[week8] 데이터읽어주는남자neuroassociatesThis document discusses design thinking and how it relates to data and creativity. It provides an overview of design thinking as a process that balances analytical thinking and intuitive thinking. It also discusses how design thinking can be applied to business processes and problem solving. Additionally, it explores how data and creativity can work together, noting that creativity separates humans from animals and involves adapting nature to solve problems. The document advocates for educational systems that encourage students to use existing knowledge to address new challenges independently.
[week8] 데이터읽어주는남자neuroassociatesThis document discusses design thinking and how it relates to data and creativity. It provides an overview of design thinking as a process that balances analytical thinking and intuitive thinking. It also discusses how design thinking can be applied to business processes and problem solving. Additionally, it explores how data and creativity can work together, noting that creativity separates humans from animals and involves adapting nature to solve problems. The document advocates for educational systems that encourage students to use existing knowledge to address new challenges independently.
ڰ±4ᅦᅵᅥᅵᆰᄋƥᄌƮƳᆫᅡᆷᄌơneuroassociatesThis document is a profile for Ryan Kim, who is described as a "data reading man". It lists his educational and professional background, including degrees in management information systems and computer engineering. It also lists his social media profiles and websites. The document references various sources and topics related to data visualization, analysis, and using data to drive innovation.
ڰ±3ᅦᅵᅥᅵᆰᄋƥᄌƮƳᆫᅡᆷᄌơneuroassociatesThis document contains summaries and excerpts from the Harvard Business Review article "When Data Visualization Works — And When It Doesn’t" published on March 27, 2013. It discusses three reasons for visualizing data: confirmation, education, and exploration. It also addresses factors that influence the effectiveness of data visualization like data quality, context, and creator biases.
꿈꾸는 데이터 디자이너 시즌2 교육 설명회 2부neuroassociates꿈꾸는 데이터 디자이너 시즌2 교육설명회 슬라이드 입니다. 시즌2에 대한 정보와 시즌1에서의 결과에 대한 설명입니다.
www.facebook.com/datadesigner2015
https://www.facebook.com/groups/datadesigner/
www.datadesigner.org
꿈꾸는 데이터 디자이너 시즌2 교육설명회neuroassociates꿈꾸는 데이터 디자이너 시즌2 교육설명회 슬라이드 입니다. 시즌2에 대한 정보와 시즌1에서의 결과에 대한 설명입니다.
www.facebook.com/datadesigner2015
https://www.facebook.com/groups/datadesigner/
www.datadesigner.org
13. 꿈꾸는데이터디자이너 시즌2
score_df = data.frame(
math = c(40, 70, 80),
korean = c(50, 60, 70),
english = c(30, 40, 50),
art = c('A','A','C')
)
40 50 30 A
70 60 40 A
80 70 50 C
1강 때 사용했던 score_df 데이터
35. 꿈꾸는데이터디자이너 시즌2
temperature = read.csv('weather_data.csv',
fileEncoding = 'UTF-8')
데이터 파일을 프로젝트 폴더에 두고
다음 코드를 실행시킨다
str(temperature) 로 살펴보면
location과 date가 factor로 되어있다
36. 꿈꾸는데이터디자이너 시즌2
사실 chr로 변경시키지 않아도 코드는 잘돌아가지만
location과 date를 chr로 변경시키자
temperature$location = as.character(temperature$location)
temperature$date = as.character(temperature$date)
39. 꿈꾸는데이터디자이너 시즌2
서울의 온도가 서울의 평균 기온보다 높으면 '#821122'
평균 기온보다 낮으면 '#cccccc'
색상을 나타내는 벡터를 만들어서 막대 그래프에 반영해보자
40. 꿈꾸는데이터디자이너 시즌2
빈 벡터 만들기
for(temp in 서울의 온도){
만약 temp가 서울의 평균온도보다 크다면 {
비어있던 벡터 = c(비어있던 벡터, '#821122')
} 아니라면 {
비어있던 벡터 = c(비어있던 벡터, '#cccccc')
}
}
아래 구조를 이용해서 색상을 담은 벡터를 만들어보세요