Jubatus is an open source software framework for distributed online machine learning on big data. It focuses on performing real-time deeper analysis through online machine learning algorithms that can be run in a distributed manner by locally updating models and periodically mixing them together. This allows for fast, scalable, and memory-efficient deep learning on large, streaming datasets without requiring data storage or sharing across nodes.
This document summarizes an internship project using deep reinforcement learning to develop an agent that can automatically park a car simulator. The agent takes input from virtual cameras mounted on the car and uses a DQN network to learn which actions to take to reach a parking goal. Several agent configurations were tested, with the three-camera subjective view agent showing the most success after modifications to the reward function and task difficulty via curriculum learning. While the agent could sometimes learn to park, the learning was not always stable, indicating further refinement is needed to the deep RL approach for this automatic parking task.
6月6日に実施された、ソーシャルCRMプラットフォームを活用した情報交換コミュニティ「みんなのドットコムマスター広場」のオープンについての記者発表会資料です。
なぜドットコムマスターで?NTTコムチェオが?ソーシャルCRMを使った取り組みを行うのか、分り易く説明されています。
また、このコミュニティは日本でほぼ初めてLirhium Community Platformを利用しており、その特長についても分り易く説明されていますので、ぜひご覧ください。
PFN福田圭祐による東大大学院「融合情報学特別講義Ⅲ」(2022年10月19日)の講義資料です。
?Introduction to Preferred Networks
?Our developments to date
?Our research & platform
?Simulation ? AI