ºÝºÝߣ

ºÝºÝߣShare a Scribd company logo
The Mathematical Epidemiology of Human Babesiosis in
the North-Eastern United States
Jessica Margaret Dunn, Dr. Stephen Davis (RMIT), Dr. Andrew
Stacey (RMIT), Assoc. Prof. Maria Diuk-Wasser (Yale/Columbia)
J. M. Dunn (QUT) QUT Seminar 08.08.2014 1 / 41
J. M. Dunn (QUT) QUT Seminar 08.08.2014 2 / 41
Tick-borne disease in the USA
The geographical range of tick-borne diseases are expanding. There are
seven emerging tick diseases:
Lyme disease
Human babesiosis
Human anaplasmosis
Powassan
Deer tick encephalitis
B. miyamotoi borreliosis
Deer tick ehrlichiosis
J. M. Dunn (QUT) QUT Seminar 08.08.2014 3 / 41
Lyme Disease (Borrelia burgdorferi)
J. M. Dunn (QUT) QUT Seminar 08.08.2014 4 / 41
Human Babesiosis (Babesia microti)
Reported cases of Human Babesiosis ¨C United States, 2011
J. M. Dunn (QUT) QUT Seminar 08.08.2014 5 / 41
Hosts
White-footed mice (Peromyscus leucopus) Tick (Ixodes scapularis)
J. M. Dunn (QUT) QUT Seminar 08.08.2014 6 / 41
Research Objective
To identify the key factors driving human babesiosis (B. microti) and
Lyme disease (B. burgdorferi) in endemic sites, and their expansion
into new areas in the north-eastern United States.
J. M. Dunn (QUT) QUT Seminar 08.08.2014 7 / 41
Mathematical Modelling Challenges
Deriving mathematical models of tick-borne disease transmission is
notoriously di?cult!
Multiple hosts (competent and non-competent)
Tick life-cycle (biting rate)
Multiple tranmission routes
Multiple pathogens
J. M. Dunn (QUT) QUT Seminar 08.08.2014 8 / 41
Tick life cycle
J. M. Dunn (QUT) QUT Seminar 08.08.2014 9 / 41
Tick-phenology
Densities-Northeast
Weeks
Density
0 5 10 15 20 25 30 35 40 45 50
0
50
100
150
200
250
300
350
400
450
500 Larvae
Nymphs
Adults
J. M. Dunn (QUT) QUT Seminar 08.08.2014 10 / 41
Tick-borne pathogen transmission routes
J. M. Dunn (QUT) QUT Seminar 08.08.2014 11 / 41
Modelling challenges
The modelling challenge then becomes to one of incorporating these
complexities whilst maintaining a model that:
1 is representative of the transmission cycle
2 can be used with ?eld data which will provide meaningful estimates of
the parameters
3 has a minimal number of parameters to ensure the model can be
adequately analysed
J. M. Dunn (QUT) QUT Seminar 08.08.2014 12 / 41
Overview
Model emergence
- Identify the factors driving emergence
- Identify control measures
Model the risk to humans
- Incorporate the identi?ed factors
- Analyse changes in risk
J. M. Dunn (QUT) QUT Seminar 08.08.2014 13 / 41
Modelling emergence
Modelling emergence
The basic Reproduction number, R0
In single host systems, R0 is the expected number of secondary cases
produced by one infectious individual in a fully susceptible population.
R0 = 1 provides a threshold condition:
pathogen will spread R0 > 1
pathogen will fade out R0 < 1
J. M. Dunn (QUT) QUT Seminar 08.08.2014 14 / 41
Modelling emergence
R0 for multiple hosts
Next generation Matrix (NGM) (Diekmann and Heasterbeek)
De?ne kij as the expected number of new cases that have state at
infection i caused by one individual at state at infection j, during its whole
infectious period.
For example given 2 host types i and j there are four possibilities:
K = (kij ) =
k11 k12
k21 k22
R0 is the dominant eigenvalue of the NGM such that
vk+1 = Kvk
J. M. Dunn (QUT) QUT Seminar 08.08.2014 15 / 41
Modelling emergence
NGM for tick-borne pathogens
J. M. Dunn (QUT) QUT Seminar 08.08.2014 16 / 41
Modelling emergence
Reduction for US Lyme and Human Babesiosis
J. M. Dunn (QUT) QUT Seminar 08.08.2014 17 / 41
Modelling emergence
NGM for US Lyme and Human Babesiosis
J. M. Dunn (QUT) QUT Seminar 08.08.2014 18 / 41
Modelling emergence
Quantifying R0
J. M. Dunn (QUT) QUT Seminar 08.08.2014 19 / 41
Modelling emergence
Internal functions of R0
Tick Phenology
0 50 100 150 200 250 300 350
Day
Mean nymph burden
Mean larvae burden
Representativemeantick
countpermouse
52050
¦Ì
H
¦Ó
J. M. Dunn (QUT) QUT Seminar 08.08.2014 20 / 41
Modelling emergence
Block Island
Connecticut
100 250150 200 100 150 200 250
100 150 200 250100 150 200 250
0
1
5
20
50
150
0
1
5
20
50
150150
50
20
5
1
0
150
50
20
5
1
0
Day of year Day of year
Day of year Day of year
LarvaltickburdenLarvaltickburden
NymphaltickburdenNymphaltickburden
J. M. Dunn (QUT) QUT Seminar 08.08.2014 21 / 41
Modelling emergence
Brunner and Ostfeld (2008)
?ZN(t) = HNe
?1
2
ln
(t?¦ÓN )
?N
/¦ÒN
2
if t ¡Ý ¦ÓN;
0 otherwise
?ZL(t) =
?
?
?
HE e
?1
2
t?¦ÓE
?E
2
if t ¡Ü ¦ÓL;
HLe
?1
2
ln
(t?¦ÓL)
?L
2
+ HE e
?1
2
t?¦ÓE
?E
2
otherwise
J. M. Dunn (QUT) QUT Seminar 08.08.2014 22 / 41
Modelling emergence
Internal functions of R0
E?ciency of transmissionInfectivity
Days
H
¦Ì
p(t) = HPe
?1
2
ln t
?P
/¦ÒP
2
J. M. Dunn (QUT) QUT Seminar 08.08.2014 23 / 41
Modelling emergence
Global Sensitivity Analysis of R0
Ranks the parameters by their contribution to the variation of R0 using
Sobol¡¯s indices:
Main e?ect: calculates the e?ect of parameter xi on R0 ?xing all
other variables
Total e?ect: includes the main e?ect for xi plus all other interaction
involving xi .
J. M. Dunn (QUT) QUT Seminar 08.08.2014 24 / 41
Modelling emergence
Global Sensitivity Results
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Parameter
Sobol¡¯sfIndices
MainfEffect
TotalfEffect
H ¦Ó ¦Ì ¦Ò ¦Ó H ¦Ó ¦Ì H ¦Ì ¦Ò H Dq ¦Ñ ¦Ò¦Ì s cN N N N L L L L P P PLE E E NN
J. M. Dunn (QUT) QUT Seminar 08.08.2014 25 / 41
Modelling emergence
Implications for emergence
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
Proportion of fed larval ticks that survive to become unfed nymphs (S
N
)
R
0
Threshold R
0
=1
Fixed point estimate
J. M. Dunn (QUT) QUT Seminar 08.08.2014 26 / 41
Modelling emergence
Implications for control
Given, ?R0 = 1.57
Vaccination requirements (Roberts, 2003)
V = 1 ?
1
R2
0
¡Ö 60%
J. M. Dunn (QUT) QUT Seminar 08.08.2014 27 / 41
Modelling emergence
The Coinfection Story
J.M. Dunn et al. Borrelia burgdorferi enhances the enzootic establishment of
Babesia microti in the northeastern United States, PLOS ONE(2014).
J. M. Dunn (QUT) QUT Seminar 08.08.2014 28 / 41
Modelling emergence
Modi?cation of R0
k13
k31
k13
k31 k32
k23
k32
k23
White-footedm1:
White-footedm2:
Tickainfectedaw3:
Ka= 0 0
0 0
0
1 2
3
R0 = k13k31 + k23k32
. . .
t=365
t=0
. . . ¦×
t =365?t
t =0
p1(t ) . . . dt + (1 ? ¦×)
t =365?t
t =0
p2(t ) . . . dt dt
J. M. Dunn (QUT) QUT Seminar 08.08.2014 29 / 41
Modelling emergence
Implications of coinfection on emergence
0.6 0.8 1
c
0.4 0.6 0.8 1
0.3
0.4
0.5
c
0.6 0.8 1
c
0.4 0.6 0.8 1
0.3
0.4
0.5
0.6
0.7
c
sN
B. microti
B. microti C8B. Burgdorferi BL2068
fade8out
fade8out
emergence emergence
80w8B. burgdorferi8BL2068prevalence
in8mice
J. M. Dunn (QUT) QUT Seminar 08.08.2014 30 / 41
Modelling emergence
Timing is everything!120 140 160 180 200 220 240 260 280 300
0
5
120 140 160 180 200 220 240 260 280 300
0
5
10
15
Re
ouseProportion3of3infected3larval3ticks3per3mouse
Representative3mean3tick3count3per3mouse
Connecticut
3330.233333330.1
Mean nymph burden
Mean larvae burden
Babesia3+3Borrelia
Babesia
3333333333333333333333333333330.93333330.83333330.73333330.63333330.53333330.43333330.333333330.233333330.1
J. M. Dunn (QUT) QUT Seminar 08.08.2014 31 / 41
Modelling emergence
Coinfection is not the whole story!
Accounting for aggregation on hosts
k13
k13
32
1
5
4
2
k51
k15
k12
k21
k14
k41
2: High aggregation white footed mouse
- infected with Bb
4: Low aggregation white footed mouse
- infected with Bb
3: High aggregation white footed mouse
- infected with Bm
5: Low aggregation white footed mouse
- infected with Bm
R0 = k12k21 + k12k21 + k13k31 + k14k41 + k15k51
J. M. Dunn (QUT) QUT Seminar 08.08.2014 32 / 41
Modelling emergence
Scenario Estimated R0
No co-aggregation; no coinfection 0.70 (0.62,0.78)
Low co-aggregation; no coinfection 0.80 (0.71,0.86)
Moderate co-aggregation; no coinfection 0.97 (0.81,1.04)
High co-aggregation; no coinfection 1.13 (1.00, 1.21)
High co-aggregation; coinfection 1.78 (1.64, 1.91)
J. M. Dunn (QUT) QUT Seminar 08.08.2014 33 / 41
Modelling emergence
Conclusions
Epidemiological:
Values of R0 are consistently low 1 < R0 < 3
Transmission e?ciency drives emergence
Timing is everything!
Mathematical:
Models are mechanistic, transparent, linked directly with ?eld data
Step towards a model for more complicated tick-borne pathogens
First such model that that assesses the importance of (i) coinfection
and (ii) aggregation
J. M. Dunn (QUT) QUT Seminar 08.08.2014 34 / 41
Modelling emergence
Questions?
J. M. Dunn (QUT) QUT Seminar 08.08.2014 35 / 41
Modelling risk
Modelling risk to humans
Risk is directly proportional to the infection prevalence in nymphal ticks.
Compartment type SIR Model: (S)usceptibles to (I)nfectives to
(R)ecovered
J. M. Dunn (QUT) QUT Seminar 08.08.2014 36 / 41
Modelling risk
Three generation based compartments:
Sk(t), Ik(t) and Ck(t)
dSk
dt
= ?¦Âk(t)Sk
dIk
dt
= ¦Âk(t)Sk ? ¦ÃI
dCk
dt
= ¦ÃI
J. M. Dunn (QUT) QUT Seminar 08.08.2014 37 / 41
Modelling risk
Force of Infection
The force of infection is related to the unfed nymphs from the previous
year k ? 1
¦Âk(t) =
1
DN
¦Ík
?ZN(t)qN.
with the proportion of infected unfed nymphs, ¦Ík, in year k is given by
¦Ík =
365
0
aL(t)?p
Ik?1
Nk?1
dt
J. M. Dunn (QUT) QUT Seminar 08.08.2014 38 / 41
Modelling risk
Accounting for infectivity of hosts p(t)
J. M. Dunn (QUT) QUT Seminar 08.08.2014 39 / 41
Modelling risk
dSk
dt
= ?¦Âk(t)Sk + b(t)Nk ? (? +
Nk
K
)Sk
dIk,1
dt
= ¦Âk(t)Sk ? (? +
Nk
K
)Ik,1 ? ¦ÃI1
dIk,2
dt
= ¦ÃI1 ? (? +
Nk
K
)Ik,2 ? ¦ÃI2
dIk,3
dt
= ¦ÃI2 ? (? +
Nk
K
)Ik,3 ? ¦ÃI3
dIk,4
dt
= ¦ÃI3 ? (? +
Nk
K
)Ik,4 ? ¦ÃI4
dIk,5
dt
= ¦ÃI4 ? (? +
Nk
K
)Ik,5 ? ¦ÃI5
dIk,6
dt
= ¦ÃI5 ? (? +
Nk
K
)Ik,6 ? ¦ÃI6
dCk
dt
= ¦ÃI6 ? (? +
Nk
K
)C
J. M. Dunn (QUT) QUT Seminar 08.08.2014 40 / 41
Modelling risk
¦Ík =
365
0
aL(t) ?p1
Ik?1,1
Nk?1
+ ?p2
Ik?1,2
Nk?1
+ ?p3
Ik?1,3
Nk?1
+ ?p4
Ik?1,4
Nk?1
+ ?p5
Ik?1,5
Nk?1
+ ?p6
Ik?1,6
Nk?1
dt
0 5 10 15 20 25 30
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
time (years)
Proportionofinfectedfedlarvae
J. M. Dunn (QUT) QUT Seminar 08.08.2014 41 / 41

More Related Content

Viewers also liked (10)

PDF
Innovators Jumpstart 2015-NBIF (The Perfect Pitch)
PlanetHatch
?
DOC
39.2015.tt.bnnptnt
M¨¨o Hoang
?
PDF
Designing for Success
Advanta
?
PDF
Power 2014
BlueChip Technology
?
PPTX
Shadoless Halogen Operating Light
TECHNOMED INDIA
?
PPTX
Operation Theatre LED Light
TECHNOMED INDIA
?
PDF
30 nd.signed
M¨¨o Hoang
?
PDF
Achieving a Common Information System Platform
Advanta
?
ODP
Poems
swydell
?
PPTX
¤â¤·¤â˽¤¬¥«¥É¥«¥ï¤Î´¨ÉÏÁ¿ÉúCEO¤Ê¤é¤É¤Î¤è¤¦¤Ë¤·¤Æ»áÉç¤ò³ÉéL¤µ¤»¤ë¤«£¿ -¥Ë¥³¥Ë¥³„Ó»­¤ò³Ö¤ÄÆó˜I¤Î½U†Ó‘éÂÔ-
Takashi Okada
?
Innovators Jumpstart 2015-NBIF (The Perfect Pitch)
PlanetHatch
?
39.2015.tt.bnnptnt
M¨¨o Hoang
?
Designing for Success
Advanta
?
Shadoless Halogen Operating Light
TECHNOMED INDIA
?
Operation Theatre LED Light
TECHNOMED INDIA
?
30 nd.signed
M¨¨o Hoang
?
Achieving a Common Information System Platform
Advanta
?
Poems
swydell
?
¤â¤·¤â˽¤¬¥«¥É¥«¥ï¤Î´¨ÉÏÁ¿ÉúCEO¤Ê¤é¤É¤Î¤è¤¦¤Ë¤·¤Æ»áÉç¤ò³ÉéL¤µ¤»¤ë¤«£¿ -¥Ë¥³¥Ë¥³„Ó»­¤ò³Ö¤ÄÆó˜I¤Î½U†Ó‘éÂÔ-
Takashi Okada
?

Similar to The Mathematical Epidemiology of Human Babesiosis in the North-Eastern United States - Jessica Dunn, QUT (20)

PDF
Vector-borne diseases and Lyme disease (2016)
Irene Garcia-Marti
?
PDF
Modelling tick dynamics using volunteer data (2017)
Irene Garcia-Marti
?
PPTX
Tick Borne Diseases of Public Significance and Integrated Vector Management
Dr Shifa Ul Haq
?
PPT
PPT FOR HEALTH CARE PROFESSIONALS AND USAGE
OfficeEPH
?
PDF
ICPSR 2011 - Bonus Content - Modeling with Data
Daniel Katz
?
PDF
Modelling tick densities using VGI and machine learning (2016)
Irene Garcia-Marti
?
PDF
presentation for the ECMTB2022_ºÝºÝߣs.pdf
JoseLuisOrozcoSarmie
?
PDF
Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser
Wouter de Heij
?
PPT
This ppt is about spruce budworm outbreak modeling.
mohinuddin45
?
PPT
The linkages between biodiversity and the transmission of emerging infectious...
Alison Specht
?
PDF
Modelling tick bites dynamics using VGI (2015)
Irene Garcia-Marti
?
PDF
epidemilolgy-infectious-diseases2.pdf
ParshuramSharma11
?
PPTX
LastWeekPresentation
Hector Cuesta Arvizu
?
PPTX
Para 708 Presentation by Maqsood Ahmad.pptx
DR. MAQSOOD AHMAD
?
PPT
HLTH 104 Chapter 05
misteraugie
?
PDF
Infectious disease modelling - the math behind Corona
Wouter de Heij
?
PPTX
Concepts in Infectious Diseases Epidemiology.pptx
higgnic123
?
PPT
epiinf.pptSSFDGFHGJHGKHJLXZCXBVMB,ASDYTUYKERERYU
ssuser6d8ff3
?
PDF
Zika: epidemiology and control
Naomi Marks
?
PDF
On Stability Equilibrium Analysis of Endemic Malaria
IOSR Journals
?
Vector-borne diseases and Lyme disease (2016)
Irene Garcia-Marti
?
Modelling tick dynamics using volunteer data (2017)
Irene Garcia-Marti
?
Tick Borne Diseases of Public Significance and Integrated Vector Management
Dr Shifa Ul Haq
?
PPT FOR HEALTH CARE PROFESSIONALS AND USAGE
OfficeEPH
?
ICPSR 2011 - Bonus Content - Modeling with Data
Daniel Katz
?
Modelling tick densities using VGI and machine learning (2016)
Irene Garcia-Marti
?
presentation for the ECMTB2022_ºÝºÝߣs.pdf
JoseLuisOrozcoSarmie
?
Dynamics and Control of Infectious Diseases (2007) - Alexander Glaser
Wouter de Heij
?
This ppt is about spruce budworm outbreak modeling.
mohinuddin45
?
The linkages between biodiversity and the transmission of emerging infectious...
Alison Specht
?
Modelling tick bites dynamics using VGI (2015)
Irene Garcia-Marti
?
epidemilolgy-infectious-diseases2.pdf
ParshuramSharma11
?
LastWeekPresentation
Hector Cuesta Arvizu
?
Para 708 Presentation by Maqsood Ahmad.pptx
DR. MAQSOOD AHMAD
?
HLTH 104 Chapter 05
misteraugie
?
Infectious disease modelling - the math behind Corona
Wouter de Heij
?
Concepts in Infectious Diseases Epidemiology.pptx
higgnic123
?
epiinf.pptSSFDGFHGJHGKHJLXZCXBVMB,ASDYTUYKERERYU
ssuser6d8ff3
?
Zika: epidemiology and control
Naomi Marks
?
On Stability Equilibrium Analysis of Endemic Malaria
IOSR Journals
?
Ad

Recently uploaded (20)

PPT
Reliability Monitoring of Aircrfat commerce
Rizk2
?
PDF
NVIDIA Triton Inference Server, a game-changing platform for deploying AI mod...
Tamanna36
?
PDF
Prescriptive Process Monitoring Under Uncertainty and Resource Constraints: A...
Mahmoud Shoush
?
PDF
11_L2_Defects_and_Trouble_Shooting_2014[1].pdf
gun3awan88
?
PPTX
Data Analytics using sparkabcdefghi.pptx
KarkuzhaliS3
?
PDF
TCU EVALUATION FACULTY TCU Taguig City 1st Semester 2017-2018
MELJUN CORTES
?
PDF
624753984-Annex-A3-RPMS-Tool-for-Proficient-Teachers-SY-2024-2025.pdf
CristineGraceAcuyan
?
PPTX
Monitoring Improvement ( Pomalaa Branch).pptx
fajarkunee
?
DOCX
The Influence off Flexible Work Policies
sales480687
?
PPTX
Daily, Weekly, Monthly Report MTC March 2025.pptx
PanjiDewaPamungkas1
?
PDF
Microsoft Power BI - Advanced Certificate for Business Intelligence using Pow...
Prasenjit Debnath
?
PDF
Informatics Market Insights AI Workforce.pdf
karizaroxx
?
DOCX
Artigo - Playing to Win.planejamento docx
KellyXavier15
?
PDF
Exploiting the Low Volatility Anomaly: A Low Beta Model Portfolio for Risk-Ad...
Bradley Norbom, CFA
?
PPTX
MENU-DRIVEN PROGRAM ON ARUNACHAL PRADESH.pptx
manvi200807
?
PPT
Camuflaje Tipos Caracter¨ªsticas Militar 2025.ppt
e58650738
?
PDF
Kafka Use Cases Real-World Applications
Accentfuture
?
PPTX
Indigo dyeing Presentation (2).pptx as dye
shreeroop1335
?
PPTX
PPT2 W1L2.pptx.........................................
palicteronalyn26
?
PPTX
ppt somu_Jarvis_AI_Assistant_presen.pptx
MohammedumarFarhan
?
Reliability Monitoring of Aircrfat commerce
Rizk2
?
NVIDIA Triton Inference Server, a game-changing platform for deploying AI mod...
Tamanna36
?
Prescriptive Process Monitoring Under Uncertainty and Resource Constraints: A...
Mahmoud Shoush
?
11_L2_Defects_and_Trouble_Shooting_2014[1].pdf
gun3awan88
?
Data Analytics using sparkabcdefghi.pptx
KarkuzhaliS3
?
TCU EVALUATION FACULTY TCU Taguig City 1st Semester 2017-2018
MELJUN CORTES
?
624753984-Annex-A3-RPMS-Tool-for-Proficient-Teachers-SY-2024-2025.pdf
CristineGraceAcuyan
?
Monitoring Improvement ( Pomalaa Branch).pptx
fajarkunee
?
The Influence off Flexible Work Policies
sales480687
?
Daily, Weekly, Monthly Report MTC March 2025.pptx
PanjiDewaPamungkas1
?
Microsoft Power BI - Advanced Certificate for Business Intelligence using Pow...
Prasenjit Debnath
?
Informatics Market Insights AI Workforce.pdf
karizaroxx
?
Artigo - Playing to Win.planejamento docx
KellyXavier15
?
Exploiting the Low Volatility Anomaly: A Low Beta Model Portfolio for Risk-Ad...
Bradley Norbom, CFA
?
MENU-DRIVEN PROGRAM ON ARUNACHAL PRADESH.pptx
manvi200807
?
Camuflaje Tipos Caracter¨ªsticas Militar 2025.ppt
e58650738
?
Kafka Use Cases Real-World Applications
Accentfuture
?
Indigo dyeing Presentation (2).pptx as dye
shreeroop1335
?
PPT2 W1L2.pptx.........................................
palicteronalyn26
?
ppt somu_Jarvis_AI_Assistant_presen.pptx
MohammedumarFarhan
?
Ad

The Mathematical Epidemiology of Human Babesiosis in the North-Eastern United States - Jessica Dunn, QUT

  • 1. The Mathematical Epidemiology of Human Babesiosis in the North-Eastern United States Jessica Margaret Dunn, Dr. Stephen Davis (RMIT), Dr. Andrew Stacey (RMIT), Assoc. Prof. Maria Diuk-Wasser (Yale/Columbia) J. M. Dunn (QUT) QUT Seminar 08.08.2014 1 / 41
  • 2. J. M. Dunn (QUT) QUT Seminar 08.08.2014 2 / 41
  • 3. Tick-borne disease in the USA The geographical range of tick-borne diseases are expanding. There are seven emerging tick diseases: Lyme disease Human babesiosis Human anaplasmosis Powassan Deer tick encephalitis B. miyamotoi borreliosis Deer tick ehrlichiosis J. M. Dunn (QUT) QUT Seminar 08.08.2014 3 / 41
  • 4. Lyme Disease (Borrelia burgdorferi) J. M. Dunn (QUT) QUT Seminar 08.08.2014 4 / 41
  • 5. Human Babesiosis (Babesia microti) Reported cases of Human Babesiosis ¨C United States, 2011 J. M. Dunn (QUT) QUT Seminar 08.08.2014 5 / 41
  • 6. Hosts White-footed mice (Peromyscus leucopus) Tick (Ixodes scapularis) J. M. Dunn (QUT) QUT Seminar 08.08.2014 6 / 41
  • 7. Research Objective To identify the key factors driving human babesiosis (B. microti) and Lyme disease (B. burgdorferi) in endemic sites, and their expansion into new areas in the north-eastern United States. J. M. Dunn (QUT) QUT Seminar 08.08.2014 7 / 41
  • 8. Mathematical Modelling Challenges Deriving mathematical models of tick-borne disease transmission is notoriously di?cult! Multiple hosts (competent and non-competent) Tick life-cycle (biting rate) Multiple tranmission routes Multiple pathogens J. M. Dunn (QUT) QUT Seminar 08.08.2014 8 / 41
  • 9. Tick life cycle J. M. Dunn (QUT) QUT Seminar 08.08.2014 9 / 41
  • 10. Tick-phenology Densities-Northeast Weeks Density 0 5 10 15 20 25 30 35 40 45 50 0 50 100 150 200 250 300 350 400 450 500 Larvae Nymphs Adults J. M. Dunn (QUT) QUT Seminar 08.08.2014 10 / 41
  • 11. Tick-borne pathogen transmission routes J. M. Dunn (QUT) QUT Seminar 08.08.2014 11 / 41
  • 12. Modelling challenges The modelling challenge then becomes to one of incorporating these complexities whilst maintaining a model that: 1 is representative of the transmission cycle 2 can be used with ?eld data which will provide meaningful estimates of the parameters 3 has a minimal number of parameters to ensure the model can be adequately analysed J. M. Dunn (QUT) QUT Seminar 08.08.2014 12 / 41
  • 13. Overview Model emergence - Identify the factors driving emergence - Identify control measures Model the risk to humans - Incorporate the identi?ed factors - Analyse changes in risk J. M. Dunn (QUT) QUT Seminar 08.08.2014 13 / 41
  • 14. Modelling emergence Modelling emergence The basic Reproduction number, R0 In single host systems, R0 is the expected number of secondary cases produced by one infectious individual in a fully susceptible population. R0 = 1 provides a threshold condition: pathogen will spread R0 > 1 pathogen will fade out R0 < 1 J. M. Dunn (QUT) QUT Seminar 08.08.2014 14 / 41
  • 15. Modelling emergence R0 for multiple hosts Next generation Matrix (NGM) (Diekmann and Heasterbeek) De?ne kij as the expected number of new cases that have state at infection i caused by one individual at state at infection j, during its whole infectious period. For example given 2 host types i and j there are four possibilities: K = (kij ) = k11 k12 k21 k22 R0 is the dominant eigenvalue of the NGM such that vk+1 = Kvk J. M. Dunn (QUT) QUT Seminar 08.08.2014 15 / 41
  • 16. Modelling emergence NGM for tick-borne pathogens J. M. Dunn (QUT) QUT Seminar 08.08.2014 16 / 41
  • 17. Modelling emergence Reduction for US Lyme and Human Babesiosis J. M. Dunn (QUT) QUT Seminar 08.08.2014 17 / 41
  • 18. Modelling emergence NGM for US Lyme and Human Babesiosis J. M. Dunn (QUT) QUT Seminar 08.08.2014 18 / 41
  • 19. Modelling emergence Quantifying R0 J. M. Dunn (QUT) QUT Seminar 08.08.2014 19 / 41
  • 20. Modelling emergence Internal functions of R0 Tick Phenology 0 50 100 150 200 250 300 350 Day Mean nymph burden Mean larvae burden Representativemeantick countpermouse 52050 ¦Ì H ¦Ó J. M. Dunn (QUT) QUT Seminar 08.08.2014 20 / 41
  • 21. Modelling emergence Block Island Connecticut 100 250150 200 100 150 200 250 100 150 200 250100 150 200 250 0 1 5 20 50 150 0 1 5 20 50 150150 50 20 5 1 0 150 50 20 5 1 0 Day of year Day of year Day of year Day of year LarvaltickburdenLarvaltickburden NymphaltickburdenNymphaltickburden J. M. Dunn (QUT) QUT Seminar 08.08.2014 21 / 41
  • 22. Modelling emergence Brunner and Ostfeld (2008) ?ZN(t) = HNe ?1 2 ln (t?¦ÓN ) ?N /¦ÒN 2 if t ¡Ý ¦ÓN; 0 otherwise ?ZL(t) = ? ? ? HE e ?1 2 t?¦ÓE ?E 2 if t ¡Ü ¦ÓL; HLe ?1 2 ln (t?¦ÓL) ?L 2 + HE e ?1 2 t?¦ÓE ?E 2 otherwise J. M. Dunn (QUT) QUT Seminar 08.08.2014 22 / 41
  • 23. Modelling emergence Internal functions of R0 E?ciency of transmissionInfectivity Days H ¦Ì p(t) = HPe ?1 2 ln t ?P /¦ÒP 2 J. M. Dunn (QUT) QUT Seminar 08.08.2014 23 / 41
  • 24. Modelling emergence Global Sensitivity Analysis of R0 Ranks the parameters by their contribution to the variation of R0 using Sobol¡¯s indices: Main e?ect: calculates the e?ect of parameter xi on R0 ?xing all other variables Total e?ect: includes the main e?ect for xi plus all other interaction involving xi . J. M. Dunn (QUT) QUT Seminar 08.08.2014 24 / 41
  • 25. Modelling emergence Global Sensitivity Results 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Parameter Sobol¡¯sfIndices MainfEffect TotalfEffect H ¦Ó ¦Ì ¦Ò ¦Ó H ¦Ó ¦Ì H ¦Ì ¦Ò H Dq ¦Ñ ¦Ò¦Ì s cN N N N L L L L P P PLE E E NN J. M. Dunn (QUT) QUT Seminar 08.08.2014 25 / 41
  • 26. Modelling emergence Implications for emergence 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 Proportion of fed larval ticks that survive to become unfed nymphs (S N ) R 0 Threshold R 0 =1 Fixed point estimate J. M. Dunn (QUT) QUT Seminar 08.08.2014 26 / 41
  • 27. Modelling emergence Implications for control Given, ?R0 = 1.57 Vaccination requirements (Roberts, 2003) V = 1 ? 1 R2 0 ¡Ö 60% J. M. Dunn (QUT) QUT Seminar 08.08.2014 27 / 41
  • 28. Modelling emergence The Coinfection Story J.M. Dunn et al. Borrelia burgdorferi enhances the enzootic establishment of Babesia microti in the northeastern United States, PLOS ONE(2014). J. M. Dunn (QUT) QUT Seminar 08.08.2014 28 / 41
  • 29. Modelling emergence Modi?cation of R0 k13 k31 k13 k31 k32 k23 k32 k23 White-footedm1: White-footedm2: Tickainfectedaw3: Ka= 0 0 0 0 0 1 2 3 R0 = k13k31 + k23k32 . . . t=365 t=0 . . . ¦× t =365?t t =0 p1(t ) . . . dt + (1 ? ¦×) t =365?t t =0 p2(t ) . . . dt dt J. M. Dunn (QUT) QUT Seminar 08.08.2014 29 / 41
  • 30. Modelling emergence Implications of coinfection on emergence 0.6 0.8 1 c 0.4 0.6 0.8 1 0.3 0.4 0.5 c 0.6 0.8 1 c 0.4 0.6 0.8 1 0.3 0.4 0.5 0.6 0.7 c sN B. microti B. microti C8B. Burgdorferi BL2068 fade8out fade8out emergence emergence 80w8B. burgdorferi8BL2068prevalence in8mice J. M. Dunn (QUT) QUT Seminar 08.08.2014 30 / 41
  • 31. Modelling emergence Timing is everything!120 140 160 180 200 220 240 260 280 300 0 5 120 140 160 180 200 220 240 260 280 300 0 5 10 15 Re ouseProportion3of3infected3larval3ticks3per3mouse Representative3mean3tick3count3per3mouse Connecticut 3330.233333330.1 Mean nymph burden Mean larvae burden Babesia3+3Borrelia Babesia 3333333333333333333333333333330.93333330.83333330.73333330.63333330.53333330.43333330.333333330.233333330.1 J. M. Dunn (QUT) QUT Seminar 08.08.2014 31 / 41
  • 32. Modelling emergence Coinfection is not the whole story! Accounting for aggregation on hosts k13 k13 32 1 5 4 2 k51 k15 k12 k21 k14 k41 2: High aggregation white footed mouse - infected with Bb 4: Low aggregation white footed mouse - infected with Bb 3: High aggregation white footed mouse - infected with Bm 5: Low aggregation white footed mouse - infected with Bm R0 = k12k21 + k12k21 + k13k31 + k14k41 + k15k51 J. M. Dunn (QUT) QUT Seminar 08.08.2014 32 / 41
  • 33. Modelling emergence Scenario Estimated R0 No co-aggregation; no coinfection 0.70 (0.62,0.78) Low co-aggregation; no coinfection 0.80 (0.71,0.86) Moderate co-aggregation; no coinfection 0.97 (0.81,1.04) High co-aggregation; no coinfection 1.13 (1.00, 1.21) High co-aggregation; coinfection 1.78 (1.64, 1.91) J. M. Dunn (QUT) QUT Seminar 08.08.2014 33 / 41
  • 34. Modelling emergence Conclusions Epidemiological: Values of R0 are consistently low 1 < R0 < 3 Transmission e?ciency drives emergence Timing is everything! Mathematical: Models are mechanistic, transparent, linked directly with ?eld data Step towards a model for more complicated tick-borne pathogens First such model that that assesses the importance of (i) coinfection and (ii) aggregation J. M. Dunn (QUT) QUT Seminar 08.08.2014 34 / 41
  • 35. Modelling emergence Questions? J. M. Dunn (QUT) QUT Seminar 08.08.2014 35 / 41
  • 36. Modelling risk Modelling risk to humans Risk is directly proportional to the infection prevalence in nymphal ticks. Compartment type SIR Model: (S)usceptibles to (I)nfectives to (R)ecovered J. M. Dunn (QUT) QUT Seminar 08.08.2014 36 / 41
  • 37. Modelling risk Three generation based compartments: Sk(t), Ik(t) and Ck(t) dSk dt = ?¦Âk(t)Sk dIk dt = ¦Âk(t)Sk ? ¦ÃI dCk dt = ¦ÃI J. M. Dunn (QUT) QUT Seminar 08.08.2014 37 / 41
  • 38. Modelling risk Force of Infection The force of infection is related to the unfed nymphs from the previous year k ? 1 ¦Âk(t) = 1 DN ¦Ík ?ZN(t)qN. with the proportion of infected unfed nymphs, ¦Ík, in year k is given by ¦Ík = 365 0 aL(t)?p Ik?1 Nk?1 dt J. M. Dunn (QUT) QUT Seminar 08.08.2014 38 / 41
  • 39. Modelling risk Accounting for infectivity of hosts p(t) J. M. Dunn (QUT) QUT Seminar 08.08.2014 39 / 41
  • 40. Modelling risk dSk dt = ?¦Âk(t)Sk + b(t)Nk ? (? + Nk K )Sk dIk,1 dt = ¦Âk(t)Sk ? (? + Nk K )Ik,1 ? ¦ÃI1 dIk,2 dt = ¦ÃI1 ? (? + Nk K )Ik,2 ? ¦ÃI2 dIk,3 dt = ¦ÃI2 ? (? + Nk K )Ik,3 ? ¦ÃI3 dIk,4 dt = ¦ÃI3 ? (? + Nk K )Ik,4 ? ¦ÃI4 dIk,5 dt = ¦ÃI4 ? (? + Nk K )Ik,5 ? ¦ÃI5 dIk,6 dt = ¦ÃI5 ? (? + Nk K )Ik,6 ? ¦ÃI6 dCk dt = ¦ÃI6 ? (? + Nk K )C J. M. Dunn (QUT) QUT Seminar 08.08.2014 40 / 41
  • 41. Modelling risk ¦Ík = 365 0 aL(t) ?p1 Ik?1,1 Nk?1 + ?p2 Ik?1,2 Nk?1 + ?p3 Ik?1,3 Nk?1 + ?p4 Ik?1,4 Nk?1 + ?p5 Ik?1,5 Nk?1 + ?p6 Ik?1,6 Nk?1 dt 0 5 10 15 20 25 30 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 time (years) Proportionofinfectedfedlarvae J. M. Dunn (QUT) QUT Seminar 08.08.2014 41 / 41