Outline of Genetic Algorithm + Searching for Maximum Value of Function and Traveling Salesman Problem using R.
To view source codes and animation:
Searching for Maximum Value of Function
- https://github.com/katokohaku/evolutional_comptutation/blob/master/chap2.1.Rmd
Traveling Salesman Problem
- https://github.com/katokohaku/evolutional_comptutation/blob/master/chap2.2.Rmd
The document discusses hyperparameter optimization in machine learning models. It introduces various hyperparameters that can affect model performance, and notes that as models become more complex, the number of hyperparameters increases, making manual tuning difficult. It formulates hyperparameter optimization as a black-box optimization problem to minimize validation loss and discusses challenges like high function evaluation costs and lack of gradient information.
1. The document discusses energy-based models (EBMs) and how they can be applied to classifiers. It introduces noise contrastive estimation and flow contrastive estimation as methods to train EBMs.
2. One paper presented trains energy-based models using flow contrastive estimation by passing data through a flow-based generator. This allows implicit modeling with EBMs.
3. Another paper argues that classifiers can be viewed as joint energy-based models over inputs and outputs, and should be treated as such. It introduces a method to train classifiers as EBMs using contrastive divergence.
このスライドではベイズ統計学によく登場する確率分布の関係について紹介している。平易なベルヌーイ分布から多少複雑なベータ分布までがどのようにつながっているかを示している。いくつかの重要な性質については実際に証明を与えた。本スライドは2016年10月1日のNagoyaStat #2で発表したものである。
Some probability distributions are used for bayes statistics. This slide shows relationships from Bernoulli distribution to Beta distribution. Some important properties are proofed in this slide.
How to generate PowerPoint slides Non-manually using RSatoshi Kato
?
Introduction to:
- Basic idea and procedure of {officer} package
- Getting started: Embedding texts, tables and figures in slides
- PowerPoint Structure: Layouts and Placeholders
- Making a template for specific layouts
- Making a template for your own slide-layouts
Resources are avail at: https://github.com/katokohaku/powerpoint_with_officer
The document discusses hyperparameter optimization in machine learning models. It introduces various hyperparameters that can affect model performance, and notes that as models become more complex, the number of hyperparameters increases, making manual tuning difficult. It formulates hyperparameter optimization as a black-box optimization problem to minimize validation loss and discusses challenges like high function evaluation costs and lack of gradient information.
1. The document discusses energy-based models (EBMs) and how they can be applied to classifiers. It introduces noise contrastive estimation and flow contrastive estimation as methods to train EBMs.
2. One paper presented trains energy-based models using flow contrastive estimation by passing data through a flow-based generator. This allows implicit modeling with EBMs.
3. Another paper argues that classifiers can be viewed as joint energy-based models over inputs and outputs, and should be treated as such. It introduces a method to train classifiers as EBMs using contrastive divergence.
このスライドではベイズ統計学によく登場する確率分布の関係について紹介している。平易なベルヌーイ分布から多少複雑なベータ分布までがどのようにつながっているかを示している。いくつかの重要な性質については実際に証明を与えた。本スライドは2016年10月1日のNagoyaStat #2で発表したものである。
Some probability distributions are used for bayes statistics. This slide shows relationships from Bernoulli distribution to Beta distribution. Some important properties are proofed in this slide.
How to generate PowerPoint slides Non-manually using RSatoshi Kato
?
Introduction to:
- Basic idea and procedure of {officer} package
- Getting started: Embedding texts, tables and figures in slides
- PowerPoint Structure: Layouts and Placeholders
- Making a template for specific layouts
- Making a template for your own slide-layouts
Resources are avail at: https://github.com/katokohaku/powerpoint_with_officer
Exploratory data analysis using xgboost package in RSatoshi Kato
?
Explain HOW-TO procedure exploratory data analysis using xgboost (EDAXGB), such as feature importance, sensitivity analysis, feature contribution and feature interaction. It is just based on using built-in predict() function in R package.
All of the sample codes are available at: https://github.com/katokohaku/EDAxgboost
a Japanese introduction of an R package {featuretweakR }
available from: https://github.com/katokohaku/featureTweakR
reference: "Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking" (https://arxiv.org/abs/1706.06691). Codes are at my Github (https://github.com/katokohaku/feature_tweaking)
Intoroduction & R implementation of "Interpretable predictions of tree-based ...Satoshi Kato
?
a Japanese introduction and an R implementation of "Interpretable Predictions of Tree-based Ensembles via Actionable Feature Tweaking" (https://arxiv.org/abs/1706.06691). Codes are at my Github (https://github.com/katokohaku/feature_tweaking)
Introduction of "the alternate features search" using RSatoshi Kato
?
Introduction of the alternate features search using R, proposed in the paper. S. Hara, T. Maehara, Finding Alternate Features in Lasso, 1611.05940, 2016.
Introduction of sensitivity analysis for randamforest regression, binary classification and multi-class classification of random forest using {forestFloor} package
Imputation of Missing Values using Random ForestSatoshi Kato
?
missForest packageの紹介
“MissForest - nonparametric missing value imputation for mixed-type data (DJ Stekhoven, P Bühlmann (2011), Bioinformatics 28 (1), 112-118)
10. 問題の表現 - 「適応度」の評価
「適応度」の例
? スタート地点から進んだ距離を最大化する
? with NeuroEvolution of Augmenting Topologies (NEAT)
MarI/O - Machine Learning for Video Games (4:58 / 5:57)
MarI/O is a program made of neural networks and genetic algorithms that kicks butt at Super Mario World.
? https://www.youtube.com/watch?v=qv6UVOQ0F44
55. 事例2:巡回セールスマン問題 - 交叉
順序交叉を改変
? スタート地点を固定する
? 親1と親2の順序パターンをなるべく保存しつ
つ交換する
順序交叉の例
① 交叉点の選択: 親1の遺伝子から(5,6)を
残す
② 子1の置き換え箇所から見た、親2の遺伝子
は(4,2,1,6,5,3)
③ 子1の遺伝子と重複しているものを削除して
(4,2,1,3)
④ 子1の置き換え箇所に③を当てはめる
(4,2,1,3,5,6 )
⑤ スタートが1になるように回転ソート
(1,3,5,6,4,2)
交叉の設計
⑤
56. 事例2:巡回セールスマン問題 - 交叉
①
②
③
④
0 切り出し位置を選択する:4~5
① 交叉点の選択: 親1の遺伝子から選択範囲を
残す(,,,8,5,,,,,)
② 子1の置き換え箇所から見た、親2の遺伝子
は( 2,8,5,7,6,1,3,10,4,9 )
③ 子1の遺伝子と重複しているものを削除して
( 2,,,7,6,1,3,10,4,9 )
④ 子1の置き換え箇所に③を当てはめる
( 2,7,6,8,5,1,3,10,4,9 )
⑤ スタートが1になるように回転ソート
(1,3,10,4,9,2,7,6,8,5)
0
⑤
57. 事例2:巡回セールスマン問題 - 交叉
①
②
③
④
0 交叉点の選択:切り出し位置を選択する
① 親1の遺伝子から選択範囲を残す
② 子1から見た、親2の遺伝子の順序から、
③ 子1の遺伝子と重複しているものを削除して、
④ 子1の置き換え箇所に③を当てはめる
⑤ スタートが1になるように回転ソート
0
⑤