This document provides an overview of deep deterministic policy gradient (DDPG), which combines aspects of DQN and policy gradient methods to enable deep reinforcement learning with continuous action spaces. It summarizes DQN and its limitations for continuous domains. It then explains policy gradient methods like REINFORCE, actor-critic, and deterministic policy gradient (DPG) that can handle continuous action spaces. DDPG adopts key elements of DQN like experience replay and target networks, and models the policy as a deterministic function like DPG, to apply deep reinforcement learning to complex continuous control tasks.
Continuous control with deep reinforcement learning (DDPG)Taehoon Kim
油
This document presents a model-free, off-policy actor-critic algorithm to learn policies in continuous action spaces using deep reinforcement learning. The algorithm is based on deterministic policy gradients and extends DQN to continuous action domains by using deep neural networks to approximate the actor and critic. Challenges addressed include ensuring samples are i.i.d. by using a replay buffer, stabilizing learning with a target network, normalizing observations with batch normalization, and exploring efficiently with an Ornstein-Uhlenbeck process. The algorithm is able to learn policies on high-dimensional continuous control tasks.
The document discusses convolutional neural networks (CNNs). It begins with an introduction and overview of CNN components like convolution, ReLU, and pooling layers. Convolution layers apply filters to input images to extract features, ReLU introduces non-linearity, and pooling layers reduce dimensionality. CNNs are well-suited for image data since they can incorporate spatial relationships. The document provides an example of building a CNN using TensorFlow to classify handwritten digits from the MNIST dataset.
This document introduces the deep reinforcement learning model 'A3C' by Japanese.
Original literature is "Asynchronous Methods for Deep Reinforcement Learning" written by V. Mnih, et. al.
A comprehensive tutorial on Convolutional Neural Networks (CNN) which talks about the motivation behind CNNs and Deep Learning in general, followed by a description of the various components involved in a typical CNN layer. It explains the theory involved with the different variants used in practice and also, gives a big picture of the whole network by putting everything together.
Next, there's a discussion of the various state-of-the-art frameworks being used to implement CNNs to tackle real-world classification and regression problems.
Finally, the implementation of the CNNs is demonstrated by implementing the paper 'Age ang Gender Classification Using Convolutional Neural Networks' by Hassner (2015).
CNN has become an important part of deep learning networks. It has become crucial to get the in-depth knowledge on CNN. This ppt gives a brief overview on CNN.
This document discusses backpropagation in convolutional neural networks. It begins by explaining backpropagation for single neurons and multi-layer neural networks. It then discusses the specific operations involved in convolutional and pooling layers, and how backpropagation is applied to convolutional neural networks as a composite function with multiple differentiable operations. The key steps are decomposing the network into differentiable operations, propagating error signals backward using derivatives, and computing gradients to update weights.
Continuous control with deep reinforcement learning (DDPG)Taehoon Kim
油
This document presents a model-free, off-policy actor-critic algorithm to learn policies in continuous action spaces using deep reinforcement learning. The algorithm is based on deterministic policy gradients and extends DQN to continuous action domains by using deep neural networks to approximate the actor and critic. Challenges addressed include ensuring samples are i.i.d. by using a replay buffer, stabilizing learning with a target network, normalizing observations with batch normalization, and exploring efficiently with an Ornstein-Uhlenbeck process. The algorithm is able to learn policies on high-dimensional continuous control tasks.
The document discusses convolutional neural networks (CNNs). It begins with an introduction and overview of CNN components like convolution, ReLU, and pooling layers. Convolution layers apply filters to input images to extract features, ReLU introduces non-linearity, and pooling layers reduce dimensionality. CNNs are well-suited for image data since they can incorporate spatial relationships. The document provides an example of building a CNN using TensorFlow to classify handwritten digits from the MNIST dataset.
This document introduces the deep reinforcement learning model 'A3C' by Japanese.
Original literature is "Asynchronous Methods for Deep Reinforcement Learning" written by V. Mnih, et. al.
A comprehensive tutorial on Convolutional Neural Networks (CNN) which talks about the motivation behind CNNs and Deep Learning in general, followed by a description of the various components involved in a typical CNN layer. It explains the theory involved with the different variants used in practice and also, gives a big picture of the whole network by putting everything together.
Next, there's a discussion of the various state-of-the-art frameworks being used to implement CNNs to tackle real-world classification and regression problems.
Finally, the implementation of the CNNs is demonstrated by implementing the paper 'Age ang Gender Classification Using Convolutional Neural Networks' by Hassner (2015).
CNN has become an important part of deep learning networks. It has become crucial to get the in-depth knowledge on CNN. This ppt gives a brief overview on CNN.
This document discusses backpropagation in convolutional neural networks. It begins by explaining backpropagation for single neurons and multi-layer neural networks. It then discusses the specific operations involved in convolutional and pooling layers, and how backpropagation is applied to convolutional neural networks as a composite function with multiple differentiable operations. The key steps are decomposing the network into differentiable operations, propagating error signals backward using derivatives, and computing gradients to update weights.
際際滷s based on "Introduction to Machine Learning with Python" by Andreas Muller and Sarah Guido for Hongdae Machine Learning Study(https://www.meetup.com/Hongdae-Machine-Learning-Study/) (epoch #2)
襾語 ろ磯(https://www.meetup.com/Hongdae-Machine-Learning-Study/) (epoch #2) "伎 殊企襴襯 襾語"(蠍伎 覦伎) 殊企 襭.
Photo wake up - 3d character animation from a single photoKyeongUkJang
油
The document describes the steps involved in animating a 3D character model from a single photo. It involves detecting the person in the photo using Faster R-CNN, estimating their 2D pose, segmenting the person from the background, fitting the SMPL body model to generate a rigged 3D mesh, correcting head pose and texturing the mesh to create a 3D animated character. The method aims to overcome limitations of prior work and produce more accurate 3D character animations from just a single image.
This document summarizes the t-SNE technique for visualizing high-dimensional data in two or three dimensions. It explains that t-SNE is an advanced version of Stochastic Neighbor Embedding (SNE) that can better preserve local and global data structures compared to linear dimensionality reduction methods. The document outlines how t-SNE converts Euclidean distances between data points in high-dimensions to conditional probabilities representing similarity. It also discusses the "crowding problem" that occurs when mapping high-dimensional data to low-dimensions, and how t-SNE addresses this issue.