ݺߣ
Submit Search
O-net 01 เรื่องเซต ของ MATH HOUSE
•
1 like
•
16,420 views
Focusjung Suchat
Follow
เรื่องเซต onet
Read less
Read more
1 of 13
Download now
Downloaded 39 times
More Related Content
O-net 01 เรื่องเซต ของ MATH HOUSE
1.
เปดประตูสู O-Net นองๆนักเรียนมัธยมปลาย เตรียมตัวสําหรับที่จะสอบ
O-Net ในเดือน กุมภาพันธ หรือ มีนาคม กันหรือยัง ถายังลองเตรียมตัวกับMath House ในวิชาคณิตศาสตร นองๆคงได แนวทางกับ โจทยแนว O-Net อยางจุใจ ขอบเขตของเนื้อหาวิชาคณิตศาสตร ในการทดสอบ O-Net กลุมสาระการเรียนรูคณิตศาสตร ( ตามสาระการเรียนรูในหลักสูตรการศึกษาขั้นพื้นฐาน พ.ศ. 2544) 1. เซต 1.1 สับเซตและเพาเวอรเซต 1.2 ยูเนียน อินเตอรเซกชันและคอมพลีเมนตของเซต 2. การใหเหตุผลแบบอุปนัยและนิรนัย 3. จํานวนจริง 3.1 สมบัติการบวกและการคูณของจํานวนจริง 3.2 การแกสมการกําลังสองหนึ่งตัวแปร 3.3 คาสัมบูรณ 3.4 การแกอสมการ 3.5 รากที่n ของจํานวนจริง 3.6 เลขยกกําลังที่มีเลขชี้กําลังเปนจํานวนตรรกยะ 4. ความสัมพันธและฟงกชัน 4.1 ความสัมพันธและฟงกชัน 4.2 ฟงกชันเชิงเสน 4.3 ฟงกชันกําลังสอง 4.4 การแกสมการและอสมการโดยใชกราฟ 4.5 ฟงกชันเอกซโพเนนเชียล 4.6 ฟงกชันคาสัมบูรณ 5. อัตราสวนตรีโกณมิติ 6. ลําดับและอนุกรม 6.1 ลําดับเลขคณิตและลําดับเรขาคณิต 6.2 อนุกรมเลขคณิตและอนุกรมเรขาคณิต
2.
7. ความนาจะเปน 7.1 กฎเกณฑเบื้องตนเกี่ยวกับการนับ 7.2
ความนาจะเปน 8. สถิติ 8.1 สถิติและขอมูล 8.2 การแจกแจงความถี่ของขอมูล 8.3 การวัดตําแหนงที่ของขอมูล 8.4 การวัดคากลางของขอมูล 8.5 การวัดการกระจายของขอมูล 8.6 การสํารวจความคิดเห็น ตารางวิเคราะหขอสอบ O-Net ปพ.ศ.2549 ปพ.ศ. 2550เรื่อง ตอนที่1(ปรนัย) ตอนที่2(อัตนัย) ตอนที่1(ปรนัย) ตอนที่2 (ปรนัย) 1. เซต 2 1 2 1 2. การใหเหตุผลแบบอุปนัยและ นิรนัย 1 - - 1 3. จํานวนจริงและเลขยกกําลัง 6 1 6 4 4. ความสัมพันธและฟงกชัน 4 2 2 3 5. อัตราสวนตรีโกณมิติ 3 2 1 2 6. ลําดับและอนุกรม 6 - 2 2 7. ความนาจะเปน 1 3 1 2 8. สถิติ 9 1 6 5 หมายเหตุ : ขอสอบตอนที่ 2 1) ปพ.ศ. 2549 เปนขอสอบเติมคําตอบ 2) ปพ.ศ. 2550 เปนขอสอบแบบเลือกตอบ
3.
สรุปประเด็นสําคัญเตรียมสอบ O-Net เรื่อง
เซต รวบรวมโดย อาจารยสมบูรณ ลักษณะวิมล อาจารยประจํา สาขาพระรามสอง 1 ถา A มีสมาชิก n ตัว สับเซตของ A ทั้งหมด = 2n เซต และ สับเซตแท = 2n – 1 เซต 2 การกระทําของเซต A∪B = { x | x ∈A∨ x∈B} A∩B = { x | x ∈A ∧ x∈B} A – B = { x | x ∈A ∧ x∉B} A′ = { x | x ∈U ∧ x∉A} 3 คุณสมบัติที่ตองทราบ (1) P(A) ∪P(B)⊂P(A∪B) และ (2) P(A) ∩P(B) = P(A∩B) (3) A∩ (B∪C) = (A∩B) ∪ (A∩C) (4) A ∪ (B∩C) = (A∪B)∩ (A∪C) (5) (A∩B)′ = A′∪B′ , (A∪B)′ = A′∩B′ (6) A – B = A ∩B′ = B′– A′ (7) A∩ (A∪B) = A , A ∪ (A∩B) = A (8) A∩ (A′∪B) = A∩B (9) A∪ (A′∩B) = A∪B (10)(A∪B)∩ (A∪B′) = A (11)(A∩B) ∪ (A∩B′) = A 4 จํานวนสมาชิกของเซต n (A∪B∪C) = n(A) + n(B) + n(C) – n(A∩B) – n(A∩C) – n(B∩C) + n(A∩B∩C)
4.
5 สมบัติเกี่ยวกับเซตที่หามลืม (1) สมบัติเกี่ยวกับสับเซต A⊂B
ก็ตอเมื่อ A∩B = A A⊂B ก็ตอเมื่อ A∪B = B A⊂B ก็ตอเมื่อ B′⊂A′ (2) สมบัติเกี่ยวกับการกระทํา A∪B = φ ก็ตอเมื่อ A= φ และ B= φ A∩B = φ ก็ตอเมื่อ A⊂B′ และ B⊂A′ A– B = φ ก็ตอเมื่อ A⊂B (3) สมบัติของเพาเวอรเซต เมื่อ A , B เปนเซตใด ๆ 1.) x ∈P(A) ↔ x⊂A 2.) φ ∈ P(A) และ A∈ P(A) 3.) φ ⊂ P(A) , {φ}⊂ P(A) และ {A} ⊂ P(A) 4.) ถาเซต A มีสมาชิก n ตัว แลว P(A) มีสมาชิก 2n ตัว (4) ให A = {1 , 2 , 3 , … , m} และ B = { 1 , 2 , 3 , … , n} โดยที่ m < n 1.) ถา A⊂ X⊂B จะมีเซต X ได = 2n-m เซต 2.) ถา A ∩ X ≠ φ และ X ⊂B จะมีเซต X ได = 2n – 2n-m เซต (5) n(A – B) = n(A) – n(A∩B) (6) n(A∪B) ′ = n(U) – n(A∪B) (7) n[P(A) – P(B)] = n[P(A)] – n[P(A∩B)]
5.
แนวขอสอบเรื่อง เซต รวบรวมโดย อาจารยสมบูรณ
ลักษณะวิมล อาจารยประจํา สาขาพระรามสอง กําหนด A , B , C และ D เปนเซตใดๆ (A∩B) – (C∪D) เทากับเซตในขอใด1. 1. (A – B) ∩ (C – D) 2. (A – B) ∩ (D – C) 3. (A – C) ∩ (B – D) 4. (A – C) ∩ (D – B) แนวคิด (A∩B) – (C∪D) = (A∩B) ∩ (C∪DQ )′ = (A∩B) ∩ (C′∩D′) = (A∩C′) ∩ (B ∩D′) ∴(A∩B) – (C∪D) = (A – C) ∩ (B - D) 2. กําหนด A และ B เปนเซตใดๆ จงพิจารณาขอความตอไปนี้ ก. ถา A∩B = φ แลว A ⊂B′ ข. ถา A∩B = φ แลว B ⊂A′ ′ ขอใดสรุปถูกตอง 1. ก. ถูก และ ข ผิด 2. ก. ผิด และ ข. ถูก 3. ก. และ ข. ถูก 4. ก. และ ข. ผิด แนวคิด เนื่องจาก A∩B = φ พิจารณาแผนภาพดังนี้ A B A B A B จะพบวา A ⊂ B แต B ⊄′ ′ A′
6.
3. กําหนด A
= {0, {0}, φ, {φ}, 1} และ P(A) เปนเพาเวอรเซตของ A จํานวนสมาชิกของ P(A) – A เทากับเทาใด 1. 29 2. 30 3. 31 4. 32 แนวคิด n(A) = 5Q จะได n(P(A)) = 25 = 32 ⎯ 1 แต A และ P(A) มีสมาชิกซ้ํากัน 3 ตัวคือ {0}, φ, {φ} ∴ n(P(A) ∩ A) = 3 ⎯ 2 เนื่องจาก n[P(A) – A] = n(P(A)) – n(P(A) ∩ A) ดังนั้น n[P(A) – A] = 32 – 3 = 29 ตัว กําหนดให A และ B เปนเซตจํากัดโดยที่ n(A ∪ B) = 67 และ n[(A – B)∪(B – A)] = 584. ถา n(A) = 32 แลว n(B) มีคาเทากับขอใดตอไปนี้ 1. 28 2. 35 3. 39 4. 44 แนวคิด จากแผนภาพเวนน – ออยเลอร จะพบวา n(A ∪ B) = n[(A – B) ∪ (B – A)] + n(A∩B) แทนคาจะได 67 = 58 + n(A ∩B) A B U A - B B - A A∩B ∴ n(A ∩B) = 67 – 58 = 9 ⎯ ∗ เนื่องจาก n(A ∪ B) = n(A) + n(B) - n(A ∩ B) จะได 67 = 32 + n(B) – 9 ดังนั้น n(B) = 67 – 32 + 9 = 44
7.
ขอใดตอไปนี้ไมถูกตอง5. 1. มีเซตบางเซตไมมีสับเซตแท ถา A
= {1, {1, 2}, φ} แลว A ∩ P(A) ≠ φ2. 3. P(φ)∩ P(P(φ)) = φ 4. มีเซต A ที่ทําใหจํานวนสมาชิกของ P(A) เปนจํานวนเฉพาะ แนวคิด พิจารณาแตละขอดังนี้ ขอ1 ถูกตอง เพราะวา ถา A = φ จะพบวาสับเซตของ A คือ φ ซึ่งไมใชสับเซตแท ขอ2 ถูกตอง เพราะวา A = {1, {1, 2}, φ} จะได P(A) = {φ, {1}, {{1, 2}}, {φ}, {1,{1, 2}}, {1, φ}, {{1, 2}, φ}, {1,{1, 2}, φ}} จะพบวา A ∩ P(A) = {φ} ≠ φ ขอ3 ไมถูกตอง เพราะวา P(φ) = {φ} P(P(φ)) = {φ, {φ}} ดังนั้น P(φ)∩P(P(φ) = {φ} ≠ φ ขอ4 ถูกตอง เพราะวา ถา A = {1} → A มีสมาชิก 1 ตัว ∴ P(A) มีสมาชิก = 2 = 2 ตัว แสดงวา จํานวนสมาชิกเปนจํานวนเฉพาะ ใหเอกภพสัมพัทธ U = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ถา A ∪ B = {1 , 2 , 3 , 4 , 5 , 6 , 7}6. และ = {4 , 6 , 8 , 9} จํานวนสมาชิกของ B – A เทากับขอใดA′ 1. 1 2. 2 3. 3 4. 4 แนวคิด จาก U = {1 , 2 , 3 , 4 , 5 , 6 , 7, 8 , 9} และ = {4 , 6 , 8 , 9}A′ จะได A = {1 , 2 , 3 , 5 , 7} ⎯∗ จาก A ∪ B = {1 , 2 , 3 , 4 , 5 , 6 , 7} จะได B – A = {4 , 6} ⎯∗ ดังนั้น B – A มีสมาชิก 2 ตัว
8.
7. จากการสัมภาษณผูชมรายการโทรทัศนจํานวน 220
คน พบวา มี 140 คน ชอบดูรายการ “เกมสโชว” มี 110 คน ชอบดูรายการ “เกมสเศรษฐี” มี 105 คน ชอบดูรายการ “ตีสิบ” มี 45 คน ชอบดูทั้งรายการ “เกมสโชว” และ “ตีสิบ” มี 40 คน ชอบดูทั้งรายการ “เกมสโชว” และ “เกมสเศรษฐี” มี 15 คน ชอบดูทั้งสามรายการ ถาไมมีผูชมคนใดที่ไมชอบดูทั้งสามรายการเลย จงหาจํานวนผูชมรายการโทรทัศนที่ชอบดู รายการดังกลาวอยางนอยสองรายการ 1. 80 คน 2. 110 คน 3. 120 คน 4. 130 คน แนวคิด ให A แทนเซตของผูชมรายการ “เกมสโชว” ∴n(A) = 140 B แทนเซตของผูชมรายการ “เกมสเศรษฐี” ∴n(B) = 110 C แทนเซตของผูชมรายการ “ตีสิบ” ∴n(C) = 105 จะได n(A∩ B) = 40, n(A ∩ C) = 45, n(A∩B∩C) = 15 เขียนแผนภาพไดดังรูป 15 A(140) B(110) U(220) 25 C(105) 30 a b c จากแผนภาพ a + b + c = 80 แต a + b = 70 ∴ c = 10 จะได b = n(C) – c – 30 – 15 = 105 – 10 – 45 = 50 ดังนั้น ผูชมรายการโทรทัศนที่ชอบดูรายการอยางนอยสองรายการเทากับ 30 + 15 + 25 + 50 = 120 คน
9.
8. จากการสํารวจการประกอบอาชีพการประมงทําสวนยางพาราและทําสวนผลไมของชาวบานใน หมูบานแหงหนึ่งของจังหวัดระยอง ซึ่งมีอยูทั้งหมด
108 ครอบครัวพบวา มี 38 ครอบครัว ไมไดประกอบอาชีพทั้งสามนี้ มี 16 ครอบครัว ที่ประกอบอาชีพทั้งสามนี้ มี 29 ครอบครัว ที่ประกอบอาชีพเพียงอยางเดียวในสามอยางนี้ ขอใดตอไปนี้เปนจํานวนครอบครัวที่ประกอบอาชีพอยางนอยสองในสามอยางนี้ 1. 25 2. 41 3. 45 4. 63 แนวคิด ให U แทนเซตของครอบครัวทั้งหมด ∴n(U) = 108 A แทนเซตของครอบครัวที่ไมไดประกอบอาชีพนี้ ∴n(A) = 38 B แทนเซตของครอบครัวที่ประกอบอาชีพนี้ 1 อยาง ∴n(B) = 29 C แทนเซตของครอบครัวที่ประกอบอาชีพนี้อยางนอย 2 ใน 3 อยางนี้ จะได n(U) = n(A) + n(B) + n(C) ∴ n(C) = 108 – 38 - 29 = 41 ดังนั้น จํานวนครอบครัวที่ประกอบอาชีพอยางนอยสองในสามอยางนี้เทากับ 41 ครอบครัว 9. นักการเมืองกลุมหนึ่งมี 50 คน แตละคนมีพื้นฐานการศึกษาดานวิทยาศาสตรหรือสังคมศาสตร หรือศิลปศาสตรอยางนอยหนึ่งดาน จากแฟมประวัติพบอีกวามี 33 คน ที่มีพื้นฐานการศึกษา ดานสังคมศาสตรและในจํานวนนี้มี 8 คน ที่มีพื้นฐานการศึกษาทางดานวิทยาศาสตรดวย มี 17 คน ที่มีพื้นฐานการศึกษาทางดานศิลปศาสตรและในจํานวนนี้มี 2 คน ที่มีพื้นฐาน การศึกษาทางดานวิทยาศาสตรดวย ถาไมปรากฏวามีผูที่มีพื้นฐานการศึกษาทั้งดานสังคมศาสตร และศิลปศาสตรแลว นักการเมืองที่มีพื้นฐานการศึกษาดานวิทยาศาสตรมีกี่คน 1. 25 คน 2. 20 คน 3. 18 คน 4. 10 คน แนวคิด ให A แทนเซตของนักการเมืองที่มีพื้นฐานการศึกษาดานวิทยาศาสตร B แทนเซตของนักการเมืองที่มีพื้นฐานการศึกษาดานสังคมศาสตร C แทนเซตของนักการเมืองที่มีพื้นฐานการศึกษาดานศิลปศาสตร
10.
เขียนแผนภาพเวนน – ออยเลอรไดดังนี้ 0 B
(33) C (17) U 0 A 8 2 จากแผนภาพ จะเห็นไดวานักการเมืองที่มีพื้นฐานการศึกษาดานวิทยาศาสตรอยางเดียว มี 50 – 33 – 17 = 0 คน ดังนั้น นักการเมืองที่มีพื้นฐานการศึกษาดานวิทยาศาสตรมี 0 + 8 + 2 = 10 คน 10. นักเรียนกลุมหนึ่งจํานวน 50 คน แตละคนตองเรียนวิชาคณิตศาสตรหรือวิชาภาษาอังกฤษ อยางนอย 1 วิชา ถามีนักเรียนเรียนวิชาคณิตศาสตร 29 คน และเรียนภาษาอังกฤษ 32 คน แลวจํานวนนักเรียนทั้งวิชาคณิตศาสตรและภาษาอังกฤษมีจํานวนเทากับขอใด 1. 11 คน 2. 13 คน 3. 14 คน 4. 15 คน แนวคิด ให A แทนเซตของนักเรียนที่เรียนวิชาคณิตศาสตร ∴ n(A) = 29 B แทนเซตของนักเรียนที่เรียนวิชาภาษาอังกฤษ ∴ n(B) = 32 เมื่อ n(A ∪ B) = 50 คน ตองการหา n(A ∩B) = ? จาก n(A ∪ B) = n(A) + n(B) - n(A ∩B) แทนคาจะได 50 = 29 + 32 - n(A ∩B) ∴ n(A ∩B) = 29 + 32 – 50 = 11 ดังนั้น จํานวนนักเรียนที่เรียนทั้งวิชาคณิตศาสตรและภาษาอังกฤษมีเทากับ 11 คน
11.
เก็งแนวขอสอบ O-Net เรื่อง
เซต 1. กําหนด A และ B เปนเซตใดๆ ในเอกภพสัมพัทธ U เดียวกัน ขอใดตอไปนี้ถูก 1. ถา A ∩ B = φ แลว A = φ และ B = φ 2. ถา A ∪ B = φ แลวไมจําเปนที่ A = φ และ B = φ 3. ถา A - B = φ แลว A = φ และ B = φ 4. ถา A ∩ B = A ∪ B แลว A = B ถาสับเซตทั้งหมดของเซต A คือ φ, {1}, {2}, {1, 2}2. และสับเซตทั้งหมดของ B คือ φ, {2}, {3}, {2, 3} แลว A ∩B คือเซตในขอใด 1. φ 2. {1} 3. {2} 4. {3} กําหนด A และ B เปนเซตที่มีจํานวนสมาชิกเทากัน โดย n(A∩B) = 2 และ n(A∪B) = 103. แลวขอใดตอไปนี้เปนจํานวนสมาชิกของ B – A 1. 3 ตัว 2. 4 ตัว 3. 5 ตัว 4. 6 ตัว 4. กําหนด A และ B เปนเซตใดๆ พิจารณาขอความตอไปนี้ ก. n(A∩B) = n(A) + n(B) – n(A ∪ B) ข. n(A∪B) = n(A - B) + n(A∩ B) + n(B – A) ขอใดตอไปนี้ถูกตอง 1. ขอ ก. และ ขอ ข. ถูก 2. ขอ ก. ผิด และ ขอ ข. ถูก 3. ขอ ก. ถูก และ ขอ ข. ผิด 4. ขอ ก. และ ขอ ข. ผิด กําหนด A และ B เปนเซตใดๆ ถา n(A ∪ B) = 10, n(A - B) = 3 และ n(B - A) = 55. แลว n(A ∩B) เทากับขอใดตอไปนี้ 1. 1 2. 2 3. 3 4. 4
12.
6. กําหนด A
, B และ C เปนเซตใดๆ ในเอกภพสัมพัทธ U เดียวกัน และ n(A) = 50 , n(B) = 40 , n(C) = 30 , n(A ∩B) = 15 , n(B∩C) = 13 , n(A∩C) = 17 และ n(A ∪ B ∪ C) = 80 จงหา n(A ∩B∩C) 1. 5 2. 6 3. 7 4. 8 7. ถา A , B เปนเซตอนันตและ C เปนเซตจํากัด แลวเซตในขอใดตอไปนี้เปนเซตอนันต 1. (A ∩ C) ∪ (B ∩C) 2. A ∪ (B∩C) 3. (C - B) ∪ (C - A) 4. (A∪B)∩C ให A = {φ, 0, 1, {1}} และ P(A) เปนเพาเวอรเซตของ A8. B คือคอมพลีเมนตของ A และ C คือคอมพลีเมนตของ P(A) จํานวนสมาชิกของ (B ∩C) ∪ (B∩C ) เทากับขอใด′ ′ 1. 12 2. 14 3. 16 4. 20 9. ในสํานักงานกาชาดสากลแหงหนึ่งมีเจาที่ 18 คน แตละคนพูดภาษารัสเซีย หรือ ภาษาอังกฤษ หรือ ภาษาฝรั่งเศส มีเพียงคนเดียวที่พูดภาษารัสเซีย ภาษาฝรั่งเศสและภาษาอังกฤษไดทั้งสาม ภาษา มี 3 คนพูดภาษาฝรั่งเศสและภาษาอังกฤษได มี 13 คนที่พูดภาษารัสเซียได และใน 13 คนนี้มี 5 คนที่พูดภาษาอังกฤษได มี 9 คนที่พูดภาษาฝรั่งเศสได ไมมีเจาหนาที่คนใดที่ พูดภาษาอังกฤษไดเพียงภาษาเดียว มีเจาหนาที่กี่คนที่พูดภาษาฝรั่งเศสไดเพียงภาษาเดียว 1. 2 2. 3 3. 4 4. 5 10. ในการสํารวจนักเรียนที่ไดฝกหัดวายน้ําเปน 3 เดือนมาแลว จํานวน 40 คน พบวาวายน้ํา ทากบได 20 คน วายน้ําทาผีเสื้อได 19 คน และวายไมไดไมวาทากบหรือทาผีเสื้อ 7 คน มีนักเรียนทั้งหมดกี่คนที่สามารถวายน้ําไดทั้งทากบและทาผีเสื้อ 1. 4 2. 6 3. 8 4. 10
13.
เฉลยเก็งแนวขอสอบ O-Net เรื่อง
เซต 1. ขอ 4 2. ขอ 3 3. ขอ 2 4. ขอ 1 5. ขอ 2 6. ขอ 1 7. ขอ 2 8. ขอ 3 9. ขอ 2 10. ขอ 2 พบกับเฉลยละเอียดไดที่… MATH HOUSE โทร 02-413-2556 -7
Download