This document summarizes a presentation on offline reinforcement learning. It discusses how offline RL can learn from fixed datasets without further interaction with the environment, which allows for fully off-policy learning. However, offline RL faces challenges from distribution shift between the behavior policy that generated the data and the learned target policy. The document reviews several offline policy evaluation, policy gradient, and deep deterministic policy gradient methods, and also discusses using uncertainty and constraints to address distribution shift in offline deep reinforcement learning.
This document summarizes a presentation on offline reinforcement learning. It discusses how offline RL can learn from fixed datasets without further interaction with the environment, which allows for fully off-policy learning. However, offline RL faces challenges from distribution shift between the behavior policy that generated the data and the learned target policy. The document reviews several offline policy evaluation, policy gradient, and deep deterministic policy gradient methods, and also discusses using uncertainty and constraints to address distribution shift in offline deep reinforcement learning.