This document provides an overview of convolutional neural networks and summarizes four popular CNN architectures: AlexNet, VGG, GoogLeNet, and ResNet. It explains that CNNs are made up of convolutional and subsampling layers for feature extraction followed by dense layers for classification. It then briefly describes key aspects of each architecture like ReLU activation, inception modules, residual learning blocks, and their performance on image classification tasks.
Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two common types of deep neural networks. RNNs include feedback connections so they can learn from sequence data like text, while CNNs are useful for visual data due to their translation invariance from pooling and convolutional layers. The document provides examples of applying RNNs and CNNs to tasks like sentiment analysis, image classification, and machine translation. It also discusses common CNN architecture components like convolutional layers, activation functions like ReLU, pooling layers, and fully connected layers.
AlexNet achieved unprecedented results on the ImageNet dataset by using a deep convolutional neural network with over 60 million parameters. It achieved top-1 and top-5 error rates of 37.5% and 17.0%, significantly outperforming previous methods. The network architecture included 5 convolutional layers, some with max pooling, and 3 fully-connected layers. Key aspects were the use of ReLU activations for faster training, dropout to reduce overfitting, and parallelizing computations across two GPUs. This dramatic improvement demonstrated the potential of deep learning for computer vision tasks.
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...Simplilearn
?
This Deep Learning Presentation will help you in understanding what is Deep learning, why do we need Deep learning, applications of Deep Learning along with a detailed explanation on Neural Networks and how these Neural Networks work. Deep learning is inspired by the integral function of the human brain specific to artificial neural networks. These networks, which represent the decision-making process of the brain, use complex algorithms that process data in a non-linear way, learning in an unsupervised manner to make choices based on the input. This Deep Learning tutorial is ideal for professionals with beginners to intermediate levels of experience. Now, let us dive deep into this topic and understand what Deep learning actually is.
Below topics are explained in this Deep Learning Presentation:
1. What is Deep Learning?
2. Why do we need Deep Learning?
3. Applications of Deep Learning
4. What is Neural Network?
5. Activation Functions
6. Working of Neural Network
Simplilearn¨s Deep Learning course will transform you into an expert in deep learning techniques using TensorFlow, the open-source software library designed to conduct machine learning & deep neural network research. With our deep learning course, you¨ll master deep learning and TensorFlow concepts, learn to implement algorithms, build artificial neural networks and traverse layers of data abstraction to understand the power of data and prepare you for your new role as deep learning scientist.
Why Deep Learning?
It is one of the most popular software platforms used for deep learning and contains powerful tools to help you build and implement artificial neural networks.
Advancements in deep learning are being seen in smartphone applications, creating efficiencies in the power grid, driving advancements in healthcare, improving agricultural yields, and helping us find solutions to climate change. With this Tensorflow course, you¨ll build expertise in deep learning models, learn to operate TensorFlow to manage neural networks and interpret the results.
You can gain in-depth knowledge of Deep Learning by taking our Deep Learning certification training course. With Simplilearn¨s Deep Learning course, you will prepare for a career as a Deep Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms.
There is booming demand for skilled deep learning engineers across a wide range of industries, making this deep learning course with TensorFlow training well-suited for professionals at the intermediate to advanced level of experience. We recommend this deep learning online course particularly for the following professionals:
1. Software engineers
2. Data scientists
3. Data analysts
4. Statisticians with an interest in deep learning
Recurrent neural networks (RNNs) are a type of artificial neural network that can process sequential data of varying lengths. Unlike traditional neural networks, RNNs maintain an internal state that allows them to exhibit dynamic temporal behavior. RNNs take the output from the previous step and feed it as input to the current step, making the network dependent on information from earlier steps. This makes RNNs well-suited for applications like text generation, machine translation, image captioning, and more. RNNs can remember information for long periods of time but are difficult to train due to issues like vanishing gradients.
Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two common types of deep neural networks. RNNs include feedback connections so they can learn from sequence data like text, while CNNs are useful for visual data due to their translation invariance from pooling and convolutional layers. The document provides examples of applying RNNs and CNNs to tasks like sentiment analysis, image classification, and machine translation. It also discusses common CNN architecture components like convolutional layers, activation functions like ReLU, pooling layers, and fully connected layers.
AlexNet achieved unprecedented results on the ImageNet dataset by using a deep convolutional neural network with over 60 million parameters. It achieved top-1 and top-5 error rates of 37.5% and 17.0%, significantly outperforming previous methods. The network architecture included 5 convolutional layers, some with max pooling, and 3 fully-connected layers. Key aspects were the use of ReLU activations for faster training, dropout to reduce overfitting, and parallelizing computations across two GPUs. This dramatic improvement demonstrated the potential of deep learning for computer vision tasks.
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...Simplilearn
?
This Deep Learning Presentation will help you in understanding what is Deep learning, why do we need Deep learning, applications of Deep Learning along with a detailed explanation on Neural Networks and how these Neural Networks work. Deep learning is inspired by the integral function of the human brain specific to artificial neural networks. These networks, which represent the decision-making process of the brain, use complex algorithms that process data in a non-linear way, learning in an unsupervised manner to make choices based on the input. This Deep Learning tutorial is ideal for professionals with beginners to intermediate levels of experience. Now, let us dive deep into this topic and understand what Deep learning actually is.
Below topics are explained in this Deep Learning Presentation:
1. What is Deep Learning?
2. Why do we need Deep Learning?
3. Applications of Deep Learning
4. What is Neural Network?
5. Activation Functions
6. Working of Neural Network
Simplilearn¨s Deep Learning course will transform you into an expert in deep learning techniques using TensorFlow, the open-source software library designed to conduct machine learning & deep neural network research. With our deep learning course, you¨ll master deep learning and TensorFlow concepts, learn to implement algorithms, build artificial neural networks and traverse layers of data abstraction to understand the power of data and prepare you for your new role as deep learning scientist.
Why Deep Learning?
It is one of the most popular software platforms used for deep learning and contains powerful tools to help you build and implement artificial neural networks.
Advancements in deep learning are being seen in smartphone applications, creating efficiencies in the power grid, driving advancements in healthcare, improving agricultural yields, and helping us find solutions to climate change. With this Tensorflow course, you¨ll build expertise in deep learning models, learn to operate TensorFlow to manage neural networks and interpret the results.
You can gain in-depth knowledge of Deep Learning by taking our Deep Learning certification training course. With Simplilearn¨s Deep Learning course, you will prepare for a career as a Deep Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms.
There is booming demand for skilled deep learning engineers across a wide range of industries, making this deep learning course with TensorFlow training well-suited for professionals at the intermediate to advanced level of experience. We recommend this deep learning online course particularly for the following professionals:
1. Software engineers
2. Data scientists
3. Data analysts
4. Statisticians with an interest in deep learning
Recurrent neural networks (RNNs) are a type of artificial neural network that can process sequential data of varying lengths. Unlike traditional neural networks, RNNs maintain an internal state that allows them to exhibit dynamic temporal behavior. RNNs take the output from the previous step and feed it as input to the current step, making the network dependent on information from earlier steps. This makes RNNs well-suited for applications like text generation, machine translation, image captioning, and more. RNNs can remember information for long periods of time but are difficult to train due to issues like vanishing gradients.
Gradient descent?? AMSGrad?? ??? ????? ?? ???? ?????. ??? Hessian free ????? SR1, DFP, BFGS? ???? ??? ????, ????? ????? ??? ?????. This slide introduces the optimization algorithms from first-order(gradient descent) to second-order(hessian free). It deals with all the algorithms in the Keras optimizer. It was made by Taewon Heo.