (DDPG)Continuous control with deep reinforcement learning (DDPG)
Continuous control with deep reinforcement learning (DDPG)
Taehoon Kim
Dueling network architectures for deep reinforcement learning
Dueling network architectures for deep reinforcement learningDueling network architectures for deep reinforcement learning
Dueling network architectures for deep reinforcement learning
Taehoon Kim
쉽게 쓰여진 Django
쉽게 쓰여진 Django쉽게 쓰여진 Django
쉽게 쓰여진 Django
Taehoon Kim
영화 서비스에 대한 생각
영화 서비스에 대한 생각영화 서비스에 대한 생각
영화 서비스에 대한 생각
Taehoon Kim

알아두면 쓸데있는 신기한 강화습 NAVER 2017