際際滷

際際滷Share a Scribd company logo
SSG.COM
Machine Learning(BigData & AI)
Journey
Hoon Dong Kim
BigData&AI / SSG.COM
hoondongkim@emart.com
I am 
 蟾 Chief Partner
 瑚 蠏碁9 殊  SSG.COM BigData&AI Part Leader
 れ覈(Korea Spark User Group) 伎讌
 BigData 覿 Microsoft MVP(Most Valuable Professional) 
2016, 2017
 AI 覿 Microsoft MVP(Most Valuable Professional) 
2018
 http://hoondongkim.blogspot.kr
 https://www.facebook.com/kim.hoondong
 http://hoondongkim.blogspot.kr
 https://www.facebook.com/kim.
hoondong
Follow Me !
れ願蠍一
2008
2015
2006
20XX(???)
覿朱 °螳
襴螻, 譴蟲覓朱螳 螳覦覃?
襴覦覦 豐覦一?
2017
(Walmart vs Amazon vs Korean Player)
  譬 觜 麹 豬渚  蟆曙???
永姻看鉛看乙顎艶(襷)
螻手碓 2015  prologue (襷)
 襷ろ ( 瑚 vs AI )
企語 語
企語語 Deep Learning 蠍一
- 旧 ? ( By Amazon )
 れ暑譯曙 覲伎企 讌  覓手唄れ 襷譟伎 螻襴讀  蟲蟆 覦一
蟆朱, 讌 れ螳 覦一 覓手唄れ 蟆 谿場譴.
谿所
 襷 ?
Long Tail れ?
螻手碓 2016,2017 - prologue (襷)
- AlphaGo & 觚
 襷ろ ( 瑚 vs AI )
 れ 覿殊 瑚 願鍵蠍 覃伎 一螻螳 譯朱蠍 .
覦
伎碁 9 vs 螻(蟲蠍)
1 : 4
ロ伎
vs 觚(ETRI 蟲 AI)
350 : 510
讀1 一轟,
讀2 一轟,
レ 襷,
蟆 襦蠏碁 一轟
 覦 Reinforcement Learning 蠍一
- 旧 ? (By Alibaba & Taobao)
 螳誤 讀螳 覦朱 蟆 伎 轟 れ螳朱
 By Alibaba & Taobao
 https://arxiv.org/abs/1803.00710
れ螳奄
螳誤
Training & Serving
 - 2018 9 11 .
AI vs 瑚 蟆一  螳!
 瑚 讌讌   = 碁螳 企螻 2016 蟾讌.
 瑚 讌蠍   = 2016~2020(or 2022?)
 瑚  讌  = 2020? 2025? (螳 覓語)
[] AI螳 瑚 覈 覿朱ゼ    . 讀, 轟 覿殊襷 企!
[] But,瑚覲企 AI螳   覿手  襷讌 蟆企,
[讌] 企 覿手 螻 蠍 企, 蠍壱  りり .
Our Goal!
磯Μ螳 覈 蟆も
襷譟 螳誤
蟾** 襦蠏語
覦** 襦蠏語
 
襷譟 豌 伎 螳 れ 螳
螳誤  螻, 企  語
Item  螳誤  .
蟯螻 豺 蟯螻 譬襯  る.
Youtube 螳誤
蟾** 襦蠏語
覦** 襦蠏語
 
觚 豌 伎  螳 れ 
螳 螳誤  螻, 企  語
 Item  螳誤  .
Our Strategy!
AI 襯  螻  蠍一 譴  Google 
覲企ゼ 一 危エ覲伎.
Google Did!
 蟲蠍  覲 譯殊 覦 伎
 Google 覦 蠍一 OpenSource 讌 蠍一
2003 GFS Hadoop HDFS
2004 MapReduce Hadoop MapReduce
2006 Chubby Zookeeper
2006 BigTable HBase
2010 Pregel Neo4J, Spark Graph-X
2010 Dremel Spark
2011 Tenzing Hive, Spark SQL
2012 Spanner, F1 RDB Sharding + Kafka + Redis : RDB 覿 Scale Out 覦 蠍壱
ろ
2013 Omega Docker(Mesos)
2014 Word2Vec , DataFlow  れ Word2Vec (NLP  蠍一) , Beam  れ
2015 Tensorflow , Borg  れ Tensorflow (Deep Learning Framework), kubernetes  れ
2016 AlphaGo, DeepQN, WaveNet  れ 覲牛覓語襯 願屋 れ Deep Learning 覦覯襦
2017 ~ PathNet, Transformer  れ
Istio, knative , spinnaker  れ
Deep Learning 旧 讌, 覲企 螻谿 覦覯  れ
AI serving  れ 譯朱 覦 K8S  Ecosystem も
BigData 蠍一
NoSQL 蠍一
覿 RDB 蠍一
MicroService &
DevOps &
Container&
Data Workflow 蠍一
Deep Learning &
AI 蠍一 & K8S
Ecosystems
Deep Learning 蠍一 伎 BigData,
NoSQL, MicroService 煙  Core 蠍
 蠍磯 襾殊 螳豢.
AI  覦!
1. BigData 蠍一 煙 (2003~2010)
2. NoSQL 蠍一 煙 (2007~2013)
3. Container & Microservice 蠍一 煙
(2014~)
4. Deep Learning 螻 蠍一 煙
(2015~)
蠏碁Μ螻
5.  蠍一れ 牛
讌 !
We Did! (BigData Scale Computing)
We Did! (RealTime Lambda ろ豌)
 殊 螻襯 覦螳螻 !
 螻手碓襯 覿 . (BigData Eco System Infra)
 碁 襦蠏碁ゼ 蠍企.
 觜一危 讌  覿  誤朱ゼ 襷.
 觜一危 覦一襦 螻手碓 螻 覿 螻 螳襯 .
  覦 . (RealTime Layer / kafka , Spark Streaming / ELK)
 れ螳朱 一危 ろ碁殊 覿.
 FDS, 覲伎蟯, 覈磯  讀螳朱   豌 襯 ル朱 觜.
 覩碁襯 豸 . (Mining / Machine Learning / Deep Learning R&D)
 螻螳 蟯 螳螻 螻 螻  蟆 螳 蟆 豢豌.
 覩碁 讌 蟯螻 覦  豈 一 覲企 ROI 蟆 覦磯.
 覦譯朱ゼ 豸″.
 豕 碁 蟆暑襯 豸″.
 螳蟆 襴伎 襷讌 朱 語狩讌 豕 螳蟆 豸″.
 覩碁 豸′ 螻 . (Machine Learning / Deep Learning Production)
 Chatbot
 一 , 企語  -> 蟆 覦 豢豌 螻
 NLP , Item2Vec, etc
 覩碁 豸′ 螳誤 覦 れ螳煙 . (BigData Scale Deep Learning)
 れ 襯  螳誤 Deep Learning 觜.
 BigData Scale Training , BigData Scale Inference.
 Auto Scale Out 覈 覦壱, 覓伎讌 Deep Learning 覈語 讌 覦  覦壱.
 蠍一ヾ Machine Learning , Deep Learning 覈語 freshness , personalization 螻.
5~6 
3~5 
1~2 
2~3 
讀
螳 螻,
螻螳 螻,
 蠍一  蠍一襦
覿 讌螳 錫.
Production A/B Test  譴 蟆!
Sample Data, Selected
Feature 蟲 覈
譯1 or 1
覈蟆  蟲
  覈
豕螻 
VS
 襷 Data(or  Data)
  Simple 覈
豕
(襷 螳 or 譴れ螳)
螳誤 覈
 企 觜襯願,
れ蟆, れ螳朱
朱  , Kaggle   殊!
襴狩 豢豌(蟲譟) + 襴狩 覿 By Netflix
Lambda Architecture
 Netflix  100襷  Competition  一麹 
螻襴讀 讌 螳?
We Did! (BigData Scale AI)
Public cloud
Hadoop / NoSQL
Spark / Anaconda
Spark ML Mahout Sk-learn/gensim Tensorflow/CNTK
TensorflowOnSpark
Keras
On-Premise
Spark
On-premise
Serverless / K8SServerless
PaaS
& AI Infra
Microservices
Web/Was Docker / K8S
螳譬 PaaS
AI BaaS/SaaS
PaaS App Container
PaaS GPU Container
ML/DL PaaS &
BigData Lake PaaS &
GPU Notebooks
4~5 
2~3 
豕蠏
Deep Learning Inference
(On Docker Microservice) 焔レ  
http://hoondongkim.blogspot.kr/2017/12/deep-learning-inference-serving.html
VM(for minibatch size 1 inference)
Docker(for minibatch size 1 inference)
Our Action!
稃磯碁覺,譯狩,覓伎語拘,覓伎語
覓朱  
蠏碁Μ螻, Data Driven
*** 豕 覈 (By BigData Driven + AI)
Human Model1(2016, 糾蠍磯) Model2(2017豐, 觚) Model3(2017襷,BigData + 觚) Model3(2018,BigData + 觚 + AI)
Accuracy
60%
90%
碁ル豌
NN覈
0覈
10覈
More Data
+ More Freshness
Only More Data
***豸 覈 (By BigData + AI)
Item
Average
Accuracy
68%
90%
49%
38%
Regression
/ Python
Decision
Tree
/ Python
豐蠍
覦
/
15
貉
4螳

/
15
貉
6螳

/
15
Random
forest
/ Python
貉
6螳

/
15 
Time Series
Deep Learning
+ TensorflowOnSpark
貉
26螳

/
3
Random
forest
/Spark ML
貉
6螳

/
3
Rule
Python
BigData + ML
XGBoost
/ Python
貉
6螳

/
15 
3 一危.
Incremental
Learning.
Time Series
Deep
Learning
Tensorflow
+ Spark
(Scale Out)
Single Host + DL
BigData + DL
貉
26螳

/
15
Time Series
Deep Learning
/ Tensorlfow
Data 蠍
/覲 Data 蠍
/覲
貉狩 AI & CS覺
 瑚 蠏碁9 殊  SSG.COM
ル 企語 蟆
ル慨蠍 覺
SSG 覺 AI 覈
ろ豌
Top Level classifier Model #4
Sequential Classifier Model #5
, 殊, CS, Domain
Word Embedding Model #1
襦る 襦る 襦る 襦る
1 -> 1 / Class N
Context Manager Model #6
NER Model #7
Word2Vec, GloVe, Swivel
Flow Designer
Rule Manager
API Manager
語蟯襴
Tracking Log
豈 I/F
API Handling
  Semantic
Embedding Model #3
覈 蠏


OCR
Model #2
蠍
Item2Vec, Doc2Vec
Item2Vec
Word2Vec
 豺危螻襴
Tag
Item 覈

Tag
朱
N -> 1 / Class M
Semantic
Search
Rule Base
CS Bot FAQ/QNA
Pair
Generative Bot
Flow Designer
Rule Manager
API Manager
殊
Pair
Extreme multiclass Wide
Pair Model #9
Semantic Search Model
#8
Seq2seq Model #10
襦る history
 Sequence
1 : 1 Pairs
Doc2Vec,
Graph
Embedding
Intent Classifier (Model #4)
1. Word2Vec + CNN (Batch Normalize + Augmentation)
2. Word2Vec + LSTM
3. Word2Vec + CNN + LSTM
4. Word2Vec + Bidirectional GRU
5. Word2Vec + Bidirectional GRU + Attention Network
6. FastText
7. Glove + LSTM (BigDL on Spark Cluster)
72.30%
73.94%
72.97%
74.36%
73.15%
72.50%
75.25%
450螳 Multiple Class , Top 1 覓語.
8. Data  覦 Argumentation. 89.6%
Data 殊.
, 企Π讌,
Argumentation,
Data 覲 讌 
觜
焔ロレ
覿覿 覈
 語 蟆

13. Swivel + word Embedding +char Embedding + Hybrid LSTM
+ れ Approach  譟壱 豕譬
93.6%
ML Model 1  Na誰ve Bayes
ML Model 2  TF-IDF + SVM
48.26%
61.05% ML  DL
襦
Model 焔
レ

But,
碁 .
蟆磯
 讌 螳覦 蟆 レ !
讌 讌煙 !
蟆讀 蟆れ MashUp!
旧蟆曙レ  蟆 觜襯願  蟆  譬.
(Over Engineering 覦讌)
(Open Source + Cloud PaaS)
讀 螳 Hot  Develop 覦れ 豢蟲 蟆も
 No-Ops (or Dev Ops, Agile, Serverless, Microservices 願 覈 覃 .  訖.)
 Scale (壱 Scale Out, Scale Down, 一, レ)
 Low Cost (螳誤 豕, 豕 蠍磯    )
 Performance ( 焔, 覈 焔, 螳覦一)
Low Cost 覦 蠏 覦覯 
1 Docker ,
1螳 朱?
1 朱?
1,000,000
Transaction  
襷???
Tensorflow 豌企
蠍 蟾讌襷 蟲
螳
 螻襦 る,
Deep Learning Output
蠏碁 碁 螳
Graph DB , Hash DB 
朱 覦 Index  
 覃, 螻 企
Engineering  
覦 .
 螻襦 覃, 襴覦
覦 Scale Front AI 觜
り 襷れ 觜襯願 襷れ
危蟆  螳.
ル 覈碁 Graph
DB, Microservice 襯 覈
襯願,
NoSQL 螳覦
ル 覈襯願
Or, CloudML (on GCP)
GPU VM > CPU VM > GPU Docker > K8S PaaS > Docker PaaS > Docker BaaS > Serverless Microservice
GPU on-premise
1 GPU VM ,
1  朱?
AI   !
 Think Big.
 蠍瑚 覲願 Plan 語一.
 轟レ 螻殊 一壱讌 襷.
 Bottom Up! ( Not Top Down! )
  ク麹伎, 轟  覿れ 讌 伎螳 ,
 る伎(Self Motivated )れ  蠍壱,螳覦 螻,
 企 伎襯 螻ろ覃 讌 螻 襦 .
 蟆 蠏碁Μ螻 觜襯願 .
 蠍 る, 10 譴願, 2~3 讌 15 譴  
讌襷, 1~2 れ 覃,  蟆曙覲企   .
 Mashup 螻, 蟆壱 Merge 螻, 覦覲 螳 れ.
蠏碁 Top   殊?
 Motivation. 蠍磯.
 蟆曙^.
 覦レ 覿.
 Self Motivated  讌れ
蟆 蠍語 伎伎朱 蟆.
 螳螳  襷 讌
 蟆 .
 覦譯殊 Data  覓語 覦
譯殊襯 磯殊♀鍵 
 螻襴讀 磯狩蠍 所, 豢
label Data 磯狩蠍 .
襦 伎覲企, 蠍磯狩  譴  朱, Cloud PaaS   蟆曙 Key 螳   .
Thank You
 蠍壱 覓語
 http://hoondongkim.blogspot.kr
 https://www.facebook.com/kim.hoondong
Q & A

More Related Content

What's hot (20)

PDF
れ螳 觜 一危 蠍一 覦 Daum 襦 螳 (2013)
Channy Yun
PDF
ろ語 襦襦 覲 襦蠏 一危 覿 : Tajo on AWS
Matthew ()
PDF
Spark Hadoop, 覯渚 譟壱 (蟲)
Teddy Choi
PDF
3 觜一危郁鍵覦觜一危一れ螳豌襴覦覯 譬
Saltlux Inc.
PDF
SQream DB, GPU-accelerated data warehouse
NAVER Engineering
PDF
觜一危 瑚概讌 覦 襦襷
r-kor
PDF
觜一危, big data
H K Yoon
PDF
Jco 觜一危_20120218
Hyoungjun Kim
PDF
Python & Spark
itproman35
PDF
觜一危 蠍一 螻 襷(2014)
Channy Yun
PDF
Apache Htrace overview (20160520)
Steve Min
PDF
[235]求梶≡=求a 釈求
NAVER D2
PPTX
豢豌ろ 蟲豢 觜一危 覿蠍磯螻 襦
HELENA LEE
PDF
[MLOps KR ] MLOps 豢豢 蟲 襴(210605)
Seongyun Byeon
PPTX
Apache MXNet朱 覦一覲企 ル(Deep Learning) - 蟾覓危 (AWS 襭讀ろ)
Amazon Web Services Korea
PPTX
觜一危 蟲豢 襦
Taehyeon Oh
PDF
蠍一 覩碁襯 覦蠑碁 AI
BESPIN GLOBAL
PPTX
Pycon korea 2018 kaggle tutorial(kaggle break)
Yeonmin Kim
PPTX
襷語 Big Data Recommendation Products - 伎 一危磯ゼ 牛 伎殊 豸″
Evion Kim
PDF
2012 觜一危 big data 覦襭
Wooseung Kim
れ螳 觜 一危 蠍一 覦 Daum 襦 螳 (2013)
Channy Yun
ろ語 襦襦 覲 襦蠏 一危 覿 : Tajo on AWS
Matthew ()
Spark Hadoop, 覯渚 譟壱 (蟲)
Teddy Choi
3 觜一危郁鍵覦觜一危一れ螳豌襴覦覯 譬
Saltlux Inc.
SQream DB, GPU-accelerated data warehouse
NAVER Engineering
觜一危 瑚概讌 覦 襦襷
r-kor
觜一危, big data
H K Yoon
Jco 觜一危_20120218
Hyoungjun Kim
Python & Spark
itproman35
觜一危 蠍一 螻 襷(2014)
Channy Yun
Apache Htrace overview (20160520)
Steve Min
[235]求梶≡=求a 釈求
NAVER D2
豢豌ろ 蟲豢 觜一危 覿蠍磯螻 襦
HELENA LEE
[MLOps KR ] MLOps 豢豢 蟲 襴(210605)
Seongyun Byeon
Apache MXNet朱 覦一覲企 ル(Deep Learning) - 蟾覓危 (AWS 襭讀ろ)
Amazon Web Services Korea
觜一危 蟲豢 襦
Taehyeon Oh
蠍一 覩碁襯 覦蠑碁 AI
BESPIN GLOBAL
Pycon korea 2018 kaggle tutorial(kaggle break)
Yeonmin Kim
襷語 Big Data Recommendation Products - 伎 一危磯ゼ 牛 伎殊 豸″
Evion Kim
2012 觜一危 big data 覦襭
Wooseung Kim

Similar to E-commerce BigData Scale AI Journey (20)

PDF
瑚概讌 / 蠍郁 蠍磯 讌 碁ろ覃伎 覦 蠍襦覯 襦 - 蟾 螳覦 企, AWS / 讌 , SK貊 / 蟲...
Amazon Web Services Korea
PDF
[2017 AWS Startup Day] ろ語 瑚概讌レ 襷 : ル 襦 ろ豎
Amazon Web Services Korea
PDF
瑚概讌, 襾語 危 螳襭 2019.12.20
KYOYOON JUNG
PDF
襾語(ル )
Byung-han Lee
PDF
AI 觜讌 覓伎 企至 譴觜螻 伎 螳? - 一 (AWS 螳覦 企)
Amazon Web Services Korea
PDF
The Data tech for AI based innovation(蠍一 AI蠍磯 讌 一危 蠍一)
SANG WON PARK
PDF
Deep learning framework
Tae Young Lee
PDF
[蟲IBM] AI 襾語 覈 蟲 覦 伎 語
Sejeong Kim 蟾語
PDF
2017 Ad-Tech on AWS 碁碁j記伎 螻螳 襦 覦 Machine Learning 螳
Amazon Web Services Korea
PPTX
譟一 AI/ML 螻螳 襦::蟠::AWS Summit Seoul 2018
Amazon Web Services Korea
PDF
蟲 螳覦 一 AWS 瑚概讌 觜るゼ る 襴貅伎 螳覦蠍 覦豌
Amazon Web Services Korea
PDF
襾語 覦 ル 蠍一 (2020.01.07)
KYOYOON JUNG
PDF
螳誤 覦 豢豌 蠍磯レ 襷豢ろ AI 觜 覈: Amazon Personalize - 蟠 襭讀 ろ, AWS / 螳焔 襭...
Amazon Web Services Korea
PDF
旧 覩碁 覿 蠍一! 螻 覿 豸♀骸 螻蟯襴 豕 襦 蟾 AWS 襭讀 ろ, 危蠍 瑚伎れ A...
Amazon Web Services Korea
PDF
[れ惨 Clip IT 碁碁] 襾語螻 瑚概讌レ 覩碁
Taehoon Ko
PDF
[2016 一危 蠏碁 貉朱一] 2 5(觜一危). 觜 觜一危 譴 big data 覦
K data
PDF
梶求戟メ香 求=梶 AI求梶, MLOps (MLOps, a constantly evolving AI system)
David Yushin KIM
PDF
Understanding MLOps
Chun Myung Kyu
PDF
Starup AWS AI/ML 觜 覦覯
Sungmin Kim
PDF
螳誤 豢豌 覦 螻 豸′ 蠏 AI 觜 危エ覲願鍵 - 蟠 AI/ML ろ襴ろ 襭讀 ろ :: AWS Inno...
Amazon Web Services Korea
瑚概讌 / 蠍郁 蠍磯 讌 碁ろ覃伎 覦 蠍襦覯 襦 - 蟾 螳覦 企, AWS / 讌 , SK貊 / 蟲...
Amazon Web Services Korea
[2017 AWS Startup Day] ろ語 瑚概讌レ 襷 : ル 襦 ろ豎
Amazon Web Services Korea
瑚概讌, 襾語 危 螳襭 2019.12.20
KYOYOON JUNG
襾語(ル )
Byung-han Lee
AI 觜讌 覓伎 企至 譴觜螻 伎 螳? - 一 (AWS 螳覦 企)
Amazon Web Services Korea
The Data tech for AI based innovation(蠍一 AI蠍磯 讌 一危 蠍一)
SANG WON PARK
Deep learning framework
Tae Young Lee
[蟲IBM] AI 襾語 覈 蟲 覦 伎 語
Sejeong Kim 蟾語
2017 Ad-Tech on AWS 碁碁j記伎 螻螳 襦 覦 Machine Learning 螳
Amazon Web Services Korea
譟一 AI/ML 螻螳 襦::蟠::AWS Summit Seoul 2018
Amazon Web Services Korea
蟲 螳覦 一 AWS 瑚概讌 觜るゼ る 襴貅伎 螳覦蠍 覦豌
Amazon Web Services Korea
襾語 覦 ル 蠍一 (2020.01.07)
KYOYOON JUNG
螳誤 覦 豢豌 蠍磯レ 襷豢ろ AI 觜 覈: Amazon Personalize - 蟠 襭讀 ろ, AWS / 螳焔 襭...
Amazon Web Services Korea
旧 覩碁 覿 蠍一! 螻 覿 豸♀骸 螻蟯襴 豕 襦 蟾 AWS 襭讀 ろ, 危蠍 瑚伎れ A...
Amazon Web Services Korea
[れ惨 Clip IT 碁碁] 襾語螻 瑚概讌レ 覩碁
Taehoon Ko
[2016 一危 蠏碁 貉朱一] 2 5(觜一危). 觜 觜一危 譴 big data 覦
K data
梶求戟メ香 求=梶 AI求梶, MLOps (MLOps, a constantly evolving AI system)
David Yushin KIM
Understanding MLOps
Chun Myung Kyu
Starup AWS AI/ML 觜 覦覯
Sungmin Kim
螳誤 豢豌 覦 螻 豸′ 蠏 AI 觜 危エ覲願鍵 - 蟠 AI/ML ろ襴ろ 襭讀 ろ :: AWS Inno...
Amazon Web Services Korea
Ad

E-commerce BigData Scale AI Journey

  • 1. SSG.COM Machine Learning(BigData & AI) Journey Hoon Dong Kim BigData&AI / SSG.COM hoondongkim@emart.com
  • 2. I am 蟾 Chief Partner 瑚 蠏碁9 殊 SSG.COM BigData&AI Part Leader れ覈(Korea Spark User Group) 伎讌 BigData 覿 Microsoft MVP(Most Valuable Professional) 2016, 2017 AI 覿 Microsoft MVP(Most Valuable Professional) 2018 http://hoondongkim.blogspot.kr https://www.facebook.com/kim.hoondong
  • 6. 2017 (Walmart vs Amazon vs Korean Player) 譬 觜 麹 豬渚 蟆曙???
  • 8. 螻手碓 2015 prologue (襷) 襷ろ ( 瑚 vs AI ) 企語 語
  • 9. 企語語 Deep Learning 蠍一 - 旧 ? ( By Amazon ) れ暑譯曙 覲伎企 讌 覓手唄れ 襷譟伎 螻襴讀 蟲蟆 覦一 蟆朱, 讌 れ螳 覦一 覓手唄れ 蟆 谿場譴. 谿所 襷 ? Long Tail れ?
  • 10. 螻手碓 2016,2017 - prologue (襷) - AlphaGo & 觚 襷ろ ( 瑚 vs AI ) れ 覿殊 瑚 願鍵蠍 覃伎 一螻螳 譯朱蠍 . 覦 伎碁 9 vs 螻(蟲蠍) 1 : 4 ロ伎 vs 觚(ETRI 蟲 AI) 350 : 510 讀1 一轟, 讀2 一轟, レ 襷, 蟆 襦蠏碁 一轟
  • 11. 覦 Reinforcement Learning 蠍一 - 旧 ? (By Alibaba & Taobao) 螳誤 讀螳 覦朱 蟆 伎 轟 れ螳朱 By Alibaba & Taobao https://arxiv.org/abs/1803.00710 れ螳奄 螳誤 Training & Serving
  • 12. - 2018 9 11 . AI vs 瑚 蟆一 螳! 瑚 讌讌 = 碁螳 企螻 2016 蟾讌. 瑚 讌蠍 = 2016~2020(or 2022?) 瑚 讌 = 2020? 2025? (螳 覓語) [] AI螳 瑚 覈 覿朱ゼ . 讀, 轟 覿殊襷 企! [] But,瑚覲企 AI螳 覿手 襷讌 蟆企, [讌] 企 覿手 螻 蠍 企, 蠍壱 りり .
  • 15. 襷譟 螳誤 蟾** 襦蠏語 覦** 襦蠏語 襷譟 豌 伎 螳 れ 螳 螳誤 螻, 企 語 Item 螳誤 . 蟯螻 豺 蟯螻 譬襯 る.
  • 16. Youtube 螳誤 蟾** 襦蠏語 覦** 襦蠏語 觚 豌 伎 螳 れ 螳 螳誤 螻, 企 語 Item 螳誤 .
  • 18. AI 襯 螻 蠍一 譴 Google 覲企ゼ 一 危エ覲伎.
  • 19. Google Did! 蟲蠍 覲 譯殊 覦 伎 Google 覦 蠍一 OpenSource 讌 蠍一 2003 GFS Hadoop HDFS 2004 MapReduce Hadoop MapReduce 2006 Chubby Zookeeper 2006 BigTable HBase 2010 Pregel Neo4J, Spark Graph-X 2010 Dremel Spark 2011 Tenzing Hive, Spark SQL 2012 Spanner, F1 RDB Sharding + Kafka + Redis : RDB 覿 Scale Out 覦 蠍壱 ろ 2013 Omega Docker(Mesos) 2014 Word2Vec , DataFlow れ Word2Vec (NLP 蠍一) , Beam れ 2015 Tensorflow , Borg れ Tensorflow (Deep Learning Framework), kubernetes れ 2016 AlphaGo, DeepQN, WaveNet れ 覲牛覓語襯 願屋 れ Deep Learning 覦覯襦 2017 ~ PathNet, Transformer れ Istio, knative , spinnaker れ Deep Learning 旧 讌, 覲企 螻谿 覦覯 れ AI serving れ 譯朱 覦 K8S Ecosystem も BigData 蠍一 NoSQL 蠍一 覿 RDB 蠍一 MicroService & DevOps & Container& Data Workflow 蠍一 Deep Learning & AI 蠍一 & K8S Ecosystems Deep Learning 蠍一 伎 BigData, NoSQL, MicroService 煙 Core 蠍 蠍磯 襾殊 螳豢.
  • 20. AI 覦! 1. BigData 蠍一 煙 (2003~2010) 2. NoSQL 蠍一 煙 (2007~2013) 3. Container & Microservice 蠍一 煙 (2014~) 4. Deep Learning 螻 蠍一 煙 (2015~) 蠏碁Μ螻 5. 蠍一れ 牛 讌 !
  • 21. We Did! (BigData Scale Computing)
  • 22. We Did! (RealTime Lambda ろ豌)
  • 23. 殊 螻襯 覦螳螻 ! 螻手碓襯 覿 . (BigData Eco System Infra) 碁 襦蠏碁ゼ 蠍企. 觜一危 讌 覿 誤朱ゼ 襷. 觜一危 覦一襦 螻手碓 螻 覿 螻 螳襯 . 覦 . (RealTime Layer / kafka , Spark Streaming / ELK) れ螳朱 一危 ろ碁殊 覿. FDS, 覲伎蟯, 覈磯 讀螳朱 豌 襯 ル朱 觜. 覩碁襯 豸 . (Mining / Machine Learning / Deep Learning R&D) 螻螳 蟯 螳螻 螻 螻 蟆 螳 蟆 豢豌. 覩碁 讌 蟯螻 覦 豈 一 覲企 ROI 蟆 覦磯. 覦譯朱ゼ 豸″. 豕 碁 蟆暑襯 豸″. 螳蟆 襴伎 襷讌 朱 語狩讌 豕 螳蟆 豸″. 覩碁 豸′ 螻 . (Machine Learning / Deep Learning Production) Chatbot 一 , 企語 -> 蟆 覦 豢豌 螻 NLP , Item2Vec, etc 覩碁 豸′ 螳誤 覦 れ螳煙 . (BigData Scale Deep Learning) れ 襯 螳誤 Deep Learning 觜. BigData Scale Training , BigData Scale Inference. Auto Scale Out 覈 覦壱, 覓伎讌 Deep Learning 覈語 讌 覦 覦壱. 蠍一ヾ Machine Learning , Deep Learning 覈語 freshness , personalization 螻. 5~6 3~5 1~2 2~3 讀 螳 螻, 螻螳 螻, 蠍一 蠍一襦 覿 讌螳 錫.
  • 24. Production A/B Test 譴 蟆! Sample Data, Selected Feature 蟲 覈 譯1 or 1 覈蟆 蟲 覈 豕螻 VS 襷 Data(or Data) Simple 覈 豕 (襷 螳 or 譴れ螳) 螳誤 覈 企 觜襯願, れ蟆, れ螳朱 朱 , Kaggle 殊!
  • 25. 襴狩 豢豌(蟲譟) + 襴狩 覿 By Netflix Lambda Architecture Netflix 100襷 Competition 一麹 螻襴讀 讌 螳?
  • 26. We Did! (BigData Scale AI) Public cloud Hadoop / NoSQL Spark / Anaconda Spark ML Mahout Sk-learn/gensim Tensorflow/CNTK TensorflowOnSpark Keras On-Premise Spark On-premise Serverless / K8SServerless PaaS & AI Infra Microservices Web/Was Docker / K8S 螳譬 PaaS AI BaaS/SaaS PaaS App Container PaaS GPU Container ML/DL PaaS & BigData Lake PaaS & GPU Notebooks 4~5 2~3 豕蠏
  • 27. Deep Learning Inference (On Docker Microservice) 焔レ http://hoondongkim.blogspot.kr/2017/12/deep-learning-inference-serving.html VM(for minibatch size 1 inference) Docker(for minibatch size 1 inference)
  • 30. 覓朱 蠏碁Μ螻, Data Driven
  • 31. *** 豕 覈 (By BigData Driven + AI) Human Model1(2016, 糾蠍磯) Model2(2017豐, 觚) Model3(2017襷,BigData + 觚) Model3(2018,BigData + 觚 + AI) Accuracy 60% 90% 碁ル豌 NN覈 0覈 10覈 More Data + More Freshness Only More Data
  • 32. ***豸 覈 (By BigData + AI) Item Average Accuracy 68% 90% 49% 38% Regression / Python Decision Tree / Python 豐蠍 覦 / 15 貉 4螳 / 15 貉 6螳 / 15 Random forest / Python 貉 6螳 / 15 Time Series Deep Learning + TensorflowOnSpark 貉 26螳 / 3 Random forest /Spark ML 貉 6螳 / 3 Rule Python BigData + ML XGBoost / Python 貉 6螳 / 15 3 一危. Incremental Learning. Time Series Deep Learning Tensorflow + Spark (Scale Out) Single Host + DL BigData + DL 貉 26螳 / 15 Time Series Deep Learning / Tensorlfow Data 蠍 /覲 Data 蠍 /覲
  • 33. 貉狩 AI & CS覺 瑚 蠏碁9 殊 SSG.COM
  • 36. SSG 覺 AI 覈 ろ豌 Top Level classifier Model #4 Sequential Classifier Model #5 , 殊, CS, Domain Word Embedding Model #1 襦る 襦る 襦る 襦る 1 -> 1 / Class N Context Manager Model #6 NER Model #7 Word2Vec, GloVe, Swivel Flow Designer Rule Manager API Manager 語蟯襴 Tracking Log 豈 I/F API Handling Semantic Embedding Model #3 覈 蠏 OCR Model #2 蠍 Item2Vec, Doc2Vec Item2Vec Word2Vec 豺危螻襴 Tag Item 覈 Tag 朱 N -> 1 / Class M Semantic Search Rule Base CS Bot FAQ/QNA Pair Generative Bot Flow Designer Rule Manager API Manager 殊 Pair Extreme multiclass Wide Pair Model #9 Semantic Search Model #8 Seq2seq Model #10 襦る history Sequence 1 : 1 Pairs Doc2Vec, Graph Embedding
  • 37. Intent Classifier (Model #4) 1. Word2Vec + CNN (Batch Normalize + Augmentation) 2. Word2Vec + LSTM 3. Word2Vec + CNN + LSTM 4. Word2Vec + Bidirectional GRU 5. Word2Vec + Bidirectional GRU + Attention Network 6. FastText 7. Glove + LSTM (BigDL on Spark Cluster) 72.30% 73.94% 72.97% 74.36% 73.15% 72.50% 75.25% 450螳 Multiple Class , Top 1 覓語. 8. Data 覦 Argumentation. 89.6% Data 殊. , 企Π讌, Argumentation, Data 覲 讌 觜 焔ロレ 覿覿 覈 語 蟆 13. Swivel + word Embedding +char Embedding + Hybrid LSTM + れ Approach 譟壱 豕譬 93.6% ML Model 1 Na誰ve Bayes ML Model 2 TF-IDF + SVM 48.26% 61.05% ML DL 襦 Model 焔 レ But, 碁 .
  • 39. 讌 螳覦 蟆 レ ! 讌 讌煙 ! 蟆讀 蟆れ MashUp! 旧蟆曙レ 蟆 觜襯願 蟆 譬. (Over Engineering 覦讌) (Open Source + Cloud PaaS) 讀 螳 Hot Develop 覦れ 豢蟲 蟆も No-Ops (or Dev Ops, Agile, Serverless, Microservices 願 覈 覃 . 訖.) Scale (壱 Scale Out, Scale Down, 一, レ) Low Cost (螳誤 豕, 豕 蠍磯 ) Performance ( 焔, 覈 焔, 螳覦一)
  • 40. Low Cost 覦 蠏 覦覯 1 Docker , 1螳 朱? 1 朱? 1,000,000 Transaction 襷??? Tensorflow 豌企 蠍 蟾讌襷 蟲 螳 螻襦 る, Deep Learning Output 蠏碁 碁 螳 Graph DB , Hash DB 朱 覦 Index 覃, 螻 企 Engineering 覦 . 螻襦 覃, 襴覦 覦 Scale Front AI 觜 り 襷れ 觜襯願 襷れ 危蟆 螳. ル 覈碁 Graph DB, Microservice 襯 覈 襯願, NoSQL 螳覦 ル 覈襯願 Or, CloudML (on GCP) GPU VM > CPU VM > GPU Docker > K8S PaaS > Docker PaaS > Docker BaaS > Serverless Microservice GPU on-premise 1 GPU VM , 1 朱?
  • 41. AI ! Think Big. 蠍瑚 覲願 Plan 語一. 轟レ 螻殊 一壱讌 襷. Bottom Up! ( Not Top Down! ) ク麹伎, 轟 覿れ 讌 伎螳 , る伎(Self Motivated )れ 蠍壱,螳覦 螻, 企 伎襯 螻ろ覃 讌 螻 襦 . 蟆 蠏碁Μ螻 觜襯願 . 蠍 る, 10 譴願, 2~3 讌 15 譴 讌襷, 1~2 れ 覃, 蟆曙覲企 . Mashup 螻, 蟆壱 Merge 螻, 覦覲 螳 れ. 蠏碁 Top 殊? Motivation. 蠍磯. 蟆曙^. 覦レ 覿. Self Motivated 讌れ 蟆 蠍語 伎伎朱 蟆. 螳螳 襷 讌 蟆 . 覦譯殊 Data 覓語 覦 譯殊襯 磯殊♀鍵 螻襴讀 磯狩蠍 所, 豢 label Data 磯狩蠍 . 襦 伎覲企, 蠍磯狩 譴 朱, Cloud PaaS 蟆曙 Key 螳 .
  • 42. Thank You 蠍壱 覓語 http://hoondongkim.blogspot.kr https://www.facebook.com/kim.hoondong Q & A