際際滷

際際滷Share a Scribd company logo
10 RNN
蟾焔 襯燕
磯Μ る RNN(Recurrent neural network) 伎 覦一 蟆企.
願姥襦 覓伎   讌襯 螳螻
企 朱 企 蟲譟郁 蟆朱讌 覲伎.
RNN 磯 覿
一危郁 谿朱 蟇磯 蟯螻螳 譴 蟆曙一 RNN  覦.
蠏碁る RNN 覘蠍碁  襷  螳 企 蟆手??
讀 RNN 蟯螻螳 譴 一危一 伎 ル  蟆.
蟆暑(RNN) 
螻 一危一 螳 螳 襴 磯 覲 一危磯ゼ 牛蠍  ル 覈碁, 蠍一
(t)螻 れ (t+1) ろ語襯 郁屋 蟲燕 瑚概蟆暑
- 一危一  譴讌 .
- れ 襷 蠍一ヾ DNN 螳 襯 螻ろ讌 螻
 譯殊伎 一危磯 螳讌螻 .
-  一危郁  覺れ 一危一語 蠍一牛 れ
.
- 蠏語朱襦 る襷  DNN,
NN 蟆曙, 一危磯ゼ ロ覃 一一 レ元
 豸(hidden layers)襯 蟇一 豢リ讌
谿蠏殊姶蠏 讌.  螻殊  一危磯
覈 碁襯   覯 讌螳蟆 .
RNN螻 NN 谿伎??
DNN
シ豺蠍
RNN螻 NN 谿伎??
 RNN 蟲譟 : 伎  豸旧 螳 れ  豸旧朱 . 讀 蠍一 RNN(Recurrent Neural Network) 企 覿.
覦覃伎 RNN 讌蠍  ル 一危一 螻手碓 ル 一危磯ゼ  螻ろ蟆 . 蠍磯蓋 蟲譟
 れ螻 螳.
れ元  蟆暑 れ螻 螳 蟲譟磯ゼ 覲伎譴.
RNN 蟲譟一 蟆曙  朱誤磯 5螳螳 譟伎.
螳譴豺 3螳
1. レ元螻 豸旧 螳譴豺  モ
2. 豸糾骸 豸旧 螳譴豺  
3. 豸糾骸 豢レ元 螳譴豺  
Bias 2螳
1. レ元 豸旧朱 願  伎朱 
2. 豸旧 豢レ元朱 願  伎朱
RNN 蠍磯蓋 螻
レ元 :  
豸旧  : モ    +    ≠1 +  =  
豸旧 豢 :    =  
豢レ元  :      +  =  
豢レ元 豢 : ( )
,  燕
蠍磯蓋 RNN蟲譟一 伎 覲願鍵
レ元 :  
豸旧  : モ    +    ≠1 +  =  
豸旧 豢 :    =  
豢レ元  :      +  = 
豢レ元 豢 :   = 
,  燕
蠍  ロ伎 Hello朱 企ゼ 豸″ 
豌 h[1,0,0,0]企朱 レ朱
e[0,1,0,0]企朱 豢レ 豸″
覦レ朱 旧 讌.
蠏 れ l[0,0,1,0]螻 o[0,0,0,1] 伎
 襷谿螳讌襦 旧 讌.
企 RNN 轟 螳讌螳 , 襷り覲襯 螻旧る 蟆.
讀 リ朱  ≠1 k,  +4襯 k 螳譴豺 モ 螳 蟆 .
襷谿螳讌襦  ′  +1襦 願 ,  +17  +18襦 願 , 螳 襯 .
企 るジ 襷り覲 襷谿螳讌企.
企 轟朱 誤 旧  觜襯願 讀螳讌襷, れ 豕襦 
襷り覲襯 覦蟆 螻殊 伎 豕螳 れ 企れ  る  .
RNN 轟
覦 RNN
伎 覲企れ  RNN豌企 譬 焔レ 蠍磯  讌襷, 危 覲企ゼ 
 譬 蟆郁骸襯 蠍磯  .
Ex) 碁ジ  _____  も 朱 覓語レ 螳企 觜豺語 れ願 企ゼ 豸″ ,
碁ジ,  企朱 覲企 蟲襴 豸″  讌襷, 危 覲伎 も襯 牛伎 覲企
蟆 蟲襴企朱 企ゼ 豸″  .
覦 RNN 蟲譟
 豸旧 危 覲企覿 レ 覦 蟆 覲  .
RNN 
1. 螻蠍  &  豢.
) 企語襯 ロ伎 企語  る 覓語レ朱 豢ロ 企語 貂′ 
2.   & 螻蠍 豢.
) 覓語レ ロ伎 蠍覿 襯 豢ロ 螳 覿蠍
3.  &  豢.
) 企ゼ 蟲朱 覯  覯蠍
RNN 襷レ . 蟇煙蟇磯Μ螳 .
Long Short Term Memory
The clouds Are in The ?
? 覘蟾?
RNN 襷レ . 蟇煙蟇磯Μ螳 .
Long Short Term Memory
"the clouds are in the 朱 リ 覦螻 襷讌襷 企ゼ 豸″伎 る, 覲危 磯Μ  伎
覓碁Д(覲) 讌 . 覈蟆 れ ル 企 sky螳  襯 . 企 蟆曙一
, 螻給 一危一 豸″伎  覲伎  豺 谿(Gap)螳 讌 る, RNN 螻手碓 一
磯ゼ 蠍磯朱 所 牛  .
The clouds Are in The ?
RNN 襷レ . 蟇煙蟇磯Μ螳 .
Long Short Term Memory
2. ? 襯 襷豢蠍 伎  覓碁Д 危危 も 朱蟾 れ器襯 谿渚蟆 蟆蟲!
朱  伎 .
3. 讌襷 リ 谿朱 れ伎り鍵 覓語  France朱 伎 れ 襷豢一  ? 蟇磯Μ螳
覃伎覃 RNN  覲伎 覓碁Д 郁屋蠍郁 れ伎.
grew up France  I speak fluent ?
(I grew up in France ... I speak fluent French)
1. 蠏碁る ル 覓語レ 蠍語伎り 企慨
I
RNN 襷レ . 蟇煙蟇磯Μ螳 .
Long Short Term Memory
grew up France  I speak fluent ?
(I grew up in France ... I speak fluent French)
 蟇磯Μ螳 覃伎覃 襷豢蠍郁 れ?
RNN 襷レ . 蟇煙蟇磯Μ螳 .
蠍一ヾ RNN 螳 れ 螳 螳 朱誤磯ゼ 螻旧螻 .
れ  郁屋 螻 Recurrent螻  蟆企蟾(蠏企.)
Long Short Term Memory
RNN 襷レ . 蟇煙蟇磯Μ螳 .
Long Short Term Memory
磯殊     螳譴豺()螳
1覲企 譟郁企朱  => 伎 蟇磯Μ螳 覃伎. = 覦 覯 螻燕 => 0 螳蟾 覃誤伎
1覲企 譟郁企朱  => 伎 蟇磯Μ螳 覃伎. = 覦 覯 螻燕 => 覓 貉れ 覦.
襷豢蠍 企糾, 豕 企給.
(蟲  : 覿螳ロ 蟇  
旧 譯 る 蟇碁Π.)
蠍一ヾ RNN 螳 れ 螳 螳 朱誤一企.
れ  郁屋 螻 Recurrent螻  蟆企蟾(蠏企.)
RNN 襷レ . 蟇煙蟇磯Μ螳 .
Long Short Term Memory
 豌伎語 れ願 螳 螻 覦蠖譯朱 蟆 =>  螳 譯殊 襷螻 control unit 譯殊!
蠏碁 煙 : Long Short Term Memory network(LSTM)
誤  覯 企慨
RNN 襷レ . 蟇煙蟇磯Μ螳 .
Long Short Term Memory network
 襷覃 LSTM襷螻 るジ 覦覯朱 願屋  蠍磯 .
10.8 覦 覦 蟆暑
10.9 豢  覦  れ 螳 豢 
But 螳 10.10 LSTM 伎手鍵覃伎
 豈 磯 , れ  一企 螳 螻殊 谿 覈 LSTM企.  手 覦給.
磯殊 10.8螻 10.9襯 牛螻 10.10 LSTM朱 願 蟆 覦.
Long Short Term Memory
旧 :  h(hidden unit) 襷螻 C(cell)襦 
(C 蠍一/襷螳 朱 讌 襯 牛 蟆)
Long Short Term Memory
螻手碓 覲企ゼ 覦る(駒≠1)
企ゼ  螳螻 螻燕蠍 蠍 一一 牛伎
螻手碓襯 蟇磯  覲企ゼ 蠍一牛伎 駒′ 襷れ伎.
旧 :  h(hidden unit) 襷螻 C(cell)襦 
(C 蠍一/襷螳 朱 讌 襯 牛 蟆)
Long Short Term Memory
旧 :  h(hidden unit) 襷螻 C(cell)襦 
(C 蠍一/襷螳 襯 牛 蟆)
螻手碓 覲企ゼ 覦る(駒≠1)
企ゼ  螳螻 螻燕蠍 蠍 一一 牛伎
螻手碓襯 蟇磯  覲企ゼ 蠍一牛伎 駒′ 襷れ伎.
forget gate : 
- 螻手碓 覲企ゼ 蠍謂  蟆危
- 螳 覯 0 ~ 1
- 0 => 伎  覲企 .
- 1 => 伎  覲企ゼ  蠍一牛.
Long Short Term Memory
旧 :  h(hidden unit) 襷螻 C(cell)襦 
(C 蠍一/襷螳 襯 牛 蟆)
蠍一ヾ Rnn豌 螻手碓 覲企ゼ 覦る(駒≠1)
企ゼ  螳螻 螻燕蠍 蠍 一一 牛伎
螻手碓襯 蟇磯  覲企ゼ 蠍一牛伎 駒′ 襷れ伎.
input gate :  
-  覲企ゼ 蠍一牛蠍謂  蟆危
-   螳 覯 0 ~ 1
- 0 =>   覲企 .
- 1 =>   覲企ゼ  蠍一牛.
=> 襦 襷   cell 螳
Long Short Term Memory
-  襯 sigmoid襦 蠍 蠍 覓語
0~1 伎 螳 豢
 $
* 蠍一ヾ RNN
- リ朱 伎 豢リ  ≠1, ヰ°ゼ 覦.
レ元 : ヰ
豸旧  : モ  ヰ +    ≠1 +  =  
豸旧 豢 :    =  
豢レ元  :      +  = 
豢レ元 豢 :   = 
,  燕
Long Short Term Memory
i $
(襦 襷   cell 螳)
 襷 tanh襯 磯?
1. Gateれ 一危碁ゼ  蟆企 0~1 螳
豢ロ伎 伎 蠏碁企
2. tanh螳 譬り .
Long Short Term Memory
O$ $
- C(cell) 襷
- C 蠍一/襷螳 襯 牛 蟆
-  C 豕譬 豢リ , C襯 伎伎 豕譬 豸旧 豢リ 蟆一.
旧 :  h(hidden unit) 襷螻 C(cell)襦 
(C 蠍一/襷螳 襯 牛 蟆)
螻手碓 覲企ゼ 覦る(駒≠1)
企ゼ  螳螻 螻燕蠍 蠍 一一 牛伎
螻手碓襯 蟇磯  覲企ゼ 蠍一牛伎 駒′ 襷れ伎.
讌蠍蟾讌 LSTM 蟲ロ 覯 LSTM
覈 LSTM  狩 蟲譟磯 x (蠏碁觜結訣蠍磯 伎)
Long Short Term Memory
襴
讌蠍蟾讌 LSTM 蟲ロ 覯 LSTM
覈 LSTM  狩 蟲譟磯 x (蠏碁觜結訣蠍磯 伎)
Long Short Term Memory
Gate 豌伎 伎 螻 Cell k.
Long Short Term Memory
Gers & Schmidhuber (2000), is adding peephole connections.
Input gate  1  
伎 語一  襷
覿譟燕 覿覿 襦 語一朱 豈企.
Make sense
Long Short Term Memory
coupled forget and input gates
Long Short Term Memory
Gated Recurrent Unit(GRU)
- 螳 豕(2014)
- LSTM レ 讌覃伎 螻磯概′煙  豢  蟲譟
: update 蟆危~ input gate
: reset 蟆危~ forget gate
:  (t) 蠍一牛企 襷 覲
: れ (state)襦 一危
覿襦  襭 谿城り 蟆  る
recurrent vs convolutional vs recursive
recurrent neural network
- リ 襦 覦  谿朱 豌襴 ろ語 蟲譟
- リ 譴螳 蟇企郁碓  覿覿 螻 煙レ襦 蠏碁襦 豌襴 蟲譟
- 襷讌襷  碁(2.5, 3.8) 伎蟾讌 覈 襷ル(the, country, of, my)螻 蟷  リ(birth) 覲願
覈 覦.
覿襦  襭 谿城り 蟆  る
recurrent vs convolutional vs recursive
convolutional neural network
- リ 旧 覈 覦る  Recurrent Neural Networks  谿
企 
- 讌襷 リ (the, country) 覲企 Recurrent Neural Networks 襴
CNN 蠏碁殊 覲企  螳 伎(the country, country of, of my) 覯 覿
- 覯 譯殊 螻給れ, 磯朱 豺蟲螳 2螳 伎 覲企ゼ
豢伎  覲企ゼ 企. 蠏 朱 危危覃 .
覿襦  襭 谿城り 蟆  る
recurrent vs convolutional vs recursive
recursive neural network
- 讌襷 CNN 覈 覲企ゼ 旧 覦  觜 RNN 朱 覲企
ろ る   谿
- the country of my birth  覦 蟲譟
- CNN 覦豌 the country, country of, of my 企蟆 覈 覿 
螳 
- RNN 企 語伎 螻豸旧 煙 ろ語 蟲譟一 蠏 谿 覈-
一 豌襴 襷 
- Recursive Neural Networks(RNN) リ朱 譯殊伎 覈 螳 企ゼ 覓苦
 覿る  伎CNN螻 
convolutional
neural network
覿襦  襭 谿城り 蟆  る
recurrent vs convolutional vs recursive
-  Recurrent Neural Networks Recursive Neural
Networks 轟 貅伎
- 襷 Recursive Neural Networks螳 覈 覲企ゼ 襦
觜讌 覦り 覃 殊 蠏碁 螳 蟲譟
企ゼ 螳 伎 覲企 覲語朱
Recurrent Neural Networks 螳
覿襦  襭 谿城り 蟆  る
recurrent vs convolutional vs recursive
 讌 蠍..伎れ 覦  覯
覿襦  襭 谿城り 蟆  る
convolutional + recursive
蠍一ヾ cnn -> 讌 れ伎る => 蟆 覓伎瑚? 覿襯
覿襦  襭 谿城り 蟆  る
convolutional + recursive
螻 一危 語  螳 一危一 label 蟆  一 label 豸′ 
朱 一危 語螻 るゴ蟆 螻 企語 一危磯ゼ 語螻 矩.
CNN + RNN  ! => CRNN
覿襦  襭 谿城り 蟆  る
convolutional + recursive
覓碁Д 磯ジ 蠍 , 覓語 語
覲 覓碁Д 語  焔レ 覲伎碁り
!

More Related Content

What's hot (20)

螳 螻襴讀 襴 Part 2
螳 螻襴讀 襴 Part 2螳 螻襴讀 襴 Part 2
螳 螻襴讀 襴 Part 2
Dongmin Lee
Continuous control with deep reinforcement learning (DDPG)
Continuous control with deep reinforcement learning (DDPG)Continuous control with deep reinforcement learning (DDPG)
Continuous control with deep reinforcement learning (DDPG)
Taehoon Kim
Densely Connected Convolutional Networks
Densely Connected Convolutional NetworksDensely Connected Convolutional Networks
Densely Connected Convolutional Networks
harmonylab
螳 企 蟲: Rainbow 企覿 蟲蟾讌 (2nd dlcat in Daejeon)
螳 企 蟲: Rainbow 企覿 蟲蟾讌 (2nd dlcat in Daejeon)螳 企 蟲: Rainbow 企覿 蟲蟾讌 (2nd dlcat in Daejeon)
螳 企 蟲: Rainbow 企覿 蟲蟾讌 (2nd dlcat in Daejeon)
Kyunghwan Kim
Introduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement LearningIntroduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement Learning
NAVER Engineering
Introduction to CNN
Introduction to CNNIntroduction to CNN
Introduction to CNN
Shuai Zhang
ろ語 覈 蟆
ろ語 覈 蟆ろ語 覈 蟆
ろ語 覈 蟆
NAVER Engineering
Safe Reinforcement Learning
Safe Reinforcement LearningSafe Reinforcement Learning
Safe Reinforcement Learning
Dongmin Lee
Reinforcement Learning
Reinforcement LearningReinforcement Learning
Reinforcement Learning
DongHyun Kwak
Introduction to A3C model
Introduction to A3C modelIntroduction to A3C model
Introduction to A3C model
WEBFARMER. ltd.
Boosting_suman
Boosting_sumanBoosting_suman
Boosting_suman
suman_lim
螳旧 襴 Part 1
螳旧 襴 Part 1螳旧 襴 Part 1
螳旧 襴 Part 1
Dongmin Lee
RLCode A3C 所 蟾蟆 危危蠍
RLCode A3C 所 蟾蟆 危危蠍RLCode A3C 所 蟾蟆 危危蠍
RLCode A3C 所 蟾蟆 危危蠍
Woong won Lee
蠏碁 蠏碁Μ AI
蠏碁 蠏碁Μ AI蠏碁 蠏碁Μ AI
蠏碁 蠏碁Μ AI
NAVER Engineering
Introduction to SAC(Soft Actor-Critic)
Introduction to SAC(Soft Actor-Critic)Introduction to SAC(Soft Actor-Critic)
Introduction to SAC(Soft Actor-Critic)
Suhyun Cho
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
Gaurav Mittal
Understanding cnn
Understanding cnnUnderstanding cnn
Understanding cnn
Rucha Gole
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural Network
Hiroshi Kuwajima
ル - 企 蠍一
ル -  企 蠍一ル -  企 蠍一
ル - 企 蠍一
Hyungsoo Ryoo
[蠍一螳] Graph Convolutional Network (GCN)
[蠍一螳] Graph Convolutional Network (GCN)[蠍一螳] Graph Convolutional Network (GCN)
[蠍一螳] Graph Convolutional Network (GCN)
Donghyeon Kim
螳 螻襴讀 襴 Part 2
螳 螻襴讀 襴 Part 2螳 螻襴讀 襴 Part 2
螳 螻襴讀 襴 Part 2
Dongmin Lee
Continuous control with deep reinforcement learning (DDPG)
Continuous control with deep reinforcement learning (DDPG)Continuous control with deep reinforcement learning (DDPG)
Continuous control with deep reinforcement learning (DDPG)
Taehoon Kim
Densely Connected Convolutional Networks
Densely Connected Convolutional NetworksDensely Connected Convolutional Networks
Densely Connected Convolutional Networks
harmonylab
螳 企 蟲: Rainbow 企覿 蟲蟾讌 (2nd dlcat in Daejeon)
螳 企 蟲: Rainbow 企覿 蟲蟾讌 (2nd dlcat in Daejeon)螳 企 蟲: Rainbow 企覿 蟲蟾讌 (2nd dlcat in Daejeon)
螳 企 蟲: Rainbow 企覿 蟲蟾讌 (2nd dlcat in Daejeon)
Kyunghwan Kim
Introduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement LearningIntroduction of Deep Reinforcement Learning
Introduction of Deep Reinforcement Learning
NAVER Engineering
Introduction to CNN
Introduction to CNNIntroduction to CNN
Introduction to CNN
Shuai Zhang
Safe Reinforcement Learning
Safe Reinforcement LearningSafe Reinforcement Learning
Safe Reinforcement Learning
Dongmin Lee
Reinforcement Learning
Reinforcement LearningReinforcement Learning
Reinforcement Learning
DongHyun Kwak
Introduction to A3C model
Introduction to A3C modelIntroduction to A3C model
Introduction to A3C model
WEBFARMER. ltd.
Boosting_suman
Boosting_sumanBoosting_suman
Boosting_suman
suman_lim
螳旧 襴 Part 1
螳旧 襴 Part 1螳旧 襴 Part 1
螳旧 襴 Part 1
Dongmin Lee
RLCode A3C 所 蟾蟆 危危蠍
RLCode A3C 所 蟾蟆 危危蠍RLCode A3C 所 蟾蟆 危危蠍
RLCode A3C 所 蟾蟆 危危蠍
Woong won Lee
Introduction to SAC(Soft Actor-Critic)
Introduction to SAC(Soft Actor-Critic)Introduction to SAC(Soft Actor-Critic)
Introduction to SAC(Soft Actor-Critic)
Suhyun Cho
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)
Gaurav Mittal
Understanding cnn
Understanding cnnUnderstanding cnn
Understanding cnn
Rucha Gole
Backpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural NetworkBackpropagation in Convolutional Neural Network
Backpropagation in Convolutional Neural Network
Hiroshi Kuwajima
[蠍一螳] Graph Convolutional Network (GCN)
[蠍一螳] Graph Convolutional Network (GCN)[蠍一螳] Graph Convolutional Network (GCN)
[蠍一螳] Graph Convolutional Network (GCN)
Donghyeon Kim

Similar to Chapter 10 sequence modeling recurrent and recursive nets (20)

CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
Lee Seungeun
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
jdo
Attention is all you need る
Attention is all you need るAttention is all you need る
Attention is all you need る
Junho Lee
R.T.Bach
R.T.BachR.T.Bach
R.T.Bach
豌 覦
LSTM ろ語 危危蠍
LSTM ろ語 危危蠍LSTM ろ語 危危蠍
LSTM ろ語 危危蠍
Mad Scientists
Final project v0.84
Final project v0.84Final project v0.84
Final project v0.84
Soukwon Jun
Computational Complexity
Computational ComplexityComputational Complexity
Computational Complexity
skku_npc
檎稼稼螳襴
檎稼稼螳襴檎稼稼螳襴
檎稼稼螳襴
譬 豕
Rnn keras
Rnn kerasRnn keras
Rnn keras
Park Seong Hyeon
Sequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural NetworksSequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural Networks
Hoon Heo
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
讌 譟
Seed2016 - 螳覩語 譯殊 (annotated)
Seed2016 - 螳覩語 譯殊 (annotated)Seed2016 - 螳覩語 譯殊 (annotated)
Seed2016 - 螳覩語 譯殊 (annotated)
Jooyung Han
Deep Learning for Chatbot (2/4)
Deep Learning for Chatbot (2/4)Deep Learning for Chatbot (2/4)
Deep Learning for Chatbot (2/4)
Jaemin Cho
Cnn 螳
Cnn 螳Cnn 螳
Cnn 螳
伎螻 一 5 | ル
伎螻 一 5 | ル伎螻 一 5 | ル
伎螻 一 5 | ル
蟾覯 | 覓伎誤磯伎朱
2.supervised learning(epoch#2)-3
2.supervised learning(epoch#2)-32.supervised learning(epoch#2)-3
2.supervised learning(epoch#2)-3
Haesun Park
Text2Action: Generative Adversarial Synthesis from Language to Action
Text2Action: Generative Adversarial Synthesis from Language to ActionText2Action: Generative Adversarial Synthesis from Language to Action
Text2Action: Generative Adversarial Synthesis from Language to Action
NAVER Engineering
07. PCA
07. PCA07. PCA
07. PCA
Jeonghun Yoon
Lecture 4: Neural Networks I
Lecture 4: Neural Networks ILecture 4: Neural Networks I
Lecture 4: Neural Networks I
Sang Jun Lee
Recurrent Neural Net 企螻 る
Recurrent Neural Net 企螻 るRecurrent Neural Net 企螻 る
Recurrent Neural Net 企螻 る
覦 蟾
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
CNN 豐覲伎螳 襷 豐覲伎 螳企 (VGG 所 )
Lee Seungeun
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
[貉危磯螻 瑚概讌] 7. 炎咳 蟆暑 2
jdo
Attention is all you need る
Attention is all you need るAttention is all you need る
Attention is all you need る
Junho Lee
R.T.Bach
R.T.BachR.T.Bach
R.T.Bach
豌 覦
LSTM ろ語 危危蠍
LSTM ろ語 危危蠍LSTM ろ語 危危蠍
LSTM ろ語 危危蠍
Mad Scientists
Final project v0.84
Final project v0.84Final project v0.84
Final project v0.84
Soukwon Jun
Computational Complexity
Computational ComplexityComputational Complexity
Computational Complexity
skku_npc
檎稼稼螳襴
檎稼稼螳襴檎稼稼螳襴
檎稼稼螳襴
譬 豕
Sequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural NetworksSequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural Networks
Hoon Heo
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
貂觜襾誤 襾語 Kevin Murphy Machine Learning Statistic
讌 譟
Seed2016 - 螳覩語 譯殊 (annotated)
Seed2016 - 螳覩語 譯殊 (annotated)Seed2016 - 螳覩語 譯殊 (annotated)
Seed2016 - 螳覩語 譯殊 (annotated)
Jooyung Han
Deep Learning for Chatbot (2/4)
Deep Learning for Chatbot (2/4)Deep Learning for Chatbot (2/4)
Deep Learning for Chatbot (2/4)
Jaemin Cho
Cnn 螳
Cnn 螳Cnn 螳
Cnn 螳
2.supervised learning(epoch#2)-3
2.supervised learning(epoch#2)-32.supervised learning(epoch#2)-3
2.supervised learning(epoch#2)-3
Haesun Park
Text2Action: Generative Adversarial Synthesis from Language to Action
Text2Action: Generative Adversarial Synthesis from Language to ActionText2Action: Generative Adversarial Synthesis from Language to Action
Text2Action: Generative Adversarial Synthesis from Language to Action
NAVER Engineering
Lecture 4: Neural Networks I
Lecture 4: Neural Networks ILecture 4: Neural Networks I
Lecture 4: Neural Networks I
Sang Jun Lee
Recurrent Neural Net 企螻 る
Recurrent Neural Net 企螻 るRecurrent Neural Net 企螻 る
Recurrent Neural Net 企螻 る
覦 蟾

More from KyeongUkJang (20)

Photo wake up - 3d character animation from a single photo
Photo wake up - 3d character animation from a single photoPhoto wake up - 3d character animation from a single photo
Photo wake up - 3d character animation from a single photo
KyeongUkJang
YOLO
YOLOYOLO
YOLO
KyeongUkJang
AlphagoZero
AlphagoZeroAlphagoZero
AlphagoZero
KyeongUkJang
GoogLenet
GoogLenetGoogLenet
GoogLenet
KyeongUkJang
GAN - Generative Adversarial Nets
GAN - Generative Adversarial NetsGAN - Generative Adversarial Nets
GAN - Generative Adversarial Nets
KyeongUkJang
Distilling the knowledge in a neural network
Distilling the knowledge in a neural networkDistilling the knowledge in a neural network
Distilling the knowledge in a neural network
KyeongUkJang
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet Allocation
KyeongUkJang
Gaussian Mixture Model
Gaussian Mixture ModelGaussian Mixture Model
Gaussian Mixture Model
KyeongUkJang
CNN for sentence classification
CNN for sentence classificationCNN for sentence classification
CNN for sentence classification
KyeongUkJang
Visualizing data using t-SNE
Visualizing data using t-SNEVisualizing data using t-SNE
Visualizing data using t-SNE
KyeongUkJang
Playing atari with deep reinforcement learning
Playing atari with deep reinforcement learningPlaying atari with deep reinforcement learning
Playing atari with deep reinforcement learning
KyeongUkJang
Chapter 20 - GAN
Chapter 20 - GANChapter 20 - GAN
Chapter 20 - GAN
KyeongUkJang
Chapter 20 - VAE
Chapter 20 - VAEChapter 20 - VAE
Chapter 20 - VAE
KyeongUkJang
Chapter 20 Deep generative models
Chapter 20 Deep generative modelsChapter 20 Deep generative models
Chapter 20 Deep generative models
KyeongUkJang
Natural Language Processing(NLP) - basic 2
Natural Language Processing(NLP) - basic 2Natural Language Processing(NLP) - basic 2
Natural Language Processing(NLP) - basic 2
KyeongUkJang
Natural Language Processing(NLP) - Basic
Natural Language Processing(NLP) - BasicNatural Language Processing(NLP) - Basic
Natural Language Processing(NLP) - Basic
KyeongUkJang
Chapter 17 monte carlo methods
Chapter 17 monte carlo methodsChapter 17 monte carlo methods
Chapter 17 monte carlo methods
KyeongUkJang
Chapter 16 structured probabilistic models for deep learning - 2
Chapter 16 structured probabilistic models for deep learning - 2Chapter 16 structured probabilistic models for deep learning - 2
Chapter 16 structured probabilistic models for deep learning - 2
KyeongUkJang
Chapter 16 structured probabilistic models for deep learning - 1
Chapter 16 structured probabilistic models for deep learning - 1Chapter 16 structured probabilistic models for deep learning - 1
Chapter 16 structured probabilistic models for deep learning - 1
KyeongUkJang
Chapter 15 Representation learning - 2
Chapter 15 Representation learning - 2Chapter 15 Representation learning - 2
Chapter 15 Representation learning - 2
KyeongUkJang
Photo wake up - 3d character animation from a single photo
Photo wake up - 3d character animation from a single photoPhoto wake up - 3d character animation from a single photo
Photo wake up - 3d character animation from a single photo
KyeongUkJang
GAN - Generative Adversarial Nets
GAN - Generative Adversarial NetsGAN - Generative Adversarial Nets
GAN - Generative Adversarial Nets
KyeongUkJang
Distilling the knowledge in a neural network
Distilling the knowledge in a neural networkDistilling the knowledge in a neural network
Distilling the knowledge in a neural network
KyeongUkJang
Latent Dirichlet Allocation
Latent Dirichlet AllocationLatent Dirichlet Allocation
Latent Dirichlet Allocation
KyeongUkJang
Gaussian Mixture Model
Gaussian Mixture ModelGaussian Mixture Model
Gaussian Mixture Model
KyeongUkJang
CNN for sentence classification
CNN for sentence classificationCNN for sentence classification
CNN for sentence classification
KyeongUkJang
Visualizing data using t-SNE
Visualizing data using t-SNEVisualizing data using t-SNE
Visualizing data using t-SNE
KyeongUkJang
Playing atari with deep reinforcement learning
Playing atari with deep reinforcement learningPlaying atari with deep reinforcement learning
Playing atari with deep reinforcement learning
KyeongUkJang
Chapter 20 - GAN
Chapter 20 - GANChapter 20 - GAN
Chapter 20 - GAN
KyeongUkJang
Chapter 20 - VAE
Chapter 20 - VAEChapter 20 - VAE
Chapter 20 - VAE
KyeongUkJang
Chapter 20 Deep generative models
Chapter 20 Deep generative modelsChapter 20 Deep generative models
Chapter 20 Deep generative models
KyeongUkJang
Natural Language Processing(NLP) - basic 2
Natural Language Processing(NLP) - basic 2Natural Language Processing(NLP) - basic 2
Natural Language Processing(NLP) - basic 2
KyeongUkJang
Natural Language Processing(NLP) - Basic
Natural Language Processing(NLP) - BasicNatural Language Processing(NLP) - Basic
Natural Language Processing(NLP) - Basic
KyeongUkJang
Chapter 17 monte carlo methods
Chapter 17 monte carlo methodsChapter 17 monte carlo methods
Chapter 17 monte carlo methods
KyeongUkJang
Chapter 16 structured probabilistic models for deep learning - 2
Chapter 16 structured probabilistic models for deep learning - 2Chapter 16 structured probabilistic models for deep learning - 2
Chapter 16 structured probabilistic models for deep learning - 2
KyeongUkJang
Chapter 16 structured probabilistic models for deep learning - 1
Chapter 16 structured probabilistic models for deep learning - 1Chapter 16 structured probabilistic models for deep learning - 1
Chapter 16 structured probabilistic models for deep learning - 1
KyeongUkJang
Chapter 15 Representation learning - 2
Chapter 15 Representation learning - 2Chapter 15 Representation learning - 2
Chapter 15 Representation learning - 2
KyeongUkJang

Chapter 10 sequence modeling recurrent and recursive nets

  • 2. 磯Μ る RNN(Recurrent neural network) 伎 覦一 蟆企. 願姥襦 覓伎 讌襯 螳螻 企 朱 企 蟲譟郁 蟆朱讌 覲伎.
  • 3. RNN 磯 覿 一危郁 谿朱 蟇磯 蟯螻螳 譴 蟆曙一 RNN 覦.
  • 4. 蠏碁る RNN 覘蠍碁 襷 螳 企 蟆手?? 讀 RNN 蟯螻螳 譴 一危一 伎 ル 蟆. 蟆暑(RNN) 螻 一危一 螳 螳 襴 磯 覲 一危磯ゼ 牛蠍 ル 覈碁, 蠍一 (t)螻 れ (t+1) ろ語襯 郁屋 蟲燕 瑚概蟆暑
  • 5. - 一危一 譴讌 . - れ 襷 蠍一ヾ DNN 螳 襯 螻ろ讌 螻 譯殊伎 一危磯 螳讌螻 . - 一危郁 覺れ 一危一語 蠍一牛 れ . - 蠏語朱襦 る襷 DNN, NN 蟆曙, 一危磯ゼ ロ覃 一一 レ元 豸(hidden layers)襯 蟇一 豢リ讌 谿蠏殊姶蠏 讌. 螻殊 一危磯 覈 碁襯 覯 讌螳蟆 . RNN螻 NN 谿伎?? DNN
  • 6. シ豺蠍 RNN螻 NN 谿伎?? RNN 蟲譟 : 伎 豸旧 螳 れ 豸旧朱 . 讀 蠍一 RNN(Recurrent Neural Network) 企 覿. 覦覃伎 RNN 讌蠍 ル 一危一 螻手碓 ル 一危磯ゼ 螻ろ蟆 . 蠍磯蓋 蟲譟 れ螻 螳.
  • 7. れ元 蟆暑 れ螻 螳 蟲譟磯ゼ 覲伎譴.
  • 8. RNN 蟲譟一 蟆曙 朱誤磯 5螳螳 譟伎. 螳譴豺 3螳 1. レ元螻 豸旧 螳譴豺 モ 2. 豸糾骸 豸旧 螳譴豺 3. 豸糾骸 豢レ元 螳譴豺 Bias 2螳 1. レ元 豸旧朱 願 伎朱 2. 豸旧 豢レ元朱 願 伎朱
  • 9. RNN 蠍磯蓋 螻 レ元 : 豸旧 : モ + ≠1 + = 豸旧 豢 : = 豢レ元 : + = 豢レ元 豢 : ( ) , 燕
  • 10. 蠍磯蓋 RNN蟲譟一 伎 覲願鍵 レ元 : 豸旧 : モ + ≠1 + = 豸旧 豢 : = 豢レ元 : + = 豢レ元 豢 : = , 燕
  • 11. 蠍 ロ伎 Hello朱 企ゼ 豸″ 豌 h[1,0,0,0]企朱 レ朱 e[0,1,0,0]企朱 豢レ 豸″ 覦レ朱 旧 讌. 蠏 れ l[0,0,1,0]螻 o[0,0,0,1] 伎 襷谿螳讌襦 旧 讌.
  • 12. 企 RNN 轟 螳讌螳 , 襷り覲襯 螻旧る 蟆. 讀 リ朱 ≠1 k, +4襯 k 螳譴豺 モ 螳 蟆 . 襷谿螳讌襦 ′ +1襦 願 , +17 +18襦 願 , 螳 襯 . 企 るジ 襷り覲 襷谿螳讌企. 企 轟朱 誤 旧 觜襯願 讀螳讌襷, れ 豕襦 襷り覲襯 覦蟆 螻殊 伎 豕螳 れ 企れ る . RNN 轟
  • 13. 覦 RNN 伎 覲企れ RNN豌企 譬 焔レ 蠍磯 讌襷, 危 覲企ゼ 譬 蟆郁骸襯 蠍磯 . Ex) 碁ジ _____ も 朱 覓語レ 螳企 觜豺語 れ願 企ゼ 豸″ , 碁ジ, 企朱 覲企 蟲襴 豸″ 讌襷, 危 覲伎 も襯 牛伎 覲企 蟆 蟲襴企朱 企ゼ 豸″ .
  • 14. 覦 RNN 蟲譟 豸旧 危 覲企覿 レ 覦 蟆 覲 .
  • 15. RNN 1. 螻蠍 & 豢. ) 企語襯 ロ伎 企語 る 覓語レ朱 豢ロ 企語 貂′ 2. & 螻蠍 豢. ) 覓語レ ロ伎 蠍覿 襯 豢ロ 螳 覿蠍 3. & 豢. ) 企ゼ 蟲朱 覯 覯蠍
  • 16. RNN 襷レ . 蟇煙蟇磯Μ螳 . Long Short Term Memory The clouds Are in The ? ? 覘蟾?
  • 17. RNN 襷レ . 蟇煙蟇磯Μ螳 . Long Short Term Memory "the clouds are in the 朱 リ 覦螻 襷讌襷 企ゼ 豸″伎 る, 覲危 磯Μ 伎 覓碁Д(覲) 讌 . 覈蟆 れ ル 企 sky螳 襯 . 企 蟆曙一 , 螻給 一危一 豸″伎 覲伎 豺 谿(Gap)螳 讌 る, RNN 螻手碓 一 磯ゼ 蠍磯朱 所 牛 . The clouds Are in The ?
  • 18. RNN 襷レ . 蟇煙蟇磯Μ螳 . Long Short Term Memory 2. ? 襯 襷豢蠍 伎 覓碁Д 危危 も 朱蟾 れ器襯 谿渚蟆 蟆蟲! 朱 伎 . 3. 讌襷 リ 谿朱 れ伎り鍵 覓語 France朱 伎 れ 襷豢一 ? 蟇磯Μ螳 覃伎覃 RNN 覲伎 覓碁Д 郁屋蠍郁 れ伎. grew up France I speak fluent ? (I grew up in France ... I speak fluent French) 1. 蠏碁る ル 覓語レ 蠍語伎り 企慨 I
  • 19. RNN 襷レ . 蟇煙蟇磯Μ螳 . Long Short Term Memory grew up France I speak fluent ? (I grew up in France ... I speak fluent French) 蟇磯Μ螳 覃伎覃 襷豢蠍郁 れ?
  • 20. RNN 襷レ . 蟇煙蟇磯Μ螳 . 蠍一ヾ RNN 螳 れ 螳 螳 朱誤磯ゼ 螻旧螻 . れ 郁屋 螻 Recurrent螻 蟆企蟾(蠏企.) Long Short Term Memory
  • 21. RNN 襷レ . 蟇煙蟇磯Μ螳 . Long Short Term Memory 磯殊 螳譴豺()螳 1覲企 譟郁企朱 => 伎 蟇磯Μ螳 覃伎. = 覦 覯 螻燕 => 0 螳蟾 覃誤伎 1覲企 譟郁企朱 => 伎 蟇磯Μ螳 覃伎. = 覦 覯 螻燕 => 覓 貉れ 覦. 襷豢蠍 企糾, 豕 企給. (蟲 : 覿螳ロ 蟇 旧 譯 る 蟇碁Π.) 蠍一ヾ RNN 螳 れ 螳 螳 朱誤一企. れ 郁屋 螻 Recurrent螻 蟆企蟾(蠏企.)
  • 22. RNN 襷レ . 蟇煙蟇磯Μ螳 . Long Short Term Memory 豌伎語 れ願 螳 螻 覦蠖譯朱 蟆 => 螳 譯殊 襷螻 control unit 譯殊! 蠏碁 煙 : Long Short Term Memory network(LSTM) 誤 覯 企慨
  • 23. RNN 襷レ . 蟇煙蟇磯Μ螳 . Long Short Term Memory network 襷覃 LSTM襷螻 るジ 覦覯朱 願屋 蠍磯 . 10.8 覦 覦 蟆暑 10.9 豢 覦 れ 螳 豢 But 螳 10.10 LSTM 伎手鍵覃伎 豈 磯 , れ 一企 螳 螻殊 谿 覈 LSTM企. 手 覦給. 磯殊 10.8螻 10.9襯 牛螻 10.10 LSTM朱 願 蟆 覦.
  • 24. Long Short Term Memory 旧 : h(hidden unit) 襷螻 C(cell)襦 (C 蠍一/襷螳 朱 讌 襯 牛 蟆)
  • 25. Long Short Term Memory 螻手碓 覲企ゼ 覦る(駒≠1) 企ゼ 螳螻 螻燕蠍 蠍 一一 牛伎 螻手碓襯 蟇磯 覲企ゼ 蠍一牛伎 駒′ 襷れ伎. 旧 : h(hidden unit) 襷螻 C(cell)襦 (C 蠍一/襷螳 朱 讌 襯 牛 蟆)
  • 26. Long Short Term Memory 旧 : h(hidden unit) 襷螻 C(cell)襦 (C 蠍一/襷螳 襯 牛 蟆) 螻手碓 覲企ゼ 覦る(駒≠1) 企ゼ 螳螻 螻燕蠍 蠍 一一 牛伎 螻手碓襯 蟇磯 覲企ゼ 蠍一牛伎 駒′ 襷れ伎. forget gate : - 螻手碓 覲企ゼ 蠍謂 蟆危 - 螳 覯 0 ~ 1 - 0 => 伎 覲企 . - 1 => 伎 覲企ゼ 蠍一牛.
  • 27. Long Short Term Memory 旧 : h(hidden unit) 襷螻 C(cell)襦 (C 蠍一/襷螳 襯 牛 蟆) 蠍一ヾ Rnn豌 螻手碓 覲企ゼ 覦る(駒≠1) 企ゼ 螳螻 螻燕蠍 蠍 一一 牛伎 螻手碓襯 蟇磯 覲企ゼ 蠍一牛伎 駒′ 襷れ伎. input gate : - 覲企ゼ 蠍一牛蠍謂 蟆危 - 螳 覯 0 ~ 1 - 0 => 覲企 . - 1 => 覲企ゼ 蠍一牛. => 襦 襷 cell 螳
  • 28. Long Short Term Memory - 襯 sigmoid襦 蠍 蠍 覓語 0~1 伎 螳 豢 $ * 蠍一ヾ RNN - リ朱 伎 豢リ ≠1, ヰ°ゼ 覦. レ元 : ヰ 豸旧 : モ ヰ + ≠1 + = 豸旧 豢 : = 豢レ元 : + = 豢レ元 豢 : = , 燕
  • 29. Long Short Term Memory i $ (襦 襷 cell 螳) 襷 tanh襯 磯? 1. Gateれ 一危碁ゼ 蟆企 0~1 螳 豢ロ伎 伎 蠏碁企 2. tanh螳 譬り .
  • 30. Long Short Term Memory O$ $ - C(cell) 襷 - C 蠍一/襷螳 襯 牛 蟆 - C 豕譬 豢リ , C襯 伎伎 豕譬 豸旧 豢リ 蟆一. 旧 : h(hidden unit) 襷螻 C(cell)襦 (C 蠍一/襷螳 襯 牛 蟆) 螻手碓 覲企ゼ 覦る(駒≠1) 企ゼ 螳螻 螻燕蠍 蠍 一一 牛伎 螻手碓襯 蟇磯 覲企ゼ 蠍一牛伎 駒′ 襷れ伎.
  • 31. 讌蠍蟾讌 LSTM 蟲ロ 覯 LSTM 覈 LSTM 狩 蟲譟磯 x (蠏碁觜結訣蠍磯 伎) Long Short Term Memory 襴
  • 32. 讌蠍蟾讌 LSTM 蟲ロ 覯 LSTM 覈 LSTM 狩 蟲譟磯 x (蠏碁觜結訣蠍磯 伎) Long Short Term Memory
  • 33. Gate 豌伎 伎 螻 Cell k. Long Short Term Memory Gers & Schmidhuber (2000), is adding peephole connections.
  • 34. Input gate 1 伎 語一 襷 覿譟燕 覿覿 襦 語一朱 豈企. Make sense Long Short Term Memory coupled forget and input gates
  • 35. Long Short Term Memory Gated Recurrent Unit(GRU) - 螳 豕(2014) - LSTM レ 讌覃伎 螻磯概′煙 豢 蟲譟 : update 蟆危~ input gate : reset 蟆危~ forget gate : (t) 蠍一牛企 襷 覲 : れ (state)襦 一危
  • 36. 覿襦 襭 谿城り 蟆 る recurrent vs convolutional vs recursive recurrent neural network - リ 襦 覦 谿朱 豌襴 ろ語 蟲譟 - リ 譴螳 蟇企郁碓 覿覿 螻 煙レ襦 蠏碁襦 豌襴 蟲譟 - 襷讌襷 碁(2.5, 3.8) 伎蟾讌 覈 襷ル(the, country, of, my)螻 蟷 リ(birth) 覲願 覈 覦.
  • 37. 覿襦 襭 谿城り 蟆 る recurrent vs convolutional vs recursive convolutional neural network - リ 旧 覈 覦る Recurrent Neural Networks 谿 企 - 讌襷 リ (the, country) 覲企 Recurrent Neural Networks 襴 CNN 蠏碁殊 覲企 螳 伎(the country, country of, of my) 覯 覿 - 覯 譯殊 螻給れ, 磯朱 豺蟲螳 2螳 伎 覲企ゼ 豢伎 覲企ゼ 企. 蠏 朱 危危覃 .
  • 38. 覿襦 襭 谿城り 蟆 る recurrent vs convolutional vs recursive recursive neural network - 讌襷 CNN 覈 覲企ゼ 旧 覦 觜 RNN 朱 覲企 ろ る 谿 - the country of my birth 覦 蟲譟 - CNN 覦豌 the country, country of, of my 企蟆 覈 覿 螳 - RNN 企 語伎 螻豸旧 煙 ろ語 蟲譟一 蠏 谿 覈- 一 豌襴 襷 - Recursive Neural Networks(RNN) リ朱 譯殊伎 覈 螳 企ゼ 覓苦 覿る 伎CNN螻 convolutional neural network
  • 39. 覿襦 襭 谿城り 蟆 る recurrent vs convolutional vs recursive - Recurrent Neural Networks Recursive Neural Networks 轟 貅伎 - 襷 Recursive Neural Networks螳 覈 覲企ゼ 襦 觜讌 覦り 覃 殊 蠏碁 螳 蟲譟
  • 40. 企ゼ 螳 伎 覲企 覲語朱 Recurrent Neural Networks 螳 覿襦 襭 谿城り 蟆 る recurrent vs convolutional vs recursive 讌 蠍..伎れ 覦 覯
  • 41. 覿襦 襭 谿城り 蟆 る convolutional + recursive 蠍一ヾ cnn -> 讌 れ伎る => 蟆 覓伎瑚? 覿襯
  • 42. 覿襦 襭 谿城り 蟆 る convolutional + recursive 螻 一危 語 螳 一危一 label 蟆 一 label 豸′ 朱 一危 語螻 るゴ蟆 螻 企語 一危磯ゼ 語螻 矩. CNN + RNN ! => CRNN
  • 43. 覿襦 襭 谿城り 蟆 る convolutional + recursive 覓碁Д 磯ジ 蠍 , 覓語 語 覲 覓碁Д 語 焔レ 覲伎碁り
  • 44. !

Editor's Notes

  • #25: Hidden unit企朱 蟆 伎 cell企朱 蟆 . 螻燕蠍磯 蠍郁 覲伎伎? 願 覘覃 蠍一ヾ 蟆, Ct-1蟆企 Ct襯 伎 蟇一 蟇磯 蟇磯 伎朱 蟇 => long term memory 蟆伎. 蠏瑚姥 螳 ? Cell .
  • #27: Hidden unit企朱 蟆 伎 cell企朱 蟆 . 螻燕蠍磯 蠍郁 覲伎伎? 願 覘覃 蠍一ヾ 蟆, Ct-1蟆企 Ct襯 伎 蟇一 蟇磯 蟇磯 伎 long term memory襯 襷. 蠍 螳 蠍一牛 覃覈襴襯 襷. 蠏瑚姥 螳 ? Cell .
  • #28: Output gates 朱 覦朱 豢讌 企螳 0 1 蟆郁骸朱 蠍一ヾ rnn 觜伎 cell企朱 蟆 襷 cell 襦燕 覃覈襴襯 蠍一牛 t-1螻 t襯 譟壱伎 output 襷. 蠍一牛讌 襷讌 一危一 伎 給螻 給る 蟇 gate螳 給.
  • #29: 誤 x(t) 伎 覃覈襴 h(t-1) W[x,h]+b = W_x*x + W_h*h + b 襯 螳牛 蟆.鏤 Ht => short term memory 蠏碁蠏 螳 蟆郁骸 螳企手 覲企 る
  • #30: Tanh 襦 ろ危語 伎 襦 覲 螳 襷れ企碁り 覺 蟯谿 蟆 螳.
  • #38: 覯譯朱 rgb貊 企 the country of my birth朱 一危謂 蟲譟磯ゼ 覲願 一危磯 覓 蟆曙一 襷蠍