This document discusses methods for automated machine learning (AutoML) and optimization of hyperparameters. It focuses on accelerating the Nelder-Mead method for hyperparameter optimization using predictive parallel evaluation. Specifically, it proposes using a Gaussian process to model the objective function and perform predictive evaluations in parallel to reduce the number of actual function evaluations needed by the Nelder-Mead method. The results show this approach reduces evaluations by 49-63% compared to baseline methods.
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...Deep Learning JP
?
Neural Radiance Flow (NeRFlow) is a method that extends Neural Radiance Fields (NeRF) to model dynamic scenes from video data. NeRFlow simultaneously learns two fields - a radiance field to reconstruct images like NeRF, and a flow field to model how points in space move over time using optical flow. This allows it to generate novel views from a new time point. The model is trained end-to-end by minimizing losses for color reconstruction from volume rendering and optical flow reconstruction. However, the method requires training separate models for each scene and does not generalize to unknown scenes.
1. The document discusses energy-based models (EBMs) and how they can be applied to classifiers. It introduces noise contrastive estimation and flow contrastive estimation as methods to train EBMs.
2. One paper presented trains energy-based models using flow contrastive estimation by passing data through a flow-based generator. This allows implicit modeling with EBMs.
3. Another paper argues that classifiers can be viewed as joint energy-based models over inputs and outputs, and should be treated as such. It introduces a method to train classifiers as EBMs using contrastive divergence.
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...Deep Learning JP
?
Neural Radiance Flow (NeRFlow) is a method that extends Neural Radiance Fields (NeRF) to model dynamic scenes from video data. NeRFlow simultaneously learns two fields - a radiance field to reconstruct images like NeRF, and a flow field to model how points in space move over time using optical flow. This allows it to generate novel views from a new time point. The model is trained end-to-end by minimizing losses for color reconstruction from volume rendering and optical flow reconstruction. However, the method requires training separate models for each scene and does not generalize to unknown scenes.
1. The document discusses energy-based models (EBMs) and how they can be applied to classifiers. It introduces noise contrastive estimation and flow contrastive estimation as methods to train EBMs.
2. One paper presented trains energy-based models using flow contrastive estimation by passing data through a flow-based generator. This allows implicit modeling with EBMs.
3. Another paper argues that classifiers can be viewed as joint energy-based models over inputs and outputs, and should be treated as such. It introduces a method to train classifiers as EBMs using contrastive divergence.
3. 3 /40
?由エネルギー原理(Free energy principle, FEP)とは
? “Any self-organizing system that is at equilibrium with its
environment must minimize its free energy.”
? “脳は?由エネルギーを最?化するように設計されている”
(『?由エネルギー原理??』より引?)
? “?物の知覚や学習、?動は?由エネルギーと呼ばれるコスト関数を
最?化するように決まり、その結果?物は外界に適応できる”
(神経回路は潜在的な統計学者 | 理化学研究所)
? “Several global brain theories might be unified within a free-energy
framework.”
[Friston, 2010]
“脳の統?理論”としての期待