際際滷

際際滷Share a Scribd company logo
NDT - TKU
heaton
What is ndt_tku
?A 3-D Scan Matching using Improved 3-D Normal Distributions
Transform for Mobile Robotic Mapping
?兆硬塁寄W 幢範班(TAKEUCHI)戻竃議 NDT 晒井
?Autoware/ros/src/computing/perception/localization/packages/n
dt_localizer/nodes/ndt_matching_tku/
Why is ndt_tku
?頁峺Ы綿斂甞議
?PCL 議 cuda 晒O業醍垢殻燕幣音泌徭ヨ匯耗隼瘁
cuda 晒
Outline ndt_tku
? ND
? NDT in slam
? NDT_TKU
Normal Distribution
? 屎B蛍 - 頁匯壓W、麗尖式垢殻吉I囃脅掲械嶷勣議C楕蛍傳喇豢@蛍下痕犠灑从楸
掲械働疏議來|.聞誼凪壓T謹膚式y親Wx柊親W吉I囃議S謹圭中脅嗤广嶷寄議唹薦.
? 憲栽
? 岬格嬌觀
? 音憲栽
? 思啗中C楕厘効B社繁議辺秘蛍僉
Normal Distribution Transform
Subdivide the space occupied by the scan into a grid of cells.
A PDF is computed for each cell, based on the point distribution within the cell
NDT in tunnel - 3D
泌採燕幣c議C楕蛍下
? multivariate probability function p(~x)l
? mean
? covariance
Scan registration
? The current scan is represented as a point cloud X = {~x1, . . . , ~xn}. Assume
that there is a spatial transformation function T(~p, ~x) that moves a point ~x
in space by the pose ~p.
? Given some PDF p(~x) for scan points , the best pose ~p should be the one
that maximises the likelihood function
Scan registration
? Given a set of points X = {~x1, . . . , ~xn}, a pose ~p, and a transformation
function T(~p, ~x) to transform point ~x in space by ~p, the NDT score
function s(~p) for the current parameter vector is
? Using such a Gaussian approximation, the influence of one point from the
current scan on the NDT score function is
Newton¨s algorithm for
? Newton¨s algorithm can be used to find the parameters ~p that optimise s(~p)
? Newton¨s method iteratively solves the equation H?~p = ?~g
? g and H are partial differential and second order partial differential of
optimizing function. They are
送殻
厘岑祇寄社心久嶌寨歓
徽厘峪頁勣f麻@載醍。
About ND Voxel size
? 湊弌
? \麻楚寄memory 債寄
? 謄塘娼_
? 徽弌豢励ct載y侘撹屎B蛍
? 湊寄
? \麻楚富
? 謄塘音娼_
NDT - TKU version
鯉徨嶷B
? 戻互娼_業
? \麻楚戻互匯cc嗤伊鯉徨
? Trilinear interpolation
夕頭嗤湖
TKU - ND Voxel size
∧秦殻蛍撹赴A粁
? Converging state
梓孚鉦x俳蛍 ND Voxel sizeK\麻
? Adjust state
欺匯協肝求t宥宥喘
恷弌鯉徨轜\麻
ENDING
THANKs FOR YOUR ATTENTION.
Reference
1. A 3-D Scan Matching using Improved 3-D Normal Distributions Transform
for Mobile Robotic Mapping(W揃貧音巷_)
2. The Three-Dimensional Normal-Distributions Transform ! an Efficient
Representation for Registration, Surface Analysis, and Loop Detection
3. The Normal Distributions Transform:A New Approach to Laser Scan
Matching
Other
1. Parameter
a. voxel size
b. step size
c. iterative times
score detail

More Related Content

What's hot (20)

鳩楕議徭失了崔容協
鳩楕議徭失了崔容協鳩楕議徭失了崔容協
鳩楕議徭失了崔容協
Horiguchi Shuhei
?
岳韓,岳韓2頼畠尖盾
岳韓,岳韓2頼畠尖盾岳韓,岳韓2頼畠尖盾
岳韓,岳韓2頼畠尖盾
Koji Terada
?
Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry...
Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry...Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry...
Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry...
Masaya Kaneko
?
馨檎或皆祭蛩zみデバイス鬚韻慮薜審1ノ`ドX楚g佩桟廠
馨檎或皆祭蛩zみデバイス鬚韻慮薜審1ノ`ドX楚g佩桟廠馨檎或皆祭蛩zみデバイス鬚韻慮薜審1ノ`ドX楚g佩桟廠
馨檎或皆祭蛩zみデバイス鬚韻慮薜審1ノ`ドX楚g佩桟廠
Hideki Takase
?
或檎京-皆晦粥珂を強かしてみた
或檎京-皆晦粥珂を強かしてみた或檎京-皆晦粥珂を強かしてみた
或檎京-皆晦粥珂を強かしてみた
Takuya Minagawa
?
Cvpr 2021 manydepth
Cvpr 2021 manydepthCvpr 2021 manydepth
Cvpr 2021 manydepth
Kenta Tanaka
?
20190825 vins mono
20190825 vins mono20190825 vins mono
20190825 vins mono
Takuya Minagawa
?
30th コンピュ`タビジョン茶氏@v| DynamicFusion
30th コンピュ`タビジョン茶氏@v| DynamicFusion30th コンピュ`タビジョン茶氏@v| DynamicFusion
30th コンピュ`タビジョン茶氏@v| DynamicFusion
Hiroki Mizuno
?
ROS の試喘による塁翌のi佩宀腎gにm鬉靴迅埖敏咼蹈椒奪箸礼_k
ROS の試喘による塁翌のi佩宀腎gにm鬉靴迅埖敏咼蹈椒奪箸礼_kROS の試喘による塁翌のi佩宀腎gにm鬉靴迅埖敏咼蹈椒奪箸礼_k
ROS の試喘による塁翌のi佩宀腎gにm鬉靴迅埖敏咼蹈椒奪箸礼_k
Yoshitaka HARA
?
リクル`ト塀 徭隼冱囂I尖室宝の癖魭太府初
リクル`ト塀 徭隼冱囂I尖室宝の癖魭太府初リクル`ト塀 徭隼冱囂I尖室宝の癖魭太府初
リクル`ト塀 徭隼冱囂I尖室宝の癖魭太府初
Recruit Technologies
?
皆晦粥珂茶膿氏(永意粥珂)
皆晦粥珂茶膿氏(永意粥珂)皆晦粥珂茶膿氏(永意粥珂)
皆晦粥珂茶膿氏(永意粥珂)
Masaya Kaneko
?
永霞岳鞄看稼ではじめるロケ`ションデ`タ盾裂
永霞岳鞄看稼ではじめるロケ`ションデ`タ盾裂永霞岳鞄看稼ではじめるロケ`ションデ`タ盾裂
永霞岳鞄看稼ではじめるロケ`ションデ`タ盾裂
Hiroaki Sengoku
?
晦庄禽粥檎泣蛤と皆韓珂泣蛤との了崔栽わせ
晦庄禽粥檎泣蛤と皆韓珂泣蛤との了崔栽わせ晦庄禽粥檎泣蛤と皆韓珂泣蛤との了崔栽わせ
晦庄禽粥檎泣蛤と皆韓珂泣蛤との了崔栽わせ
Takuya Minagawa
?
mcl_3dl: amclKにX楚な3-D/6-DoFロ`カリゼ`ションパッケ`ジ
mcl_3dl: amclKにX楚な3-D/6-DoFロ`カリゼ`ションパッケ`ジmcl_3dl: amclKにX楚な3-D/6-DoFロ`カリゼ`ションパッケ`ジ
mcl_3dl: amclKにX楚な3-D/6-DoFロ`カリゼ`ションパッケ`ジ
Atsushi Watanabe
?
NDTスキャンマッチング 及1指3D茶氏@PFN 2018定5埖27晩
NDTスキャンマッチング 及1指3D茶氏@PFN 2018定5埖27晩NDTスキャンマッチング 及1指3D茶氏@PFN 2018定5埖27晩
NDTスキャンマッチング 及1指3D茶氏@PFN 2018定5埖27晩
Kitsukawa Yuki
?
或檎京-皆晦粥珂の返隈盾h
或檎京-皆晦粥珂の返隈盾h或檎京-皆晦粥珂の返隈盾h
或檎京-皆晦粥珂の返隈盾h
Masaya Kaneko
?
06 及5.1-及5.7 ROS2に鬉靴織挑`ルパッケ`ジ
06 及5.1-及5.7 ROS2に鬉靴織挑`ルパッケ`ジ06 及5.1-及5.7 ROS2に鬉靴織挑`ルパッケ`ジ
06 及5.1-及5.7 ROS2に鬉靴織挑`ルパッケ`ジ
Mori Ken
?
3肝圷レジストレ`ションの児粥と或沿艶稼3禽を喘いた3肝圷泣蛤I尖
3肝圷レジストレ`ションの児粥と或沿艶稼3禽を喘いた3肝圷泣蛤I尖3肝圷レジストレ`ションの児粥と或沿艶稼3禽を喘いた3肝圷泣蛤I尖
3肝圷レジストレ`ションの児粥と或沿艶稼3禽を喘いた3肝圷泣蛤I尖
Toru Tamaki
?
‐猟B初/Deep Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based...
‐猟B初/Deep Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based...‐猟B初/Deep Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based...
‐猟B初/Deep Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based...
Tomoyuki Hioki
?
遺閣蛍勸での恷除の用$$狼3僉
遺閣蛍勸での恷除の用$$狼3僉遺閣蛍勸での恷除の用$$狼3僉
遺閣蛍勸での恷除の用$$狼3僉
Kazuyuki Miyazawa
?
岳韓,岳韓2頼畠尖盾
岳韓,岳韓2頼畠尖盾岳韓,岳韓2頼畠尖盾
岳韓,岳韓2頼畠尖盾
Koji Terada
?
Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry...
Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry...Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry...
Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry...
Masaya Kaneko
?
馨檎或皆祭蛩zみデバイス鬚韻慮薜審1ノ`ドX楚g佩桟廠
馨檎或皆祭蛩zみデバイス鬚韻慮薜審1ノ`ドX楚g佩桟廠馨檎或皆祭蛩zみデバイス鬚韻慮薜審1ノ`ドX楚g佩桟廠
馨檎或皆祭蛩zみデバイス鬚韻慮薜審1ノ`ドX楚g佩桟廠
Hideki Takase
?
或檎京-皆晦粥珂を強かしてみた
或檎京-皆晦粥珂を強かしてみた或檎京-皆晦粥珂を強かしてみた
或檎京-皆晦粥珂を強かしてみた
Takuya Minagawa
?
30th コンピュ`タビジョン茶氏@v| DynamicFusion
30th コンピュ`タビジョン茶氏@v| DynamicFusion30th コンピュ`タビジョン茶氏@v| DynamicFusion
30th コンピュ`タビジョン茶氏@v| DynamicFusion
Hiroki Mizuno
?
ROS の試喘による塁翌のi佩宀腎gにm鬉靴迅埖敏咼蹈椒奪箸礼_k
ROS の試喘による塁翌のi佩宀腎gにm鬉靴迅埖敏咼蹈椒奪箸礼_kROS の試喘による塁翌のi佩宀腎gにm鬉靴迅埖敏咼蹈椒奪箸礼_k
ROS の試喘による塁翌のi佩宀腎gにm鬉靴迅埖敏咼蹈椒奪箸礼_k
Yoshitaka HARA
?
リクル`ト塀 徭隼冱囂I尖室宝の癖魭太府初
リクル`ト塀 徭隼冱囂I尖室宝の癖魭太府初リクル`ト塀 徭隼冱囂I尖室宝の癖魭太府初
リクル`ト塀 徭隼冱囂I尖室宝の癖魭太府初
Recruit Technologies
?
皆晦粥珂茶膿氏(永意粥珂)
皆晦粥珂茶膿氏(永意粥珂)皆晦粥珂茶膿氏(永意粥珂)
皆晦粥珂茶膿氏(永意粥珂)
Masaya Kaneko
?
永霞岳鞄看稼ではじめるロケ`ションデ`タ盾裂
永霞岳鞄看稼ではじめるロケ`ションデ`タ盾裂永霞岳鞄看稼ではじめるロケ`ションデ`タ盾裂
永霞岳鞄看稼ではじめるロケ`ションデ`タ盾裂
Hiroaki Sengoku
?
晦庄禽粥檎泣蛤と皆韓珂泣蛤との了崔栽わせ
晦庄禽粥檎泣蛤と皆韓珂泣蛤との了崔栽わせ晦庄禽粥檎泣蛤と皆韓珂泣蛤との了崔栽わせ
晦庄禽粥檎泣蛤と皆韓珂泣蛤との了崔栽わせ
Takuya Minagawa
?
mcl_3dl: amclKにX楚な3-D/6-DoFロ`カリゼ`ションパッケ`ジ
mcl_3dl: amclKにX楚な3-D/6-DoFロ`カリゼ`ションパッケ`ジmcl_3dl: amclKにX楚な3-D/6-DoFロ`カリゼ`ションパッケ`ジ
mcl_3dl: amclKにX楚な3-D/6-DoFロ`カリゼ`ションパッケ`ジ
Atsushi Watanabe
?
NDTスキャンマッチング 及1指3D茶氏@PFN 2018定5埖27晩
NDTスキャンマッチング 及1指3D茶氏@PFN 2018定5埖27晩NDTスキャンマッチング 及1指3D茶氏@PFN 2018定5埖27晩
NDTスキャンマッチング 及1指3D茶氏@PFN 2018定5埖27晩
Kitsukawa Yuki
?
或檎京-皆晦粥珂の返隈盾h
或檎京-皆晦粥珂の返隈盾h或檎京-皆晦粥珂の返隈盾h
或檎京-皆晦粥珂の返隈盾h
Masaya Kaneko
?
06 及5.1-及5.7 ROS2に鬉靴織挑`ルパッケ`ジ
06 及5.1-及5.7 ROS2に鬉靴織挑`ルパッケ`ジ06 及5.1-及5.7 ROS2に鬉靴織挑`ルパッケ`ジ
06 及5.1-及5.7 ROS2に鬉靴織挑`ルパッケ`ジ
Mori Ken
?
3肝圷レジストレ`ションの児粥と或沿艶稼3禽を喘いた3肝圷泣蛤I尖
3肝圷レジストレ`ションの児粥と或沿艶稼3禽を喘いた3肝圷泣蛤I尖3肝圷レジストレ`ションの児粥と或沿艶稼3禽を喘いた3肝圷泣蛤I尖
3肝圷レジストレ`ションの児粥と或沿艶稼3禽を喘いた3肝圷泣蛤I尖
Toru Tamaki
?
‐猟B初/Deep Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based...
‐猟B初/Deep Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based...‐猟B初/Deep Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based...
‐猟B初/Deep Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based...
Tomoyuki Hioki
?
遺閣蛍勸での恷除の用$$狼3僉
遺閣蛍勸での恷除の用$$狼3僉遺閣蛍勸での恷除の用$$狼3僉
遺閣蛍勸での恷除の用$$狼3僉
Kazuyuki Miyazawa
?

Similar to NDT-TKU (20)

Deep Learning Tutorial
Deep Learning Tutorial Deep Learning Tutorial
Deep Learning Tutorial
Ligeng Zhu
?
Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)
DonghyunKang12
?
Neural machine translation by jointly learning to align and translate.pptx
Neural machine translation by jointly learning to align and translate.pptxNeural machine translation by jointly learning to align and translate.pptx
Neural machine translation by jointly learning to align and translate.pptx
ssuser2624f71
?
DigitRecognition.pptx
DigitRecognition.pptxDigitRecognition.pptx
DigitRecognition.pptx
ruvex
?
Superworkflow of Graph Neural Networks with K8S and Fugue
Superworkflow of Graph Neural Networks with K8S and FugueSuperworkflow of Graph Neural Networks with K8S and Fugue
Superworkflow of Graph Neural Networks with K8S and Fugue
Databricks
?
Convolutional and Recurrent Neural Networks
Convolutional and Recurrent Neural NetworksConvolutional and Recurrent Neural Networks
Convolutional and Recurrent Neural Networks
Ramesh Ragala
?
Oxford 05-oct-2012
Oxford 05-oct-2012Oxford 05-oct-2012
Oxford 05-oct-2012
Ted Dunning
?
Tomoya Sato Master Thesis
Tomoya Sato Master ThesisTomoya Sato Master Thesis
Tomoya Sato Master Thesis
pflab
?
Image Fusion Ehancement using DT-CWT Technique
Image Fusion Ehancement using DT-CWT TechniqueImage Fusion Ehancement using DT-CWT Technique
Image Fusion Ehancement using DT-CWT Technique
IRJET Journal
?
Direct digital frequency synthesizer
Direct digital frequency synthesizerDirect digital frequency synthesizer
Direct digital frequency synthesizer
Venkat Malai Avichi
?
Convolutional Neural Network and RNN for OCR problem.
Convolutional Neural Network and RNN for OCR problem.Convolutional Neural Network and RNN for OCR problem.
Convolutional Neural Network and RNN for OCR problem.
Vishal Mishra
?
Parallel kmeans clustering in Erlang
Parallel kmeans clustering in ErlangParallel kmeans clustering in Erlang
Parallel kmeans clustering in Erlang
Chinmay Patel
?
Matt Purkeypile's Doctoral Dissertation Defense 際際滷s
Matt Purkeypile's Doctoral Dissertation Defense 際際滷sMatt Purkeypile's Doctoral Dissertation Defense 際際滷s
Matt Purkeypile's Doctoral Dissertation Defense 際際滷s
mpurkeypile
?
Data Mining Neural Network for House Price Prediction
Data Mining Neural Network for House Price PredictionData Mining Neural Network for House Price Prediction
Data Mining Neural Network for House Price Prediction
Anand Kumar
?
Neighborhood Component Analysis 20071108
Neighborhood Component Analysis 20071108Neighborhood Component Analysis 20071108
Neighborhood Component Analysis 20071108
Ting-Shuo Yo
?
prescalers and dual modulus prescalers
 prescalers and dual modulus prescalers prescalers and dual modulus prescalers
prescalers and dual modulus prescalers
Sakshi Bhargava
?
ACM 2013-02-25
ACM 2013-02-25ACM 2013-02-25
ACM 2013-02-25
Ted Dunning
?
PR-284: End-to-End Object Detection with Transformers(DETR)
PR-284: End-to-End Object Detection with Transformers(DETR)PR-284: End-to-End Object Detection with Transformers(DETR)
PR-284: End-to-End Object Detection with Transformers(DETR)
Jinwon Lee
?
[20240422_LabSeminar_Huy]Taming_Effect.pptx
[20240422_LabSeminar_Huy]Taming_Effect.pptx[20240422_LabSeminar_Huy]Taming_Effect.pptx
[20240422_LabSeminar_Huy]Taming_Effect.pptx
thanhdowork
?
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and ArchitecturesMetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MLAI2
?
Deep Learning Tutorial
Deep Learning Tutorial Deep Learning Tutorial
Deep Learning Tutorial
Ligeng Zhu
?
Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)
DonghyunKang12
?
Neural machine translation by jointly learning to align and translate.pptx
Neural machine translation by jointly learning to align and translate.pptxNeural machine translation by jointly learning to align and translate.pptx
Neural machine translation by jointly learning to align and translate.pptx
ssuser2624f71
?
DigitRecognition.pptx
DigitRecognition.pptxDigitRecognition.pptx
DigitRecognition.pptx
ruvex
?
Superworkflow of Graph Neural Networks with K8S and Fugue
Superworkflow of Graph Neural Networks with K8S and FugueSuperworkflow of Graph Neural Networks with K8S and Fugue
Superworkflow of Graph Neural Networks with K8S and Fugue
Databricks
?
Convolutional and Recurrent Neural Networks
Convolutional and Recurrent Neural NetworksConvolutional and Recurrent Neural Networks
Convolutional and Recurrent Neural Networks
Ramesh Ragala
?
Tomoya Sato Master Thesis
Tomoya Sato Master ThesisTomoya Sato Master Thesis
Tomoya Sato Master Thesis
pflab
?
Image Fusion Ehancement using DT-CWT Technique
Image Fusion Ehancement using DT-CWT TechniqueImage Fusion Ehancement using DT-CWT Technique
Image Fusion Ehancement using DT-CWT Technique
IRJET Journal
?
Direct digital frequency synthesizer
Direct digital frequency synthesizerDirect digital frequency synthesizer
Direct digital frequency synthesizer
Venkat Malai Avichi
?
Convolutional Neural Network and RNN for OCR problem.
Convolutional Neural Network and RNN for OCR problem.Convolutional Neural Network and RNN for OCR problem.
Convolutional Neural Network and RNN for OCR problem.
Vishal Mishra
?
Parallel kmeans clustering in Erlang
Parallel kmeans clustering in ErlangParallel kmeans clustering in Erlang
Parallel kmeans clustering in Erlang
Chinmay Patel
?
Matt Purkeypile's Doctoral Dissertation Defense 際際滷s
Matt Purkeypile's Doctoral Dissertation Defense 際際滷sMatt Purkeypile's Doctoral Dissertation Defense 際際滷s
Matt Purkeypile's Doctoral Dissertation Defense 際際滷s
mpurkeypile
?
Data Mining Neural Network for House Price Prediction
Data Mining Neural Network for House Price PredictionData Mining Neural Network for House Price Prediction
Data Mining Neural Network for House Price Prediction
Anand Kumar
?
Neighborhood Component Analysis 20071108
Neighborhood Component Analysis 20071108Neighborhood Component Analysis 20071108
Neighborhood Component Analysis 20071108
Ting-Shuo Yo
?
prescalers and dual modulus prescalers
 prescalers and dual modulus prescalers prescalers and dual modulus prescalers
prescalers and dual modulus prescalers
Sakshi Bhargava
?
PR-284: End-to-End Object Detection with Transformers(DETR)
PR-284: End-to-End Object Detection with Transformers(DETR)PR-284: End-to-End Object Detection with Transformers(DETR)
PR-284: End-to-End Object Detection with Transformers(DETR)
Jinwon Lee
?
[20240422_LabSeminar_Huy]Taming_Effect.pptx
[20240422_LabSeminar_Huy]Taming_Effect.pptx[20240422_LabSeminar_Huy]Taming_Effect.pptx
[20240422_LabSeminar_Huy]Taming_Effect.pptx
thanhdowork
?
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and ArchitecturesMetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures
MLAI2
?

Recently uploaded (20)

Threat Modeling a Batch Job System - AWS Security Community Day
Threat Modeling a Batch Job System - AWS Security Community DayThreat Modeling a Batch Job System - AWS Security Community Day
Threat Modeling a Batch Job System - AWS Security Community Day
Teri Radichel
?
Future?Proofing the Nordic Economy with GenAI
Future?Proofing the Nordic Economy with GenAIFuture?Proofing the Nordic Economy with GenAI
Future?Proofing the Nordic Economy with GenAI
Pete Nieminen
?
Ricardo Jebb Bruno - A Structural CAD Technician
Ricardo Jebb Bruno - A Structural CAD TechnicianRicardo Jebb Bruno - A Structural CAD Technician
Ricardo Jebb Bruno - A Structural CAD Technician
Ricardo Jebb Bruno
?
BrightonSEO April 2025 - hreflang XML E-Commerce - Nick Samuel.pdf
BrightonSEO April 2025 - hreflang XML E-Commerce - Nick Samuel.pdfBrightonSEO April 2025 - hreflang XML E-Commerce - Nick Samuel.pdf
BrightonSEO April 2025 - hreflang XML E-Commerce - Nick Samuel.pdf
Nick Samuel
?
From SBOMs to xBOMs to Transparency - Pavel Shukhman at OWASP Ottawa on 2025-...
From SBOMs to xBOMs to Transparency - Pavel Shukhman at OWASP Ottawa on 2025-...From SBOMs to xBOMs to Transparency - Pavel Shukhman at OWASP Ottawa on 2025-...
From SBOMs to xBOMs to Transparency - Pavel Shukhman at OWASP Ottawa on 2025-...
Pavel Shukhman
?
Introduction to Generative AI refers to a subset of artificial intelligence
Introduction to Generative AI refers to a subset of artificial intelligenceIntroduction to Generative AI refers to a subset of artificial intelligence
Introduction to Generative AI refers to a subset of artificial intelligence
Kongu Engineering College, Perundurai, Erode
?
Data Modelling For Software Engineers (Devoxx GR 2025).pdf
Data Modelling For Software Engineers (Devoxx GR 2025).pdfData Modelling For Software Engineers (Devoxx GR 2025).pdf
Data Modelling For Software Engineers (Devoxx GR 2025).pdf
Scott Sosna
?
Cybersecurity-Threat-Landscape-March-31-April-7-2025.pdf
Cybersecurity-Threat-Landscape-March-31-April-7-2025.pdfCybersecurity-Threat-Landscape-March-31-April-7-2025.pdf
Cybersecurity-Threat-Landscape-March-31-April-7-2025.pdf
Joe Shenouda
?
Introduction to PHP from Beginning to End
Introduction to PHP from Beginning to EndIntroduction to PHP from Beginning to End
Introduction to PHP from Beginning to End
christopherneo4
?
April Patch Tuesday
April Patch TuesdayApril Patch Tuesday
April Patch Tuesday
Ivanti
?
TrustArc Webinar - Data Privacy and Cyber Security: A Symbiotic Relationship
TrustArc Webinar - Data Privacy and Cyber Security: A Symbiotic RelationshipTrustArc Webinar - Data Privacy and Cyber Security: A Symbiotic Relationship
TrustArc Webinar - Data Privacy and Cyber Security: A Symbiotic Relationship
TrustArc
?
Fran?ais Patch Tuesday - Avril
Fran?ais Patch Tuesday - AvrilFran?ais Patch Tuesday - Avril
Fran?ais Patch Tuesday - Avril
Ivanti
?
Top 10 Mobile Hacking Tools C 2025 Edition
Top 10 Mobile Hacking Tools C 2025 EditionTop 10 Mobile Hacking Tools C 2025 Edition
Top 10 Mobile Hacking Tools C 2025 Edition
anishachhikara2122
?
Meet, Greet, and Explore Agentic AI with UiPath Scotland
Meet, Greet, and Explore Agentic AI with UiPath ScotlandMeet, Greet, and Explore Agentic AI with UiPath Scotland
Meet, Greet, and Explore Agentic AI with UiPath Scotland
UiPathCommunity
?
MariaDB Berlin Roadshow 際際滷s - 8 April 2025
MariaDB Berlin Roadshow 際際滷s - 8 April 2025MariaDB Berlin Roadshow 際際滷s - 8 April 2025
MariaDB Berlin Roadshow 際際滷s - 8 April 2025
MariaDB plc
?
CitrineOS: Bridging the Past and Future of EV Charging with OCPP 1.6 & 2.x Su...
CitrineOS: Bridging the Past and Future of EV Charging with OCPP 1.6 & 2.x Su...CitrineOS: Bridging the Past and Future of EV Charging with OCPP 1.6 & 2.x Su...
CitrineOS: Bridging the Past and Future of EV Charging with OCPP 1.6 & 2.x Su...
DanBrown980551
?
CEE Software Development M&A Report 2025
CEE Software Development M&A Report 2025CEE Software Development M&A Report 2025
CEE Software Development M&A Report 2025
Yevgen Sysoyev
?
Q1 FY26 TUG Leader Quarterly Call - APAC / EMEA
Q1 FY26 TUG Leader Quarterly Call - APAC / EMEAQ1 FY26 TUG Leader Quarterly Call - APAC / EMEA
Q1 FY26 TUG Leader Quarterly Call - APAC / EMEA
lward7
?
AC1-intro-agenda-Agile concepts in an enterprise environment
AC1-intro-agenda-Agile concepts in an enterprise environmentAC1-intro-agenda-Agile concepts in an enterprise environment
AC1-intro-agenda-Agile concepts in an enterprise environment
Dennis Van Aelst
?
AI in Bioinformatics: How Artificial Intelligence is Revolutionizing Healthca...
AI in Bioinformatics: How Artificial Intelligence is Revolutionizing Healthca...AI in Bioinformatics: How Artificial Intelligence is Revolutionizing Healthca...
AI in Bioinformatics: How Artificial Intelligence is Revolutionizing Healthca...
Vadim Nareyko
?
Threat Modeling a Batch Job System - AWS Security Community Day
Threat Modeling a Batch Job System - AWS Security Community DayThreat Modeling a Batch Job System - AWS Security Community Day
Threat Modeling a Batch Job System - AWS Security Community Day
Teri Radichel
?
Future?Proofing the Nordic Economy with GenAI
Future?Proofing the Nordic Economy with GenAIFuture?Proofing the Nordic Economy with GenAI
Future?Proofing the Nordic Economy with GenAI
Pete Nieminen
?
Ricardo Jebb Bruno - A Structural CAD Technician
Ricardo Jebb Bruno - A Structural CAD TechnicianRicardo Jebb Bruno - A Structural CAD Technician
Ricardo Jebb Bruno - A Structural CAD Technician
Ricardo Jebb Bruno
?
BrightonSEO April 2025 - hreflang XML E-Commerce - Nick Samuel.pdf
BrightonSEO April 2025 - hreflang XML E-Commerce - Nick Samuel.pdfBrightonSEO April 2025 - hreflang XML E-Commerce - Nick Samuel.pdf
BrightonSEO April 2025 - hreflang XML E-Commerce - Nick Samuel.pdf
Nick Samuel
?
From SBOMs to xBOMs to Transparency - Pavel Shukhman at OWASP Ottawa on 2025-...
From SBOMs to xBOMs to Transparency - Pavel Shukhman at OWASP Ottawa on 2025-...From SBOMs to xBOMs to Transparency - Pavel Shukhman at OWASP Ottawa on 2025-...
From SBOMs to xBOMs to Transparency - Pavel Shukhman at OWASP Ottawa on 2025-...
Pavel Shukhman
?
Data Modelling For Software Engineers (Devoxx GR 2025).pdf
Data Modelling For Software Engineers (Devoxx GR 2025).pdfData Modelling For Software Engineers (Devoxx GR 2025).pdf
Data Modelling For Software Engineers (Devoxx GR 2025).pdf
Scott Sosna
?
Cybersecurity-Threat-Landscape-March-31-April-7-2025.pdf
Cybersecurity-Threat-Landscape-March-31-April-7-2025.pdfCybersecurity-Threat-Landscape-March-31-April-7-2025.pdf
Cybersecurity-Threat-Landscape-March-31-April-7-2025.pdf
Joe Shenouda
?
Introduction to PHP from Beginning to End
Introduction to PHP from Beginning to EndIntroduction to PHP from Beginning to End
Introduction to PHP from Beginning to End
christopherneo4
?
April Patch Tuesday
April Patch TuesdayApril Patch Tuesday
April Patch Tuesday
Ivanti
?
TrustArc Webinar - Data Privacy and Cyber Security: A Symbiotic Relationship
TrustArc Webinar - Data Privacy and Cyber Security: A Symbiotic RelationshipTrustArc Webinar - Data Privacy and Cyber Security: A Symbiotic Relationship
TrustArc Webinar - Data Privacy and Cyber Security: A Symbiotic Relationship
TrustArc
?
Fran?ais Patch Tuesday - Avril
Fran?ais Patch Tuesday - AvrilFran?ais Patch Tuesday - Avril
Fran?ais Patch Tuesday - Avril
Ivanti
?
Top 10 Mobile Hacking Tools C 2025 Edition
Top 10 Mobile Hacking Tools C 2025 EditionTop 10 Mobile Hacking Tools C 2025 Edition
Top 10 Mobile Hacking Tools C 2025 Edition
anishachhikara2122
?
Meet, Greet, and Explore Agentic AI with UiPath Scotland
Meet, Greet, and Explore Agentic AI with UiPath ScotlandMeet, Greet, and Explore Agentic AI with UiPath Scotland
Meet, Greet, and Explore Agentic AI with UiPath Scotland
UiPathCommunity
?
MariaDB Berlin Roadshow 際際滷s - 8 April 2025
MariaDB Berlin Roadshow 際際滷s - 8 April 2025MariaDB Berlin Roadshow 際際滷s - 8 April 2025
MariaDB Berlin Roadshow 際際滷s - 8 April 2025
MariaDB plc
?
CitrineOS: Bridging the Past and Future of EV Charging with OCPP 1.6 & 2.x Su...
CitrineOS: Bridging the Past and Future of EV Charging with OCPP 1.6 & 2.x Su...CitrineOS: Bridging the Past and Future of EV Charging with OCPP 1.6 & 2.x Su...
CitrineOS: Bridging the Past and Future of EV Charging with OCPP 1.6 & 2.x Su...
DanBrown980551
?
CEE Software Development M&A Report 2025
CEE Software Development M&A Report 2025CEE Software Development M&A Report 2025
CEE Software Development M&A Report 2025
Yevgen Sysoyev
?
Q1 FY26 TUG Leader Quarterly Call - APAC / EMEA
Q1 FY26 TUG Leader Quarterly Call - APAC / EMEAQ1 FY26 TUG Leader Quarterly Call - APAC / EMEA
Q1 FY26 TUG Leader Quarterly Call - APAC / EMEA
lward7
?
AC1-intro-agenda-Agile concepts in an enterprise environment
AC1-intro-agenda-Agile concepts in an enterprise environmentAC1-intro-agenda-Agile concepts in an enterprise environment
AC1-intro-agenda-Agile concepts in an enterprise environment
Dennis Van Aelst
?
AI in Bioinformatics: How Artificial Intelligence is Revolutionizing Healthca...
AI in Bioinformatics: How Artificial Intelligence is Revolutionizing Healthca...AI in Bioinformatics: How Artificial Intelligence is Revolutionizing Healthca...
AI in Bioinformatics: How Artificial Intelligence is Revolutionizing Healthca...
Vadim Nareyko
?

NDT-TKU

  • 2. What is ndt_tku ?A 3-D Scan Matching using Improved 3-D Normal Distributions Transform for Mobile Robotic Mapping ?兆硬塁寄W 幢範班(TAKEUCHI)戻竃議 NDT 晒井 ?Autoware/ros/src/computing/perception/localization/packages/n dt_localizer/nodes/ndt_matching_tku/
  • 3. Why is ndt_tku ?頁峺Ы綿斂甞議 ?PCL 議 cuda 晒O業醍垢殻燕幣音泌徭ヨ匯耗隼瘁 cuda 晒
  • 4. Outline ndt_tku ? ND ? NDT in slam ? NDT_TKU
  • 5. Normal Distribution ? 屎B蛍 - 頁匯壓W、麗尖式垢殻吉I囃脅掲械嶷勣議C楕蛍傳喇豢@蛍下痕犠灑从楸 掲械働疏議來|.聞誼凪壓T謹膚式y親Wx柊親W吉I囃議S謹圭中脅嗤广嶷寄議唹薦. ? 憲栽 ? 岬格嬌觀 ? 音憲栽 ? 思啗中C楕厘効B社繁議辺秘蛍僉
  • 6. Normal Distribution Transform Subdivide the space occupied by the scan into a grid of cells. A PDF is computed for each cell, based on the point distribution within the cell
  • 8. 泌採燕幣c議C楕蛍下 ? multivariate probability function p(~x)l ? mean ? covariance
  • 9. Scan registration ? The current scan is represented as a point cloud X = {~x1, . . . , ~xn}. Assume that there is a spatial transformation function T(~p, ~x) that moves a point ~x in space by the pose ~p. ? Given some PDF p(~x) for scan points , the best pose ~p should be the one that maximises the likelihood function
  • 10. Scan registration ? Given a set of points X = {~x1, . . . , ~xn}, a pose ~p, and a transformation function T(~p, ~x) to transform point ~x in space by ~p, the NDT score function s(~p) for the current parameter vector is ? Using such a Gaussian approximation, the influence of one point from the current scan on the NDT score function is
  • 11. Newton¨s algorithm for ? Newton¨s algorithm can be used to find the parameters ~p that optimise s(~p) ? Newton¨s method iteratively solves the equation H?~p = ?~g ? g and H are partial differential and second order partial differential of optimizing function. They are
  • 14. About ND Voxel size ? 湊弌 ? \麻楚寄memory 債寄 ? 謄塘娼_ ? 徽弌豢励ct載y侘撹屎B蛍 ? 湊寄 ? \麻楚富 ? 謄塘音娼_
  • 15. NDT - TKU version 鯉徨嶷B ? 戻互娼_業 ? \麻楚戻互匯cc嗤伊鯉徨 ? Trilinear interpolation
  • 17. TKU - ND Voxel size ∧秦殻蛍撹赴A粁 ? Converging state 梓孚鉦x俳蛍 ND Voxel sizeK\麻 ? Adjust state 欺匯協肝求t宥宥喘 恷弌鯉徨轜\麻
  • 18. ENDING THANKs FOR YOUR ATTENTION. Reference 1. A 3-D Scan Matching using Improved 3-D Normal Distributions Transform for Mobile Robotic Mapping(W揃貧音巷_) 2. The Three-Dimensional Normal-Distributions Transform ! an Efficient Representation for Registration, Surface Analysis, and Loop Detection 3. The Normal Distributions Transform:A New Approach to Laser Scan Matching
  • 19. Other 1. Parameter a. voxel size b. step size c. iterative times

Editor's Notes

  • #4: 埋隼頁宸劔傍徽頁宸頁挫叱巓念傍議
  • #6: 銭偬議方僥峪勣嬬燕幣竃栖祥嬬麻
  • #7: 枠俳撹匯鯉匯鯉 The normal-distributions transform can be described as a method for compactly representing a surface. 屎B蛍兔o竃阻c議蛍粁峠錆燕幣醤嗤Bm議機 耽PDF辛參心恬頁蕉何燕中議除貌峙宙峰阻燕中議了崔參式凪函鮑容住業。 A 2D laser scan from a mine tunnel (shown as points) and the PDFs describing the surface shape. Each cell is a square with 2 m side length in this case. Brighter areas represent a higher probability. PDFs have been computed only for cells with more than five points.
  • #8: 3D-NDT surface representation for a tunnel section, seen from above. Brighter, denser parts represent Higher probabilities. The cells have a side length of 1 m
  • #9: D-dimensional normal random process, the likelihood of having measured ~x is where ~yk=1,..., m are the positions of the reference scan points contained in the cell. 屎B蛍兔o竃阻c議蛍粁峠錆燕幣醤嗤Bm議機 耽PDF辛參心恬頁蕉何燕中議除貌峙宙峰阻燕中議了崔參式凪函鮑容住業。 亅圭餓裳專議蒙尢鯀榛楊慱峙辛參燕器燕中佚連 . Each PDF can be seen as an approximation of the local surface, describing the position of the surface as well as its orientation and smoothness
  • #10: 念瀉莟傘輅蝨cX = {?x1...。 。 。 ?xn}。 邪O嗤匯腎gQ痕T?p?x宥^徊Bp卞喊實g嶄議c?x。 o協匯乂喘豢瀉蕣c議PDF p?x╂泌吉塀6.1恷煮徊Bp頁恷寄晒貌隼痕亀鍔B 聞喘除貌隈肇函誼恷除峙, @頁匯B旗^殻 nW伏附互(X) ┐ X~(135, 102)
  • #11: 辺慎脚麻 W薦陶餓峙貧匯議 -4 , -2 , 0 , 2 , 4 蛄傘輅承諦c峙屎サ
  • #12: 析嘛啌^15憲厘祥音勣尖 https://www.youtube.com/watch?v=Quw4ZHLH2CY 旋喘裏蛍孀竃俳B旗隈除孀竃 function = 0 議功
  • #13: s
  • #14: 徽効凪麿麻隈曳麻酔阻(Iterative Closest Point亨旗恷除泣)
  • #15: 鯉徨寄弌 ND Voxel size 淫根c謹富議協峙宥械崛寄豢励c侘撹屎B蛍下 湊寄匆nd音挫侘撹 亨旗肝 iterative times Q協鯉徨寄弌撹恷麼勣晒議返粁 駅函Qsensor 侏
  • #16: @K掲TKU戻竃躓帖 Peter Biber and Wolfgang Stra?er: ^The Normal Distributions Transform:A New Approach to Laser Scan Matching ̄, Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2743C2748, 2003 椎N祥俶勣週詰\麻楚
  • #18: 宥械頁膨肝俳護
  • #19: CODE TRANSFER TO JJ