This document discusses methods for automated machine learning (AutoML) and optimization of hyperparameters. It focuses on accelerating the Nelder-Mead method for hyperparameter optimization using predictive parallel evaluation. Specifically, it proposes using a Gaussian process to model the objective function and perform predictive evaluations in parallel to reduce the number of actual function evaluations needed by the Nelder-Mead method. The results show this approach reduces evaluations by 49-63% compared to baseline methods.
This document summarizes recent research on applying self-attention mechanisms from Transformers to domains other than language, such as computer vision. It discusses models that use self-attention for images, including ViT, DeiT, and T2T, which apply Transformers to divided image patches. It also covers more general attention modules like the Perceiver that aims to be domain-agnostic. Finally, it discusses work on transferring pretrained language Transformers to other modalities through frozen weights, showing they can function as universal computation engines.
This document provides an overview of POMDP (Partially Observable Markov Decision Process) and its applications. It first defines the key concepts of POMDP such as states, actions, observations, and belief states. It then uses the classic Tiger problem as an example to illustrate these concepts. The document discusses different approaches to solve POMDP problems, including model-based methods that learn the environment model from data and model-free reinforcement learning methods. Finally, it provides examples of applying POMDP to games like ViZDoom and robot navigation problems.
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...Deep Learning JP
?
Neural Radiance Flow (NeRFlow) is a method that extends Neural Radiance Fields (NeRF) to model dynamic scenes from video data. NeRFlow simultaneously learns two fields - a radiance field to reconstruct images like NeRF, and a flow field to model how points in space move over time using optical flow. This allows it to generate novel views from a new time point. The model is trained end-to-end by minimizing losses for color reconstruction from volume rendering and optical flow reconstruction. However, the method requires training separate models for each scene and does not generalize to unknown scenes.
This document summarizes recent research on applying self-attention mechanisms from Transformers to domains other than language, such as computer vision. It discusses models that use self-attention for images, including ViT, DeiT, and T2T, which apply Transformers to divided image patches. It also covers more general attention modules like the Perceiver that aims to be domain-agnostic. Finally, it discusses work on transferring pretrained language Transformers to other modalities through frozen weights, showing they can function as universal computation engines.
This document provides an overview of POMDP (Partially Observable Markov Decision Process) and its applications. It first defines the key concepts of POMDP such as states, actions, observations, and belief states. It then uses the classic Tiger problem as an example to illustrate these concepts. The document discusses different approaches to solve POMDP problems, including model-based methods that learn the environment model from data and model-free reinforcement learning methods. Finally, it provides examples of applying POMDP to games like ViZDoom and robot navigation problems.
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...Deep Learning JP
?
Neural Radiance Flow (NeRFlow) is a method that extends Neural Radiance Fields (NeRF) to model dynamic scenes from video data. NeRFlow simultaneously learns two fields - a radiance field to reconstruct images like NeRF, and a flow field to model how points in space move over time using optical flow. This allows it to generate novel views from a new time point. The model is trained end-to-end by minimizing losses for color reconstruction from volume rendering and optical flow reconstruction. However, the method requires training separate models for each scene and does not generalize to unknown scenes.