際際滷

際際滷Share a Scribd company logo
???
?? ?? YOLO ??
???
knholic@gmail.com
gomguard.tistory.com
??? ??? ????
??? ??
??? ?? ??? ??
??? ?? ?? ????
??? ??? ????? ???
? ?
?? ??? ??
[??? ?? ??? ??]
?? ???
??? ??? ??? : ??
???? ???? ??? ???
???? ??? ??? ?? ????? ?? ???? ???.
??? ?? ?? ?? ?? : Perceptron
? =
1 ( ?1 ?1+ ?2 ?2 + ? − 0 )
0 ( ?1 ?1+ ?2 ?2 + ? < 0 ){
x1
?1
?2
?1
?2
?
Bias
Input
Input
Activation
Function
?
Weight
Perceptron ? ???? ?? ??: ?? ??
???? ???????? (?) =
1 (? − 0 )
0 (? < 0 ){
???? ??? ?? 0? ?? ?? ??
?? ??? AND ??? ??
?1
?2
?
AND Gate ? ????
?1 ?2 ?
0 0 0
0 1 0
1 0 0
1 1 1
AND Gate ? ???
AND ???? ?? ?? ?? ??
0 0
0 1
??? ??? 0 ? 1? ??? ? ?? AND ???
?? XOR ??????
0
0
1
1
?
?
?
?
??? ???? 0 ? 1? ??? ? ?? XOR ???
XOR ???
?1
?2
?AND
AND
OR
XOR ???? AND ? OR ???? ???? ?? ? ???
?? ???? ?? ?? ???? : MLP
Input Layer
?1
?2
x11
Output Layer
? ?>
Hidden Layer
x11
?2
?1 ?1
>
?2
>
?00
(0)
?01
(0)
?10
(0)
?11
(0)
?20
(0)
?21
(0)
?00
(1)
?10
(1)
?20
(1)
MLP ? XOR ???? ????
Input Layer
?1
?2
x1?
Hidden Layer
NAND Gate
OR Gate
Output Layer
XOR Gate
MLP ?? XOR ???? ??? ? ? ??
Layer ? ??? ?? ??? ? ?? ??
1 hidden layer 2 hidden layer 3 hidden layer
?? ?? ? ?? ? ????
MLP ? ??? ???????
?? ??? ??
?? ????
??? ? ?? ?? ???
?? ?? ??? ??
?? ???? ????
?? ??? ???
?? ??? ? ?????
??? ?????? ????
?? ?????? ??? ? ??
??? ?? ?? ??? ??
???? ?? ??
?? ??? ???
???? ?? ?? ?????
?? ???
??? ?? ?? ???
??? ?? ??? ?? ??
1. ????? ???
2. ?(????????) ? ???
3. weight ? ???? ??
? ???
= ? ? ???(?)
?? ???? ???? : MSE
Minimum Squared Error =
1
?
σ? ??? ? ??
2
?0
?1
?2
?3
?4
??0
??1
??2
??3
??4
# ? ??? ???? ??? ???? ???? ??
?? ???? ???? : ACE
Averaged Cross Entropy Error = ?
1
?
σ? ?? ??? ???
?0 ?1
?2
?3 ?4
log(??0)
log(??1)
log(??2)
log(??3)
log(??4)
# ??? One-hot ??? ?? ?? ???? ????
?+
= ? ? ? ?
??
??
??? ????? ????
learning rate :
??? ??? ????
gradient :
?? ???? ????
??? ?????
??
??
? ?? 0´
??? 0?? 1?? ?????
?? ??? ??? ????
???????(?) =
1
1+???
??? ?? Sigmoid
???? ???????? (?) =
1 (? − 0 )
0 (? < 0 ){
?? ???
Sigmoid ? ????
??? ??
MLP ? ?????
??? ??? ???
?????
?10
(0)
?11
(0)
?1
0.5
0.15
0.2
0.075
0.1
?11 ?11
?10
(1)
?20
(1)
?1
?21 ?21
?20 ?20
?11
(1)
?21
(1)
?2
?10 ?10
0.4
0.5
0.45
0.55
0.518
0.524
0.207
0.209
0.236
0.288
0.609
0.633
0.3
0.9
???? =
1
2
? ?????? ? ?????? 2 =
1
2
0.3 ? 0.609 2 +
1
2
0.9 ? 0.621 2 = 0.087
??? ??? ???
??? ??? ???
?? ? ?? ???? 0.087
Sigmoid
Function
Sigmoid
Function
Sigmoid
Function
Sigmoid
Function
?????
??10
(1) =
?????
??20
??20
??20
??20
??10
(1)
???? =
1
2
?????? ?1 ? ?20
2
+ ?????? ?2 ? ?21
2 ?????
??20
= ?????? ?1 ? ?20 ? ?1 + 0
?20 = ???????(?20)
??20
??20
= ??????? ?20 ? 1 ? ??????? ?20
?20 = ?10
(1)
?10 + ?20
(1)
?20
??20
??10
(1)
= ?10 + 0
?10
(1)
?1?20 ?20
0.4
0.207 0.609
0.3
0.518
?10 ?10
?? ?10
(1)
? ?????
?????
??20
??20
??20
??20
??10
(1)
?10
(1)
?1?20 ?20
0.4
0.207 0.609
0.3
0.518
?10 ?10
?????
??10
(1) =
?????
??20
??20
??20
??20
??10
(1)
= ? ?????? ?1 ? ?20 ? ??????? ?20 ? 1 ? ??????? ?20 ? ?10
= ? 0.3 ? 0.609 ? 0.609 ? 1 ? 0.609 ? 0.518
= 0.0381
?10
1 +
= ? ? ? ?
?????
??10
1 = 0.4 ? 0.5 ? 0.0381 = 0.380
?10
1
? ?? ??? ??? ??? 0.0381, ??? ?10
1 +
?? 0.380
? ?? ?? ? ?? ???
?? ?????
?10
(0)
?1
0.5
0.15
0.075
?11 ?11
?10
(1)
?20
(1)
?1
?21 ?21
?20 ?20
?11
(1)
?21
(1)
?2
?10 ?10
0.4
0.5
0.45
0.55
0.518
0.524
0.207
0.209
0.236
0.288
0.609
0.633
0.3
0.9
?10
(0)
? ?10
(1)
? ?? ? ?, ? ? ??? ? ??? ????
?10
(0)
?1
0.5
0.15
0.075
?11 ?11
?10
(1)
?20
(1)
?1
?21 ?21
?20 ?20
?11
(1)
?21
(1)
?2
?10 ?10
0.4
0.5
0.45
0.55
0.518
0.524
0.207
0.209
0.236
0.288
0.609
0.633
0.3
0.9
??? ???? ?? ? ? ?1? ? ?2 ? ?? ???? ???
?10
(0)
?1
0.5
0.15
0.075
?11 ?11
?10
(1)
?20
(1)
?1
?21 ?21
?20 ?20
?11
(1)
?21
(1)
?2
?10 ?10
0.4
0.5
0.45
0.55
0.518
0.524
0.207
0.209
0.236
0.288
0.609
0.633
0.3
0.9
?????
??10
(0) =
?????
??10
??10
??10
??10
??10
(0) ???? = ? ?1 + ? ?2
?10
(1)
?1?20 ?20
0.4
0.207 0.609
0.3
0.518
?10 ?10?10
(0)
?1
0.5
0.15
0.075
?????
??10
(0) = (
??1
??10
+
??2
??10
)
??10
??10
??10
??10
(0)
??1
??10
=
??1
??20
??20
??20
??20
??10
= ? ?????? ?1 ? ?20 ? ??????? ?20 ? 1 ? ??????? ?20 ? ?10
(1)
= ? 0.3 ? 0.609 ? 0.609 ? 1 ? 0.609 ? 0.4
= 0.0294
# ?10 ? ?1 ? ??? ??? 0.0294
?11
(1)
?2?21 ?21
0.5
0.209 0.621
0.9
0.518
?10 ?10?10
(0)
?1
0.5
0.15
0.075
?????
??10
(0) = (
??1
??10
+
??2
??10
)
??10
??10
??10
??10
(0)
??2
??10
=
??2
??21
??21
??21
??21
??10
= ? ?????? ?2 ? ?21 ? ??????? ?21 ? 1 ? ??????? ?21 ? ?11
(1)
= ? 0.9 ? 0.621 ? 0.621 ? 1 ? 0.621 ? 0.5
= ? 0.0328
# ?10 ? ?2 ? ??? ??? -0.0328
?????
??10
(0) = (
??1
??10
+
??2
??10
)
??10
??10
??10
??10
(0)
??2
??10
= ?0.0345
??1
??10
= 0.0305
??10
??10
= ??????? ?10 ? 1 ? ??????? ?10
= 0.0294 ? 0.0328 ? 0.249 ? 0.5
= ?0.00042
?10
0 +
= ? ? ? ?
?????
??10
0
= 0.15 ? 0.5 ? (?0.00042) = 0.1502
??? ?10
0 +
? ?? 0.1502
# ?10
(0)
? ???? ? ??? ??? -0.00042
?10
(0)
?11
(0)
?1
0.5
0.15
0.2
0.075
0.095
?11 ?11
?10
(1)
?20
(1)
?1
?21 ?21
?20 ?20
?11
(1)
?21
(1)
?2
?10 ?10
0.4
0.5
0.45
0.55
0.519
0.524
0.197
0.131
0.248
0.276
0.581
0.628
0.3
0.9
0.380
0.1502
0.250
0.527
0.478
0.1909
???? = 0.087 ★ 0.076 ?? 1? ?? ?? 13% ??
? ?? ??? ???
Loss ?? ????
? ??? ???
?? ? ?? ??
? ?? ??
? ? ????
? ??? ??? ????
??? ??? ? ?????
??
1. ??? ??? ??
2. ??? ??? ??
3. ???? ????
???????(?) =
1
1+??? ?> (?) =
1
1+??? ( 1 ?
1
1+??? )
(0 , ?] C ??? ?, 0 ?? ??
Sigmoid ? ??? ??
?1
?1
?Input
Sigmoid
Function
Sigmoid
Function
Sigmoid
Function
?2 ?3
?1 ?1 ?2 ?2 ?3 ?3
?1 = ?1 ? ?1 ?2 = ?1 ? ?2 ?3 = ?2 ? ?3
?1 = ???????(?1) ?2 = ???????(?2) ?3 = ???????(?3)
? = ?3
# Sigmoid ? ?? ???? ???? ?? 0.659 ? ???? ?? ??
???
? ? ???
??
??3
=
??
??3
??3
??3
??3
??3
= 1 ? ???????> ?3 ? ?2
??
??2
=
??
??3
??3
??2
??2
??2
??2
??2
= 1 ? ???????>
?3 ?
?3 ? ???????> ?2 ? ?1
??
??1
=
??
??2
??2
??1
??1
??1
??1
??1
= 1 ? ???????>
?3 ? ?3 ? ???????>
?2 ?
?2 ? ???????> ?1 ? ?1
?
?1
?
?2
?3
?3
?3
?2
?2
?1
?1
?3 = ???????(?3)
?3 = ?2 ? ?3
? = ?3
?2 = ???????(?2)
?2 = ?1 ? ?2
?1 = ???????(?1)
?1 = ? ? ?1
?> (?) : (0 , ?] C ??? ?, 0 ?? ??
S¨ ? ???? ? ?? ???
?? ? ?? ? ? ??? ?????
3? ?? S¨ ? ?? ??
??
??
? ?? 0 ? ??
??? ????? ???
??? ?? : Tanh Function
????(?) =
?2?+ 1
?2??1
?> (?) =1 ? tanh2(x)
(0 , 1] C ??? 1, 0 ?? ??
??? ?? : Tanh Function
?> (?) =1 ? tanh2(x)
(0 , 1] C ??? 1, 0 ?? ??
? ?? Tanh ? Sigmoid ?
???? ???
???? ???? 1???
??? ??? ? ???
??? ?? : ReLU Function
????(?) = max 0, ?
Rectified Linear Unit
?>(?) =
1 (? − 0 )
0 (? < 0 ){
??? ?? : ReLU Function
?>(?) =
1 (? − 0 )
0 (? < 0 ){
ReLU ? ??? ???
???? 0, 1 ?? ? ????
??? ??? ??? ? ????
?? ????? ?? ?????
????
PReLU, Leaky ReLU, SoftPlus ?
??? ?? ?? ???? ???
??? ??? ????? ???
???? ???? ??
?? ?? ?????
???? ??? ???
?? ?? ???? ?????
??? ??? ??????
??? ????
???? ????? ??
Xavier ? He initialization ? ?????
??? ??? ????
Activation Function Initialization Code
Sigmoid Xavier
np.random.randn(n_input, n_output)
/ sqrt(n_input)
ReLU He
np.random.randn(n_input, n_output)
/ sqrt(n_input / 2)
1. Gaussian ?? ??? ??
2. ????? ????? ??? Xavier Initialization
3. ????? ??? ????? ??? He Initialization
??? ??? ????
Activation Function Initialization Code
Sigmoid Xavier
np.random.randn(n_input, n_output)
/ sqrt(n_input)
ReLU He
np.random.randn(n_input, n_output)
/ sqrt(n_input / 2)
Sigmoid ??? ? Xavier ,
ReLU ??? ? He ? ???? ????
??? ???? ????
????? ??? ??? ???
???? ???? ???? ??? ????
?
?1 ?1
>
?2
?3
??? ???>
?2
>
?3
> ??? Input ?? ???
???? ??? ????
Output ?? ???
???? ???? ????
?? ??? ???? ???
? ????? ?? ??
??????
?
?1 ?1
>
?2
?3
??? ???>
?2
>
?3
>
??
??
??
?? ????
???? ????
???? ?? ???
??? ? ????
?
?1 ?1
>
?2
?3
??? ???>
?2
>
?3
>
??
??
??
??? ???? ??
??? ??? Output ??
??? ? ? ?????
?
?1 ?1
>
?2
?3
??? ???>
?2
>
?3
>
??
??
??
??? ???? ?? ????
?? ??? ??? ??
???? ? ????? ???
?
?1 ?1
>
?2
?3
??? ???>
?2
>
?3
>
??
??
??
Batch Normalization ?
Training ?? ??? ???? ??
Vanishing Gradient ? ????
???? ????? ? ? ????
?? ??? ? ???
????? ? ??? ???
? ??? ??? ? ?????
10000
Data
Gradient
Descent
Stochastic
Gradient
Descent
2500
Data
2500
Data
2500
Data
2500
Data
Gradient Descent ???
?? ???? ????
??? ??? ?????
???? ??? ???
?? ? ???? ??
??? ?? ?
??? ??? ????
10000
Data
Gradient
Descent
Stochastic
Gradient
Descent
2500
Data
2500
Data
2500
Data
2500
Data
10000
Data
Gradient
Descent
Stochastic
Gradient
Descent
2500
Data
2500
Data
2500
Data
2500
Data
SGD
GDStart End
? ???? ?? ? ???
?? ?? ? ??? ?????
?? ???? ???
??? ?? ????
?+
= ? ? ? ?
??
??
???? ?? ? ?? ???
Learning Rate ? Gradient ??
? ???? ??? ??????
SGD
??
??
Gradient
?
Learning rate
Momentum
NAG
Adam
Adagrad
RMSProp
AdaDelta
Nadam
GD
?? : ???
- ???? ???? ???,
???? ??? ??????.
?? ????
??? ?
??? ??
??? ????
??? ?
?? ??? ??
?? ??? ????
? ?????? ???
?????? ?? ??? ?
??? ???? ???
??? ??? ????
??? ???? ????
?????? ?? ????
??? ??? ?? ??
???? ????
??? ?? ??? ???
gradient, learning rate
? ? ???? ??? ??
Adam ?? Momentum ??
NAG ? ????
Nesterov Accelerated Gradient
?? Optimizer ? ??? ?? ??
gradient
learning rate
??? ? ??
??? ?????
?? ?? ???!
? ???!
??? ?? ???!
?. ??????????
??? ????? ????
? ?? ??? ?????
- 1 to 0 : 10?- 0 to 1 : 10?
MLP ? ???
? ??? ?????
???? ???? 20?
?? ????? ???? ????
???? input ??? ??
??? ????? ??? ????
??? ? ?? ?? : ??, ??, ??, ??
CNN ? ???
???? ???
???????
1?? : ??, ????, ??, ????
2?? :?, ?, ?, ?
3?? :???!
64 X 64
Convolution
Layer
32 X 32
Pooling
Layer
32 X 32
Convolution
Layer
16 X 16
Pooling
Layer
Fully-Connected
layer
64 X 64
Input
CNN ?? ??
CNN ? ??
???? ? ??
?? ??? ??? CNN ??? ?? ???
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 0 2 1 1 1 1 1 1 1 1 1 1 2 0 0 0
0 0 0 3 1 1 1 1 1 1 1 1 1 1 3 0 0 0
0 0 0 3 0 0 1 0 0 0 0 1 0 0 3 0 0 0
0 0 0 2 1 0 0 0 0 0 0 0 0 1 2 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0
0 0 0 2 1 0 1 1 1 1 1 1 0 1 2 0 0 0
0 0 0 3 0 0 1 2 1 2 2 1 0 0 3 0 0 0
0 0 0 3 0 0 2 1 2 1 1 2 0 0 3 0 0 0
0 0 0 3 0 0 1 1 1 1 1 1 0 0 3 0 0 0
0 0 0 3 0 0 1 0 1 0 0 1 0 0 3 0 0 0
0 0 0 3 0 0 1 1 0 0 0 0 0 0 3 0 0 0
0 0 0 3 0 0 2 2 0 0 0 0 0 0 3 0 0 0
0 0 0 2 1 0 2 2 0 0 0 0 0 0 3 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 1 2 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 1 0
0 1 0
0 1 1 1 1 1 1 1 0
0 3 1 1 1 1 1 3 0
0 3 1 1 0 1 1 3 0
0 1 1 1 0 1 1 1 0
0 0 1 2 0 2 1 0 0
0 1 1 1 1 1 1 1 0
0 3 1 2 2 2 1 3 0
0 3 0 2 2 2 0 3 0
0 3 0 1 1 1 0 3 0
0 3 1 2 0 0 0 3 0
0 1 1 1 0 0 1 2 0
0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Convolution Max Pooling
Convolution : ?? ??
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 0 2 1 1 1 1 1 1 1 1 1 1 2 0 0 0
0 0 0 3 1 1 1 1 1 1 1 1 1 1 3 0 0 0
0 0 0 3 0 0 1 0 0 0 0 1 0 0 3 0 0 0
0 0 0 2 1 0 0 0 0 0 0 0 0 1 2 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0
0 0 0 2 1 0 1 1 1 1 1 1 0 1 2 0 0 0
0 0 0 3 0 0 1 2 1 2 2 1 0 0 3 0 0 0
0 0 0 3 0 0 2 1 2 1 1 2 0 0 3 0 0 0
0 0 0 3 0 0 1 1 1 1 1 1 0 0 3 0 0 0
0 0 0 3 0 0 1 0 1 0 0 1 0 0 3 0 0 0
0 0 0 3 0 0 1 1 0 0 0 0 0 0 3 0 0 0
0 0 0 3 0 0 2 2 0 0 0 0 0 0 3 0 0 0
0 0 0 2 1 0 2 2 0 0 0 0 0 0 3 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 1 2 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0
0 3 1 1 1 1 1 3 0
0 3 1 1 0 1 1 3 0
0 1 1 1 0 1 1 1 0
0 0 1 2 0 2 1 0 0
0 1 1 1 1 1 1 1 0
0 3 1 2 2 2 1 3 0
0 3 0 2 2 2 0 3 0
0 3 0 1 1 1 0 3 0
0 3 1 2 0 0 0 3 0
0 1 1 1 0 0 1 2 0
0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Convolution Max Pooling
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 2 3 2 2 2 3 3 2 2 2 3 2 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 1 1 1 0 1 1 2 2 2 1 0 1 1 1 0 0
0 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 0 1 1 2 2 2 1 0 1 1 1 0 0
0 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0
0 0 1 1 1 1 2 2 1 0 0 0 0 1 1 1 0 0
0 0 1 1 1 1 2 2 1 0 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 2 3 3 3 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 3 2 3 2 3 2 0
0 1 1 0 0 0 1 1 0
0 1 1 1 0 1 1 1 0
0 0 1 1 0 1 1 0 0
0 1 1 1 0 1 1 1 0
0 1 1 2 2 2 1 1 0
0 1 1 2 2 2 1 1 0
0 1 1 0 0 0 1 1 0
0 1 1 2 1 0 1 1 0
0 1 1 1 0 0 1 1 0
0 0 1 2 3 3 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0
1 1 1
0 0 0
Convolution : ?? ??
1 0 1
0 1 0
1 0 1
0 1 2 2 2 2 2 1 0
0 2 3 3 2 3 3 2 0
0 2 2 1 0 1 2 2 0
0 1 3 1 0 1 3 1 0
0 0 1 2 0 2 1 0 0
0 1 3 2 2 2 3 1 0
0 2 2 3 5 3 2 2 0
0 2 2 5 3 3 2 2 0
0 2 2 2 1 1 2 2 0
0 2 2 2 1 0 2 2 0
0 1 3 2 1 1 3 2 0
0 0 1 3 2 2 3 1 0
0 0 0 1 2 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 2 1 2 1 2 2 1 2 1 2 1 1 0 0
0 0 1 1 2 2 0 2 1 1 2 0 2 2 1 1 0 0
0 0 2 2 3 1 3 1 2 2 1 3 1 3 2 2 0 0
0 0 2 1 2 1 0 1 0 0 1 0 1 2 1 2 0 0
0 0 1 2 1 1 0 0 0 0 0 0 1 1 2 1 0 0
0 0 1 0 3 0 1 0 0 0 0 1 0 3 0 1 0 0
0 0 0 1 0 3 0 1 0 0 1 0 3 0 1 0 0 0
0 0 0 0 1 1 2 1 0 0 1 2 1 1 0 0 0 0
0 0 0 0 1 1 2 1 0 0 1 2 1 1 0 0 0 0
0 0 0 1 0 3 0 1 0 0 1 0 3 0 1 0 0 0
0 0 1 0 3 0 2 0 2 1 1 2 0 3 0 1 0 0
0 0 1 2 1 2 0 3 0 2 2 0 2 1 2 1 0 0
0 0 2 1 2 0 3 0 5 2 2 3 0 2 1 2 0 0
0 0 2 1 2 2 0 5 0 3 3 0 2 2 1 2 0 0
0 0 2 1 2 0 2 0 3 1 1 2 0 2 1 2 0 0
0 0 2 1 2 1 0 2 0 1 1 0 1 2 1 2 0 0
0 0 2 1 2 1 1 1 1 0 0 0 0 2 1 2 0 0
0 0 2 1 2 1 2 2 1 0 0 0 0 2 1 2 0 0
0 0 1 2 1 2 2 2 1 0 0 0 0 2 1 2 0 0
0 0 1 0 3 1 2 1 1 0 0 0 1 1 2 1 0 0
0 0 0 1 0 3 0 1 0 0 0 1 0 3 0 1 0 0
0 0 0 0 1 0 3 1 2 2 2 1 3 0 1 0 0 0
0 0 0 0 0 1 0 2 1 1 1 2 0 1 0 0 0 0
0 0 0 0 0 0 1 1 2 2 2 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Convolution Max Pooling
Convolution : ???? ??
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 0 2 1 1 1 1 1 1 1 1 1 1 2 0 0 0
0 0 0 3 1 1 1 1 1 1 1 1 1 1 3 0 0 0
0 0 0 3 0 0 1 0 0 0 0 1 0 0 3 0 0 0
0 0 0 2 1 0 0 0 0 0 0 0 0 1 2 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0
0 0 0 2 1 0 1 1 1 1 1 1 0 1 2 0 0 0
0 0 0 3 0 0 1 2 1 2 2 1 0 0 3 0 0 0
0 0 0 3 0 0 2 1 2 1 1 2 0 0 3 0 0 0
0 0 0 3 0 0 1 1 1 1 1 1 0 0 3 0 0 0
0 0 0 3 0 0 1 0 1 0 0 1 0 0 3 0 0 0
0 0 0 3 0 0 1 1 0 0 0 0 0 0 3 0 0 0
0 0 0 3 0 0 2 2 0 0 0 0 0 0 3 0 0 0
0 0 0 2 1 0 2 2 0 0 0 0 0 0 3 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 1 2 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 0
0 3 1 1 1 1 1 3 0
0 3 1 1 0 1 1 3 0
0 1 1 1 0 1 1 1 0
0 0 1 2 0 2 1 0 0
0 1 1 1 1 1 1 1 0
0 3 1 2 2 2 1 3 0
0 3 0 2 2 2 0 3 0
0 3 0 1 1 1 0 3 0
0 3 1 2 0 0 0 3 0
0 1 1 1 0 0 1 2 0
0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Convolution Max Pooling
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0
0 0 1 1 1 2 0 1 1 1 2 0 1 2 1 0 0 0
0 0 1 1 1 1 2 0 1 1 1 2 0 2 2 1 0 0
0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0
0 0 0 2 1 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 3 0 0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 3 0 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 1 2 0 0 0 1 1 0 1 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0 2 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0 3 0 0 0 0 0
0 0 1 0 1 0 2 0 1 1 0 0 0 3 0 0 0 0
0 0 1 1 0 2 0 2 0 1 2 0 0 1 2 0 0 0
0 0 1 1 1 0 2 0 3 1 1 2 0 1 1 1 0 0
0 0 1 1 1 1 0 3 0 2 2 0 1 1 1 1 0 0
0 0 1 1 1 0 1 0 2 0 1 2 0 1 1 1 0 0
0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0
0 0 1 1 1 1 2 1 0 0 0 0 0 1 1 1 0 0
0 0 0 2 1 0 1 2 1 0 0 0 0 1 1 1 0 0
0 0 0 0 3 0 0 1 1 0 0 0 1 0 1 1 0 0
0 0 0 0 0 3 0 0 0 0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 3 1 1 1 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 2 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0
0 1 2 2 1 2 2 2 0
0 2 1 1 0 0 1 1 0
0 0 3 0 0 1 1 1 0
0 0 1 2 0 2 1 0 0
0 1 1 2 1 0 3 0 0
0 1 2 2 3 2 1 2 0
0 1 1 3 2 2 1 1 0
0 1 1 1 1 0 1 1 0
0 2 1 2 1 0 1 1 0
0 0 3 1 1 1 1 1 0
0 0 0 3 1 1 1 1 0
0 0 0 0 1 1 1 0 0
1 0 0
0 1 0
0 0 1
Convolution : ??? ??
?? ??? ???
??? ? ??? ???
???? ??
Convolution?
Pooling?
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0
0 0 0 0 0 1 1 3 3 3 3 0 0 0 0 0 0 0
0 0 0 0 0 2 2 3 3 3 3 0 0 0 0 0 0 0
0 0 0 1 1 3 3 3 3 3 3 0 0 0 0 0 0 0
0 0 0 2 2 3 3 3 3 3 3 0 0 0 0 0 0 0
0 0 0 2 2 2 2 3 3 3 3 0 0 0 0 0 0 0
0 0 0 1 1 1 1 3 3 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0
0 0 0 1 1 1 1 3 3 3 3 1 1 1 1 0 0 0
0 0 0 2 2 2 2 3 3 3 3 2 2 2 2 0 0 0
0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0
0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0
0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 3 3 3 0 0 0
0 1 3 3 3 3 0 0 0
0 2 3 3 3 3 0 0 0
0 1 1 3 3 3 0 0 0
0 0 0 3 3 3 0 0 0
0 0 0 3 3 3 0 0 0
0 0 0 3 3 3 0 0 0
0 2 2 3 3 3 2 2 0
0 3 3 3 3 3 3 3 0
0 2 2 2 2 2 2 2 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0
0 0 0 0 1 1 3 3 3 3 0 0 0 0 0 0 0 0
0 0 0 0 2 2 3 3 3 3 0 0 0 0 0 0 0 0
0 0 1 1 3 3 3 3 3 3 0 0 0 0 0 0 0 0
0 0 2 2 3 3 3 3 3 3 0 0 0 0 0 0 0 0
0 0 2 2 2 2 3 3 3 3 0 0 0 0 0 0 0 0
0 0 1 1 1 1 3 3 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0
0 0 1 1 1 1 3 3 3 3 1 1 1 1 0 0 0 0
0 0 2 2 2 2 3 3 3 3 2 2 2 2 0 0 0 0
0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0
0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0
0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 1 3 3 0 0 0 0
0 1 3 3 3 0 0 0 0
0 2 3 3 3 0 0 0 0
0 1 1 3 3 0 0 0 0
0 0 0 3 3 0 0 0 0
0 0 0 3 3 0 0 0 0
0 0 0 3 3 0 0 0 0
0 2 2 3 3 2 2 0 0
0 3 3 3 3 3 3 0 0
0 2 2 2 2 2 2 0 0
0 0 0 0 0 0 0 0 0
MLP - ? 38 pixel ??
Pooling - ? 12 pixel ??
?? pixel ?
? 70% ??
???? 1? ??? ?
??? ??? ?? ??
??? ? ??? ? ??
?? ??
Pooling?
CNN ? ???
??? ??????
?+
= ? ? ? ?
??
??
MLP ? ?????
??? ?? ?????
12 X 12
Convolution
Layer
6 X 6
Pooling
Layer
4 X 4
Convolution
Layer
2 X 2
Pooling
Layer
4 X 1
Fully-Connected
layer
15 X 15
Input
4 ? 4
??????????? ??????
2 ? 2
?????????? ????
3 ? 3
??????????? ??????
2 ? 2
?????????? ????
? ? 1 ? ? + 1 ?, ? +2
??? ?????
???????
3 ? 3
??????????? ??????
?, ? +2? + 1
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1
? ?+1
? ?? Cost ?
?? ??? ???? ???
??? ??????
?, ? +2? + 1
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1
??
?? ?+1 ? ??? ??
????? ?
?????
?, ? +2? + 1
? ?+1
= ?(? ?+1
) | ? ? = ?
??
?? ?+1 =
??
?? ?
?? ?
?? ?
?? ?
? ?? ?+1
? ?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
? ? = ?
?
? ?
?+2 ?? ?
?+1
?? ?> ?>
?+1
= ??? ??(? ??
?+1)
?? ?00
?+1
= ?00
?+1
, ?01
?+1
, ?10
?+1
, ?11
?+1
? ??
?+1 = ?
?=0
??1
?
?=0
??1
? ??
?+1
?(?+?)(?+?)
?
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1
?, ? +2? + 1
? ??
?+1 = ?(? ?+1
) | ? ? = ?
??
?? ?+1 =
??
?? ?
?? ?
?? ?
?? ?
? ?? ?+1
? ?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
? ? = ?
?
? ?
?+2 ?? ?
?+1
?? ?> ?>
?+1
= ??? ??(? ??
?+1)
?? ?00
?+1
= ?00
?+1
, ?01
?+1
, ?10
?+1
, ?11
?+1
? ??
?+1 = ?
?=0
??1
?
?=0
??1
? ??
?+1
?(?+?)(?+?)
?
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1
? ?
? Fully Connected Layer ?
?? ? ?? ? ???
?, ? +2? + 1
? ??
?+1 = ?(? ?+1
) | ? ? = ?
??
?? ?+1 =
??
?? ?
?? ?
?? ?
?? ?
? ?? ?+1
? ?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
? ? = ?
?
? ?
?+2 ?? ?
?+1
?? ?> ?>
?+1
= ??? ??(? ??
?+1)
?? ?00
?+1
= ?00
?+1
, ?01
?+1
, ?10
?+1
, ?11
?+1
? ??
?+1 = ?
?=0
??1
?
?=0
??1
? ??
?+1
?(?+?)(?+?)
?
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1
?? ?> ?>
?+1
? MaxPooling Layer ?
?? ? ? ???
?, ? +2? + 1
? ??
?+1 = ?(? ?+1
) | ? ? = ?
??
?? ?+1 =
??
?? ?
?? ?
?? ?
?? ?
? ?? ?+1
? ?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
? ? = ?
?
? ?
?+2 ?? ?
?+1
?? ?> ?>
?+1
= ??? ??(? ??
?+1)
?? ?00
?+1
= ?00
?+1
, ?01
?+1
, ?10
?+1
, ?11
?+1
? ??
?+1 = ?
?=0
??1
?
?=0
??1
? ??
?+1
?(?+?)(?+?)
?
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1
?? ?00
?+1
? MaxPooling Layer
? ??? ?? ??? ???
???? ??? ???
?, ? +2? + 1
? ??
?+1 = ?(? ?+1
) | ? ? = ?
??
?? ?+1 =
??
?? ?
?? ?
?? ?
?? ?
? ?? ?+1
? ?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
? ? = ?
?
? ?
?+2 ?? ?
?+1
?? ?> ?>
?+1
= ??? ??(? ??
?+1)
?? ?00
?+1
= ?00
?+1
, ?01
?+1
, ?10
?+1
, ?11
?+1
? ??
?+1 = ?
?=0
??1
?
?=0
??1
? ??
?+1
?(?+?)(?+?)
?
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1 ? ??
?+1? ? ??
?+1? ??? ???
??? ? ?? ????
?? ????? ??? ???
?? ????? ?????
?, ? +2? + 1
? ??
?+1 = ?(? ?+1
) | ? ? = ?
??
?? ?+1 =
??
?? ?
?? ?
?? ?
?? ?
? ?? ?+1
? ?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
? ? = ?
?
? ?
?+2 ?? ?
?+1
?? ?> ?>
?+1
= ??? ??(? ??
?+1)
?? ?00
?+1
= ?00
?+1
, ?01
?+1
, ?10
?+1
, ?11
?+1
? ??
?+1 = ?
?=0
??1
?
?=0
??1
? ??
?+1
?(?+?)(?+?)
?
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1
? ??
?+1? ?? ?> ?>
?
? 3 ? 3 ???? ?????
? ??? ? ?? ????
?, ? +2? + 1
? ??
?+1 = ?(? ?+1
) | ? ? = ?
??
?? ?+1 =
??
?? ?
?? ?
?? ?
?? ?
? ?? ?+1
? ?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
?? ?+1
? ? = ?
?
? ?
?+2 ?? ?
?+1
?? ?> ?>
?+1
= ??? ??(? ??
?+1)
?? ?00
?+1
= ?00
?+1
, ?01
?+1
, ?10
?+1
, ?11
?+1
? ??
?+1 = ?
?=0
??1
?
?=0
??1
? ??
?+1
?(?+?)(?+?)
?
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1
? ?+1
? ????? ? ?+1
? Cost ?
??? ??? ????
??
?? ?+1 ??? ???
?, ? +2? + 1
??
?? ?+1 =
??
?? ?
?
?? ?
?
?? ?
?
?? ?
?
? ?? ?> ?>
?+1
? ?? ?> ?>
?+1
?? ??
?+1
?? ??
?+1
?? ??
?+1
?? ??
?+1
?? ??
?+1
?? ?
?
? ?? ?> ?>
?+1 =
? σ ?> ?> ? ?> ?>
?+2
?? ?> ?>
?+1
? ?? ?> ?>
?+1 = ? ?> ?>
?+2
? ?? ?> ?>
?+1
?? ??
?+1 =
?max[? ?+1]
?? ??
?+1 =
1, ?? ? ??
?+1
= max(?)
{ 0, ?????????
?? ??
?+1
?? ??
?+1 =
? σ ? σ ? ? ??
?+1
??(?>+?)(?>+?)
?
?? ??
?+1
= ?
?
?
?
? ??
?+1
??(?>+?)(?>+?)
?
= ?????? ? ? ?
?
? ?1
??
?? ?
?
2 ? 2
?????????? ????
????? ? ?>, ?>
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
?? ?> ?>
?
? ??
?+1, ? ??
?+1
??
?? ?+1 ? ??? ???? ??? ????
??? ??? ???? ?? ???
2 ? 2
?????????? ????
????? ? ?>, ?>
?, ? +2? + 1
? ?
?? ?> ?>
?+1
1 ? 4 | ? ?+2
?????? ??????
3 ? 3 | ? ?+1
??????????? ??????
????? ? ?, ?
??
?? ?+1 =
??
?? ?
?
?? ?
?
?? ?
?
?? ?
?
? ?? ?> ?>
?+1
? ?? ?> ?>
?+1
?? ??
?+1
?? ??
?+1
?? ??
?+1
?? ??
?+1
?? ??
?+1
?? ?> ?>
?
= ? ?????? ? ? ?
? ? ? ?> ?>
?+2
? ?
?
?
?
? ??
?+1
??(?>+?)(?>+?)
?
? ??
?+1, ? ??
?+1
?+ = ? ? ? ?
??
??
= ? + ? ? ?????? ? ? ?
?
? ? ?> ?>
?+2
? ?
?
?
?
? ??
?+1
??(?>+?)(?>+?)
?
?? ??? Filter ?
?????? ????´
??? ???????
VGG, GoogleNet, ResNet ?
?? ???? ?? ??? ???
??? ???? ?? ???? ???? ???
# Layers ?? ??? ?? ???
??? ?? ??? ???? ????? ???
?? ? ???!
?? ??? ?? ??? ???
[GomGuard] ???? YOLO ?? - ??? ??? ?? ???
?? ?????
? ???? ?? ??
??? ?? ?????
???? ?? ???
???? CNN ??
?????
Detect Model : OverFeat
NewYork Univ - 2014
??? ?????
?? ??? ????
?? ???? ????
Detect Model : OverFeat
NewYork Univ - 2014
??? ?????
???? ???
??? ?? ??? ?? ??
Detect Model : OverFeat
NewYork Univ - 2014
??? ??? ??? ???? ??
Detect Model : OverFeat
NewYork Univ - 2014
?? ??? ???? ????? ???
??? OverFeat?
??? ?? ?? ???
?? ?? ????
?? ?? ??? ?? ??
CNN ?? ?????
Detect Model : R-CNN
UC Berkeley - 2014
Input Region Proposals
(Selective Search)
classifier
Compute
Regions
DOG
CAT
Classify
# ??? ?? ??
??? ??
OverFeat ??? ?????
??? ??? ???
???? ??
R-CNN ?? ?? ??? ??
Region proposal, Classifier
? ??
Classifier ? ??
?????
Detect Model : Fast R-CNN
Microsoft - 2015
Region Proposals
(Selective Search)
Compute
Regions
classifier
Classify
DOG
CAT
convolution
& pooling
R-CNN ? ??? ??
?? ?? ??
?? ?? ??
Convolution, Pooling ?? ??
???? ?? ?? Fast R-CNN
???
Region Proposal ???
?????
Detect Model : Faster R-CNN
Microsoft - 2015??? Region Proposal ??? ???
Region Proposal Network ?? ??
Region Proposal Network
R-CNN Fast R-CNN Faster R-CNN
Time per image 50 secs 2 secs 0.2 secs
SpeedUp 1x 25x 250x
mAP 66.00% 66.90% 66.90%
R-CNN benchmark
Faster R-CNN ? ?? ?? 5 frame ? ??? ?????
Real-Time Image Detection ? ???? ????
???? Yolo, SSD ?
??? ???? ??? ??
?? ?? ????
Image Detection ?
??? ?? ???
???? ????
?? ???
?? ??? ? ??? ??
??? ?? ? ????? ???
????
???? ??? ?? ?? ??? ???
RNN, Gan ? ?????´
gomguard.tistory.com
?????
knholic@gmail.com
gomguard.tistory.com

More Related Content

What's hot (20)

CNN ???? ??? ??? ??? (VGG ?? ??)
CNN ???? ??? ??? ??? (VGG ?? ??)CNN ???? ??? ??? ??? (VGG ?? ??)
CNN ???? ??? ??? ??? (VGG ?? ??)
Lee Seungeun
?
1???? GAN(Generative Adversarial Network) ?? ????
1???? GAN(Generative Adversarial Network) ?? ????1???? GAN(Generative Adversarial Network) ?? ????
1???? GAN(Generative Adversarial Network) ?? ????
NAVER Engineering
?
Introduction to Deep Learning
Introduction to Deep Learning Introduction to Deep Learning
Introduction to Deep Learning
Salesforce Engineering
?
侮蚊膿晒僥楼の蛍柊晒?檎鰻鰻旋喘の強?檎2禽2の府初をもとに?
侮蚊膿晒僥楼の蛍柊晒?檎鰻鰻旋喘の強?檎2禽2の府初をもとに?侮蚊膿晒僥楼の蛍柊晒?檎鰻鰻旋喘の強?檎2禽2の府初をもとに?
侮蚊膿晒僥楼の蛍柊晒?檎鰻鰻旋喘の強?檎2禽2の府初をもとに?
Jun Okumura
?
???????????? ?????????????????? 8?
???????????? ?????????????????? 8????????????? ?????????????????? 8?
???????????? ?????????????????? 8?
Sunggon Song
?
[????] Graph Convolutional Network (GCN)
[????] Graph Convolutional Network (GCN)[????] Graph Convolutional Network (GCN)
[????] Graph Convolutional Network (GCN)
Donghyeon Kim
?
Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for GraphsLearning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs
Takuya Akiba
?
Ai ????
Ai ????Ai ????
Ai ????
?? ?
?
? ?? ??? ??? ??? ?? ?????. (Deep Learning for Natural Language Processing)
? ?? ??? ??? ??? ?? ?????. (Deep Learning for Natural Language Processing)? ?? ??? ??? ??? ?? ?????. (Deep Learning for Natural Language Processing)
? ?? ??? ??? ??? ?? ?????. (Deep Learning for Natural Language Processing)
WON JOON YOO
?
?? ?? ?? Reinforcement Learning an introduction
?? ?? ?? Reinforcement Learning an introduction?? ?? ?? Reinforcement Learning an introduction
?? ?? ?? Reinforcement Learning an introduction
Taehoon Kim
?
Deep Learning - RNN and CNN
Deep Learning - RNN and CNNDeep Learning - RNN and CNN
Deep Learning - RNN and CNN
Pradnya Saval
?
[PR12] intro. to gans jaejun yoo
[PR12] intro. to gans   jaejun yoo[PR12] intro. to gans   jaejun yoo
[PR12] intro. to gans jaejun yoo
JaeJun Yoo
?
RLCode? A3C ?? ?? ????
RLCode? A3C ?? ?? ????RLCode? A3C ?? ?? ????
RLCode? A3C ?? ?? ????
Woong won Lee
?
AlexNet
AlexNetAlexNet
AlexNet
Bertil Hatt
?
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
?
[226]???????? ?????????????? ????? ???????
[226]???????? ?????????????? ????? ???????[226]???????? ?????????????? ????? ???????
[226]???????? ?????????????? ????? ???????
NAVER D2
?
???? ???? ??? ??? ???
???? ???? ??? ??? ??????? ???? ??? ??? ???
???? ???? ??? ??? ???
Kwangsik Lee
?
Cnn ????
Cnn ????Cnn ????
Cnn ????
?? ?
?
Recurrent neural network
Recurrent neural networkRecurrent neural network
Recurrent neural network
Syed Annus Ali SHah
?
Anchor free object detection by deep learning
Anchor free object detection by deep learningAnchor free object detection by deep learning
Anchor free object detection by deep learning
Yu Huang
?
CNN ???? ??? ??? ??? (VGG ?? ??)
CNN ???? ??? ??? ??? (VGG ?? ??)CNN ???? ??? ??? ??? (VGG ?? ??)
CNN ???? ??? ??? ??? (VGG ?? ??)
Lee Seungeun
?
1???? GAN(Generative Adversarial Network) ?? ????
1???? GAN(Generative Adversarial Network) ?? ????1???? GAN(Generative Adversarial Network) ?? ????
1???? GAN(Generative Adversarial Network) ?? ????
NAVER Engineering
?
侮蚊膿晒僥楼の蛍柊晒?檎鰻鰻旋喘の強?檎2禽2の府初をもとに?
侮蚊膿晒僥楼の蛍柊晒?檎鰻鰻旋喘の強?檎2禽2の府初をもとに?侮蚊膿晒僥楼の蛍柊晒?檎鰻鰻旋喘の強?檎2禽2の府初をもとに?
侮蚊膿晒僥楼の蛍柊晒?檎鰻鰻旋喘の強?檎2禽2の府初をもとに?
Jun Okumura
?
???????????? ?????????????????? 8?
???????????? ?????????????????? 8????????????? ?????????????????? 8?
???????????? ?????????????????? 8?
Sunggon Song
?
[????] Graph Convolutional Network (GCN)
[????] Graph Convolutional Network (GCN)[????] Graph Convolutional Network (GCN)
[????] Graph Convolutional Network (GCN)
Donghyeon Kim
?
Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for GraphsLearning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs
Takuya Akiba
?
Ai ????
Ai ????Ai ????
Ai ????
?? ?
?
? ?? ??? ??? ??? ?? ?????. (Deep Learning for Natural Language Processing)
? ?? ??? ??? ??? ?? ?????. (Deep Learning for Natural Language Processing)? ?? ??? ??? ??? ?? ?????. (Deep Learning for Natural Language Processing)
? ?? ??? ??? ??? ?? ?????. (Deep Learning for Natural Language Processing)
WON JOON YOO
?
?? ?? ?? Reinforcement Learning an introduction
?? ?? ?? Reinforcement Learning an introduction?? ?? ?? Reinforcement Learning an introduction
?? ?? ?? Reinforcement Learning an introduction
Taehoon Kim
?
Deep Learning - RNN and CNN
Deep Learning - RNN and CNNDeep Learning - RNN and CNN
Deep Learning - RNN and CNN
Pradnya Saval
?
[PR12] intro. to gans jaejun yoo
[PR12] intro. to gans   jaejun yoo[PR12] intro. to gans   jaejun yoo
[PR12] intro. to gans jaejun yoo
JaeJun Yoo
?
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
?
[226]???????? ?????????????? ????? ???????
[226]???????? ?????????????? ????? ???????[226]???????? ?????????????? ????? ???????
[226]???????? ?????????????? ????? ???????
NAVER D2
?
???? ???? ??? ??? ???
???? ???? ??? ??? ??????? ???? ??? ??? ???
???? ???? ??? ??? ???
Kwangsik Lee
?
Cnn ????
Cnn ????Cnn ????
Cnn ????
?? ?
?
Anchor free object detection by deep learning
Anchor free object detection by deep learningAnchor free object detection by deep learning
Anchor free object detection by deep learning
Yu Huang
?

Similar to [GomGuard] ???? YOLO ?? - ??? ??? ?? ??? (20)

03. linear regression
03. linear regression03. linear regression
03. linear regression
Jeonghun Yoon
?
Neural network (perceptron)
Neural network (perceptron)Neural network (perceptron)
Neural network (perceptron)
Jeonghun Yoon
?
04. logistic regression ( ???? ?? )
04. logistic regression ( ???? ?? )04. logistic regression ( ???? ?? )
04. logistic regression ( ???? ?? )
Jeonghun Yoon
?
Gaussian Mixture Model
Gaussian Mixture ModelGaussian Mixture Model
Gaussian Mixture Model
KyeongUkJang
?
???? ???? ??? ???? ????
???? ???? ??? ???? ???????? ???? ??? ???? ????
???? ???? ??? ???? ????
Woong won Lee
?
02. naive bayes classifier revision
02. naive bayes classifier   revision02. naive bayes classifier   revision
02. naive bayes classifier revision
Jeonghun Yoon
?
Chapter 7 Regularization for deep learning - 2
Chapter 7 Regularization for deep learning - 2Chapter 7 Regularization for deep learning - 2
Chapter 7 Regularization for deep learning - 2
KyeongUkJang
?
? ?? ??? ?? ??? ?? PPT! (Deep Learning for Natural Language Processing)
? ?? ??? ?? ??? ?? PPT! (Deep Learning for Natural Language Processing)? ?? ??? ?? ??? ?? PPT! (Deep Learning for Natural Language Processing)
? ?? ??? ?? ??? ?? PPT! (Deep Learning for Natural Language Processing)
WON JOON YOO
?
?? ??(Farey sequence)
?? ??(Farey sequence)?? ??(Farey sequence)
?? ??(Farey sequence)
?? ?
?
???? 08. ?? ?? (Linear Transformation)
???? 08. ?? ?? (Linear Transformation)???? 08. ?? ?? (Linear Transformation)
???? 08. ?? ?? (Linear Transformation)
AHRA CHO
?
Deep Learning from scratch 3? : neural network
Deep Learning from scratch 3? : neural networkDeep Learning from scratch 3? : neural network
Deep Learning from scratch 3? : neural network
JinSooKim80
?
Deep Learning from scratch 4? : neural network learning
Deep Learning from scratch 4? : neural network learningDeep Learning from scratch 4? : neural network learning
Deep Learning from scratch 4? : neural network learning
JinSooKim80
?
Optimization algorithms in machine learning
Optimization algorithms in machine learningOptimization algorithms in machine learning
Optimization algorithms in machine learning
Yonsei University
?
?????????????????????????????? Ch2
?????????????????????????????? Ch2?????????????????????????????? Ch2
?????????????????????????????? Ch2
HyeonSeok Choi
?
???????? ??????????? ?????????? #3
???????? ??????????? ?????????? #3???????? ??????????? ?????????? #3
???????? ??????????? ?????????? #3
Haesun Park
?
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
jdo
?
Support Vector Machine - ????? ?????? OpenCV ??????.pdf
Support Vector Machine - ????? ?????? OpenCV ??????.pdfSupport Vector Machine - ????? ?????? OpenCV ??????.pdf
Support Vector Machine - ????? ?????? OpenCV ??????.pdf
Hansol Kang
?
Decision tree
Decision treeDecision tree
Decision tree
Jeonghun Yoon
?
Variational AutoEncoder(VAE)
Variational AutoEncoder(VAE)Variational AutoEncoder(VAE)
Variational AutoEncoder(VAE)
??? ???
?
Multinomial classification and application of ML
Multinomial classification and application of MLMultinomial classification and application of ML
Multinomial classification and application of ML
?? ?
?
Neural network (perceptron)
Neural network (perceptron)Neural network (perceptron)
Neural network (perceptron)
Jeonghun Yoon
?
04. logistic regression ( ???? ?? )
04. logistic regression ( ???? ?? )04. logistic regression ( ???? ?? )
04. logistic regression ( ???? ?? )
Jeonghun Yoon
?
Gaussian Mixture Model
Gaussian Mixture ModelGaussian Mixture Model
Gaussian Mixture Model
KyeongUkJang
?
???? ???? ??? ???? ????
???? ???? ??? ???? ???????? ???? ??? ???? ????
???? ???? ??? ???? ????
Woong won Lee
?
02. naive bayes classifier revision
02. naive bayes classifier   revision02. naive bayes classifier   revision
02. naive bayes classifier revision
Jeonghun Yoon
?
Chapter 7 Regularization for deep learning - 2
Chapter 7 Regularization for deep learning - 2Chapter 7 Regularization for deep learning - 2
Chapter 7 Regularization for deep learning - 2
KyeongUkJang
?
? ?? ??? ?? ??? ?? PPT! (Deep Learning for Natural Language Processing)
? ?? ??? ?? ??? ?? PPT! (Deep Learning for Natural Language Processing)? ?? ??? ?? ??? ?? PPT! (Deep Learning for Natural Language Processing)
? ?? ??? ?? ??? ?? PPT! (Deep Learning for Natural Language Processing)
WON JOON YOO
?
?? ??(Farey sequence)
?? ??(Farey sequence)?? ??(Farey sequence)
?? ??(Farey sequence)
?? ?
?
???? 08. ?? ?? (Linear Transformation)
???? 08. ?? ?? (Linear Transformation)???? 08. ?? ?? (Linear Transformation)
???? 08. ?? ?? (Linear Transformation)
AHRA CHO
?
Deep Learning from scratch 3? : neural network
Deep Learning from scratch 3? : neural networkDeep Learning from scratch 3? : neural network
Deep Learning from scratch 3? : neural network
JinSooKim80
?
Deep Learning from scratch 4? : neural network learning
Deep Learning from scratch 4? : neural network learningDeep Learning from scratch 4? : neural network learning
Deep Learning from scratch 4? : neural network learning
JinSooKim80
?
Optimization algorithms in machine learning
Optimization algorithms in machine learningOptimization algorithms in machine learning
Optimization algorithms in machine learning
Yonsei University
?
?????????????????????????????? Ch2
?????????????????????????????? Ch2?????????????????????????????? Ch2
?????????????????????????????? Ch2
HyeonSeok Choi
?
???????? ??????????? ?????????? #3
???????? ??????????? ?????????? #3???????? ??????????? ?????????? #3
???????? ??????????? ?????????? #3
Haesun Park
?
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
[?????? ????] 10. ??? ???? ?? 1 - 1. ??? ??
jdo
?
Support Vector Machine - ????? ?????? OpenCV ??????.pdf
Support Vector Machine - ????? ?????? OpenCV ??????.pdfSupport Vector Machine - ????? ?????? OpenCV ??????.pdf
Support Vector Machine - ????? ?????? OpenCV ??????.pdf
Hansol Kang
?
Variational AutoEncoder(VAE)
Variational AutoEncoder(VAE)Variational AutoEncoder(VAE)
Variational AutoEncoder(VAE)
??? ???
?
Multinomial classification and application of ML
Multinomial classification and application of MLMultinomial classification and application of ML
Multinomial classification and application of ML
?? ?
?

[GomGuard] ???? YOLO ?? - ??? ??? ?? ???

  • 4. ??? ?? ??? ?? ??? ?? ??? ?? ?? ???? ??? ??? ????? ???
  • 5. ? ? ?? ??? ?? [??? ?? ??? ??] ?? ???
  • 6. ??? ??? ??? : ?? ???? ???? ??? ??? ???? ??? ??? ?? ????? ?? ???? ???.
  • 7. ??? ?? ?? ?? ?? : Perceptron ? = 1 ( ?1 ?1+ ?2 ?2 + ? − 0 ) 0 ( ?1 ?1+ ?2 ?2 + ? < 0 ){ x1 ?1 ?2 ?1 ?2 ? Bias Input Input Activation Function ? Weight
  • 8. Perceptron ? ???? ?? ??: ?? ?? ???? ???????? (?) = 1 (? − 0 ) 0 (? < 0 ){ ???? ??? ?? 0? ?? ?? ??
  • 9. ?? ??? AND ??? ?? ?1 ?2 ? AND Gate ? ???? ?1 ?2 ? 0 0 0 0 1 0 1 0 0 1 1 1 AND Gate ? ???
  • 10. AND ???? ?? ?? ?? ?? 0 0 0 1 ??? ??? 0 ? 1? ??? ? ?? AND ???
  • 11. ?? XOR ?????? 0 0 1 1 ? ? ? ? ??? ???? 0 ? 1? ??? ? ?? XOR ???
  • 12. XOR ??? ?1 ?2 ?AND AND OR XOR ???? AND ? OR ???? ???? ?? ? ???
  • 13. ?? ???? ?? ?? ???? : MLP Input Layer ?1 ?2 x11 Output Layer ? ?> Hidden Layer x11 ?2 ?1 ?1 > ?2 > ?00 (0) ?01 (0) ?10 (0) ?11 (0) ?20 (0) ?21 (0) ?00 (1) ?10 (1) ?20 (1)
  • 14. MLP ? XOR ???? ???? Input Layer ?1 ?2 x1? Hidden Layer NAND Gate OR Gate Output Layer XOR Gate MLP ?? XOR ???? ??? ? ? ??
  • 15. Layer ? ??? ?? ??? ? ?? ?? 1 hidden layer 2 hidden layer 3 hidden layer
  • 16. ?? ?? ? ?? ? ???? MLP ? ??? ???????
  • 17. ?? ??? ?? ?? ????
  • 18. ??? ? ?? ?? ??? ?? ?? ??? ?? ?? ???? ???? ?? ??? ???
  • 19. ?? ??? ? ????? ??? ?????? ???? ?? ?????? ??? ? ??
  • 20. ??? ?? ?? ??? ?? ???? ?? ?? ?? ??? ??? ???? ?? ?? ?????
  • 21. ?? ??? ??? ?? ?? ??? ??? ?? ??? ?? ??
  • 22. 1. ????? ??? 2. ?(????????) ? ??? 3. weight ? ???? ?? ? ??? = ? ? ???(?)
  • 23. ?? ???? ???? : MSE Minimum Squared Error = 1 ? σ? ??? ? ?? 2 ?0 ?1 ?2 ?3 ?4 ??0 ??1 ??2 ??3 ??4 # ? ??? ???? ??? ???? ???? ??
  • 24. ?? ???? ???? : ACE Averaged Cross Entropy Error = ? 1 ? σ? ?? ??? ??? ?0 ?1 ?2 ?3 ?4 log(??0) log(??1) log(??2) log(??3) log(??4) # ??? One-hot ??? ?? ?? ???? ????
  • 25. ?+ = ? ? ? ? ?? ?? ??? ????? ???? learning rate : ??? ??? ???? gradient : ?? ???? ????
  • 27. ??? 0?? 1?? ????? ?? ??? ??? ????
  • 28. ???????(?) = 1 1+??? ??? ?? Sigmoid ???? ???????? (?) = 1 (? − 0 ) 0 (? < 0 ){
  • 29. ?? ??? Sigmoid ? ???? ??? ??
  • 30. MLP ? ????? ??? ??? ??? ?????
  • 31. ?10 (0) ?11 (0) ?1 0.5 0.15 0.2 0.075 0.1 ?11 ?11 ?10 (1) ?20 (1) ?1 ?21 ?21 ?20 ?20 ?11 (1) ?21 (1) ?2 ?10 ?10 0.4 0.5 0.45 0.55 0.518 0.524 0.207 0.209 0.236 0.288 0.609 0.633 0.3 0.9 ???? = 1 2 ? ?????? ? ?????? 2 = 1 2 0.3 ? 0.609 2 + 1 2 0.9 ? 0.621 2 = 0.087 ??? ??? ??? ??? ??? ??? ?? ? ?? ???? 0.087 Sigmoid Function Sigmoid Function Sigmoid Function Sigmoid Function
  • 32. ????? ??10 (1) = ????? ??20 ??20 ??20 ??20 ??10 (1) ???? = 1 2 ?????? ?1 ? ?20 2 + ?????? ?2 ? ?21 2 ????? ??20 = ?????? ?1 ? ?20 ? ?1 + 0 ?20 = ???????(?20) ??20 ??20 = ??????? ?20 ? 1 ? ??????? ?20 ?20 = ?10 (1) ?10 + ?20 (1) ?20 ??20 ??10 (1) = ?10 + 0 ?10 (1) ?1?20 ?20 0.4 0.207 0.609 0.3 0.518 ?10 ?10 ?? ?10 (1) ? ????? ????? ??20 ??20 ??20 ??20 ??10 (1)
  • 33. ?10 (1) ?1?20 ?20 0.4 0.207 0.609 0.3 0.518 ?10 ?10 ????? ??10 (1) = ????? ??20 ??20 ??20 ??20 ??10 (1) = ? ?????? ?1 ? ?20 ? ??????? ?20 ? 1 ? ??????? ?20 ? ?10 = ? 0.3 ? 0.609 ? 0.609 ? 1 ? 0.609 ? 0.518 = 0.0381 ?10 1 + = ? ? ? ? ????? ??10 1 = 0.4 ? 0.5 ? 0.0381 = 0.380 ?10 1 ? ?? ??? ??? ??? 0.0381, ??? ?10 1 + ?? 0.380
  • 34. ? ?? ?? ? ?? ??? ?? ?????
  • 35. ?10 (0) ?1 0.5 0.15 0.075 ?11 ?11 ?10 (1) ?20 (1) ?1 ?21 ?21 ?20 ?20 ?11 (1) ?21 (1) ?2 ?10 ?10 0.4 0.5 0.45 0.55 0.518 0.524 0.207 0.209 0.236 0.288 0.609 0.633 0.3 0.9 ?10 (0) ? ?10 (1) ? ?? ? ?, ? ? ??? ? ??? ????
  • 36. ?10 (0) ?1 0.5 0.15 0.075 ?11 ?11 ?10 (1) ?20 (1) ?1 ?21 ?21 ?20 ?20 ?11 (1) ?21 (1) ?2 ?10 ?10 0.4 0.5 0.45 0.55 0.518 0.524 0.207 0.209 0.236 0.288 0.609 0.633 0.3 0.9 ??? ???? ?? ? ? ?1? ? ?2 ? ?? ???? ???
  • 37. ?10 (0) ?1 0.5 0.15 0.075 ?11 ?11 ?10 (1) ?20 (1) ?1 ?21 ?21 ?20 ?20 ?11 (1) ?21 (1) ?2 ?10 ?10 0.4 0.5 0.45 0.55 0.518 0.524 0.207 0.209 0.236 0.288 0.609 0.633 0.3 0.9 ????? ??10 (0) = ????? ??10 ??10 ??10 ??10 ??10 (0) ???? = ? ?1 + ? ?2
  • 38. ?10 (1) ?1?20 ?20 0.4 0.207 0.609 0.3 0.518 ?10 ?10?10 (0) ?1 0.5 0.15 0.075 ????? ??10 (0) = ( ??1 ??10 + ??2 ??10 ) ??10 ??10 ??10 ??10 (0) ??1 ??10 = ??1 ??20 ??20 ??20 ??20 ??10 = ? ?????? ?1 ? ?20 ? ??????? ?20 ? 1 ? ??????? ?20 ? ?10 (1) = ? 0.3 ? 0.609 ? 0.609 ? 1 ? 0.609 ? 0.4 = 0.0294 # ?10 ? ?1 ? ??? ??? 0.0294
  • 39. ?11 (1) ?2?21 ?21 0.5 0.209 0.621 0.9 0.518 ?10 ?10?10 (0) ?1 0.5 0.15 0.075 ????? ??10 (0) = ( ??1 ??10 + ??2 ??10 ) ??10 ??10 ??10 ??10 (0) ??2 ??10 = ??2 ??21 ??21 ??21 ??21 ??10 = ? ?????? ?2 ? ?21 ? ??????? ?21 ? 1 ? ??????? ?21 ? ?11 (1) = ? 0.9 ? 0.621 ? 0.621 ? 1 ? 0.621 ? 0.5 = ? 0.0328 # ?10 ? ?2 ? ??? ??? -0.0328
  • 40. ????? ??10 (0) = ( ??1 ??10 + ??2 ??10 ) ??10 ??10 ??10 ??10 (0) ??2 ??10 = ?0.0345 ??1 ??10 = 0.0305 ??10 ??10 = ??????? ?10 ? 1 ? ??????? ?10 = 0.0294 ? 0.0328 ? 0.249 ? 0.5 = ?0.00042 ?10 0 + = ? ? ? ? ????? ??10 0 = 0.15 ? 0.5 ? (?0.00042) = 0.1502 ??? ?10 0 + ? ?? 0.1502 # ?10 (0) ? ???? ? ??? ??? -0.00042
  • 41. ?10 (0) ?11 (0) ?1 0.5 0.15 0.2 0.075 0.095 ?11 ?11 ?10 (1) ?20 (1) ?1 ?21 ?21 ?20 ?20 ?11 (1) ?21 (1) ?2 ?10 ?10 0.4 0.5 0.45 0.55 0.519 0.524 0.197 0.131 0.248 0.276 0.581 0.628 0.3 0.9 0.380 0.1502 0.250 0.527 0.478 0.1909 ???? = 0.087 ★ 0.076 ?? 1? ?? ?? 13% ??
  • 42. ? ?? ??? ??? Loss ?? ????
  • 43. ? ??? ??? ?? ? ?? ?? ? ?? ?? ? ? ????
  • 44. ? ??? ??? ????
  • 45. ??? ??? ? ????? ?? 1. ??? ??? ?? 2. ??? ??? ?? 3. ???? ????
  • 46. ???????(?) = 1 1+??? ?> (?) = 1 1+??? ( 1 ? 1 1+??? ) (0 , ?] C ??? ?, 0 ?? ?? Sigmoid ? ??? ??
  • 47. ?1 ?1 ?Input Sigmoid Function Sigmoid Function Sigmoid Function ?2 ?3 ?1 ?1 ?2 ?2 ?3 ?3 ?1 = ?1 ? ?1 ?2 = ?1 ? ?2 ?3 = ?2 ? ?3 ?1 = ???????(?1) ?2 = ???????(?2) ?3 = ???????(?3) ? = ?3 # Sigmoid ? ?? ???? ???? ?? 0.659 ? ???? ?? ??
  • 49. ?? ??3 = ?? ??3 ??3 ??3 ??3 ??3 = 1 ? ???????> ?3 ? ?2 ?? ??2 = ?? ??3 ??3 ??2 ??2 ??2 ??2 ??2 = 1 ? ???????> ?3 ? ?3 ? ???????> ?2 ? ?1 ?? ??1 = ?? ??2 ??2 ??1 ??1 ??1 ??1 ??1 = 1 ? ???????> ?3 ? ?3 ? ???????> ?2 ? ?2 ? ???????> ?1 ? ?1 ? ?1 ? ?2 ?3 ?3 ?3 ?2 ?2 ?1 ?1 ?3 = ???????(?3) ?3 = ?2 ? ?3 ? = ?3 ?2 = ???????(?2) ?2 = ?1 ? ?2 ?1 = ???????(?1) ?1 = ? ? ?1
  • 50. ?> (?) : (0 , ?] C ??? ?, 0 ?? ?? S¨ ? ???? ? ?? ??? ?? ? ?? ? ? ??? ????? 3? ?? S¨ ? ?? ?? ?? ?? ? ?? 0 ? ?? ??? ????? ???
  • 51. ??? ?? : Tanh Function ????(?) = ?2?+ 1 ?2??1 ?> (?) =1 ? tanh2(x) (0 , 1] C ??? 1, 0 ?? ??
  • 52. ??? ?? : Tanh Function ?> (?) =1 ? tanh2(x) (0 , 1] C ??? 1, 0 ?? ?? ? ?? Tanh ? Sigmoid ? ???? ??? ???? ???? 1??? ??? ??? ? ???
  • 53. ??? ?? : ReLU Function ????(?) = max 0, ? Rectified Linear Unit ?>(?) = 1 (? − 0 ) 0 (? < 0 ){
  • 54. ??? ?? : ReLU Function ?>(?) = 1 (? − 0 ) 0 (? < 0 ){ ReLU ? ??? ??? ???? 0, 1 ?? ? ???? ??? ??? ??? ? ???? ?? ????? ?? ?????
  • 55. ???? PReLU, Leaky ReLU, SoftPlus ? ??? ?? ?? ???? ??? ??? ??? ????? ???
  • 56. ???? ???? ?? ?? ?? ?????
  • 57. ???? ??? ??? ?? ?? ???? ????? ??? ??? ??????
  • 58. ??? ???? ???? ????? ?? Xavier ? He initialization ? ?????
  • 59. ??? ??? ???? Activation Function Initialization Code Sigmoid Xavier np.random.randn(n_input, n_output) / sqrt(n_input) ReLU He np.random.randn(n_input, n_output) / sqrt(n_input / 2) 1. Gaussian ?? ??? ?? 2. ????? ????? ??? Xavier Initialization 3. ????? ??? ????? ??? He Initialization
  • 60. ??? ??? ???? Activation Function Initialization Code Sigmoid Xavier np.random.randn(n_input, n_output) / sqrt(n_input) ReLU He np.random.randn(n_input, n_output) / sqrt(n_input / 2) Sigmoid ??? ? Xavier , ReLU ??? ? He ? ???? ????
  • 61. ??? ???? ???? ????? ??? ??? ??? ???? ???? ???? ??? ????
  • 62. ? ?1 ?1 > ?2 ?3 ??? ???> ?2 > ?3 > ??? Input ?? ??? ???? ??? ???? Output ?? ??? ???? ???? ????
  • 63. ?? ??? ???? ??? ? ????? ?? ?? ?????? ? ?1 ?1 > ?2 ?3 ??? ???> ?2 > ?3 > ?? ?? ??
  • 64. ?? ???? ???? ???? ???? ?? ??? ??? ? ???? ? ?1 ?1 > ?2 ?3 ??? ???> ?2 > ?3 > ?? ?? ??
  • 65. ??? ???? ?? ??? ??? Output ?? ??? ? ? ????? ? ?1 ?1 > ?2 ?3 ??? ???> ?2 > ?3 > ?? ?? ??
  • 66. ??? ???? ?? ???? ?? ??? ??? ?? ???? ? ????? ??? ? ?1 ?1 > ?2 ?3 ??? ???> ?2 > ?3 > ?? ?? ??
  • 67. Batch Normalization ? Training ?? ??? ???? ?? Vanishing Gradient ? ???? ???? ????? ? ? ????
  • 68. ?? ??? ? ??? ????? ? ??? ???
  • 69. ? ??? ??? ? ?????
  • 71. ???? ??? ??? ?? ? ???? ?? ??? ?? ? ??? ??? ???? 10000 Data Gradient Descent Stochastic Gradient Descent 2500 Data 2500 Data 2500 Data 2500 Data
  • 73. ?? ???? ??? ??? ?? ????
  • 74. ?+ = ? ? ? ? ?? ?? ???? ?? ? ?? ??? Learning Rate ? Gradient ?? ? ???? ??? ??????
  • 75. SGD ?? ?? Gradient ? Learning rate Momentum NAG Adam Adagrad RMSProp AdaDelta Nadam GD ?? : ??? - ???? ???? ???, ???? ??? ??????. ?? ???? ??? ? ??? ?? ??? ???? ??? ? ?? ??? ?? ?? ??? ???? ? ?????? ??? ?????? ?? ??? ? ??? ???? ??? ??? ??? ???? ??? ???? ???? ?????? ?? ???? ??? ??? ?? ?? ???? ???? ??? ?? ??? ??? gradient, learning rate ? ? ???? ??? ?? Adam ?? Momentum ?? NAG ? ???? Nesterov Accelerated Gradient
  • 76. ?? Optimizer ? ??? ?? ?? gradient learning rate
  • 77. ??? ? ?? ??? ?????
  • 82. ??? ????? ???? ? ?? ??? ?????
  • 83. - 1 to 0 : 10?- 0 to 1 : 10? MLP ? ??? ? ??? ????? ???? ???? 20?
  • 84. ?? ????? ???? ???? ???? input ??? ??
  • 86. ??? ? ?? ?? : ??, ??, ??, ??
  • 87. CNN ? ??? ???? ??? ???????
  • 88. 1?? : ??, ????, ??, ????
  • 89. 2?? :?, ?, ?, ?
  • 91. 64 X 64 Convolution Layer 32 X 32 Pooling Layer 32 X 32 Convolution Layer 16 X 16 Pooling Layer Fully-Connected layer 64 X 64 Input CNN ?? ??
  • 93. ?? ??? ??? CNN ??? ?? ??? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • 94. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 2 1 1 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 3 1 1 1 1 1 1 1 1 1 1 3 0 0 0 0 0 0 3 0 0 1 0 0 0 0 1 0 0 3 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 2 1 0 1 1 1 1 1 1 0 1 2 0 0 0 0 0 0 3 0 0 1 2 1 2 2 1 0 0 3 0 0 0 0 0 0 3 0 0 2 1 2 1 1 2 0 0 3 0 0 0 0 0 0 3 0 0 1 1 1 1 1 1 0 0 3 0 0 0 0 0 0 3 0 0 1 0 1 0 0 1 0 0 3 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 2 1 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 3 1 1 1 1 1 3 0 0 3 1 1 0 1 1 3 0 0 1 1 1 0 1 1 1 0 0 0 1 2 0 2 1 0 0 0 1 1 1 1 1 1 1 0 0 3 1 2 2 2 1 3 0 0 3 0 2 2 2 0 3 0 0 3 0 1 1 1 0 3 0 0 3 1 2 0 0 0 3 0 0 1 1 1 0 0 1 2 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Convolution Max Pooling Convolution : ?? ??
  • 95. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 2 1 1 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 3 1 1 1 1 1 1 1 1 1 1 3 0 0 0 0 0 0 3 0 0 1 0 0 0 0 1 0 0 3 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 2 1 0 1 1 1 1 1 1 0 1 2 0 0 0 0 0 0 3 0 0 1 2 1 2 2 1 0 0 3 0 0 0 0 0 0 3 0 0 2 1 2 1 1 2 0 0 3 0 0 0 0 0 0 3 0 0 1 1 1 1 1 1 0 0 3 0 0 0 0 0 0 3 0 0 1 0 1 0 0 1 0 0 3 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 2 1 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 3 1 1 1 1 1 3 0 0 3 1 1 0 1 1 3 0 0 1 1 1 0 1 1 1 0 0 0 1 2 0 2 1 0 0 0 1 1 1 1 1 1 1 0 0 3 1 2 2 2 1 3 0 0 3 0 2 2 2 0 3 0 0 3 0 1 1 1 0 3 0 0 3 1 2 0 0 0 3 0 0 1 1 1 0 0 1 2 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Convolution Max Pooling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 2 2 2 3 3 2 2 2 3 2 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 1 2 2 2 1 0 1 1 1 0 0 0 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1 2 2 2 1 0 1 1 1 0 0 0 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 2 2 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 2 2 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 2 3 3 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2 3 2 3 2 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 0 1 1 2 2 2 1 1 0 0 1 1 2 2 2 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 2 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 2 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 Convolution : ?? ??
  • 96. 1 0 1 0 1 0 1 0 1 0 1 2 2 2 2 2 1 0 0 2 3 3 2 3 3 2 0 0 2 2 1 0 1 2 2 0 0 1 3 1 0 1 3 1 0 0 0 1 2 0 2 1 0 0 0 1 3 2 2 2 3 1 0 0 2 2 3 5 3 2 2 0 0 2 2 5 3 3 2 2 0 0 2 2 2 1 1 2 2 0 0 2 2 2 1 0 2 2 0 0 1 3 2 1 1 3 2 0 0 0 1 3 2 2 3 1 0 0 0 0 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 2 1 2 2 1 2 1 2 1 1 0 0 0 0 1 1 2 2 0 2 1 1 2 0 2 2 1 1 0 0 0 0 2 2 3 1 3 1 2 2 1 3 1 3 2 2 0 0 0 0 2 1 2 1 0 1 0 0 1 0 1 2 1 2 0 0 0 0 1 2 1 1 0 0 0 0 0 0 1 1 2 1 0 0 0 0 1 0 3 0 1 0 0 0 0 1 0 3 0 1 0 0 0 0 0 1 0 3 0 1 0 0 1 0 3 0 1 0 0 0 0 0 0 0 1 1 2 1 0 0 1 2 1 1 0 0 0 0 0 0 0 0 1 1 2 1 0 0 1 2 1 1 0 0 0 0 0 0 0 1 0 3 0 1 0 0 1 0 3 0 1 0 0 0 0 0 1 0 3 0 2 0 2 1 1 2 0 3 0 1 0 0 0 0 1 2 1 2 0 3 0 2 2 0 2 1 2 1 0 0 0 0 2 1 2 0 3 0 5 2 2 3 0 2 1 2 0 0 0 0 2 1 2 2 0 5 0 3 3 0 2 2 1 2 0 0 0 0 2 1 2 0 2 0 3 1 1 2 0 2 1 2 0 0 0 0 2 1 2 1 0 2 0 1 1 0 1 2 1 2 0 0 0 0 2 1 2 1 1 1 1 0 0 0 0 2 1 2 0 0 0 0 2 1 2 1 2 2 1 0 0 0 0 2 1 2 0 0 0 0 1 2 1 2 2 2 1 0 0 0 0 2 1 2 0 0 0 0 1 0 3 1 2 1 1 0 0 0 1 1 2 1 0 0 0 0 0 1 0 3 0 1 0 0 0 1 0 3 0 1 0 0 0 0 0 0 1 0 3 1 2 2 2 1 3 0 1 0 0 0 0 0 0 0 0 1 0 2 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Convolution Max Pooling Convolution : ???? ??
  • 97. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 2 1 1 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 3 1 1 1 1 1 1 1 1 1 1 3 0 0 0 0 0 0 3 0 0 1 0 0 0 0 1 0 0 3 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 2 1 0 1 1 1 1 1 1 0 1 2 0 0 0 0 0 0 3 0 0 1 2 1 2 2 1 0 0 3 0 0 0 0 0 0 3 0 0 2 1 2 1 1 2 0 0 3 0 0 0 0 0 0 3 0 0 1 1 1 1 1 1 0 0 3 0 0 0 0 0 0 3 0 0 1 0 1 0 0 1 0 0 3 0 0 0 0 0 0 3 0 0 1 1 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 2 1 0 2 2 0 0 0 0 0 0 3 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 3 1 1 1 1 1 3 0 0 3 1 1 0 1 1 3 0 0 1 1 1 0 1 1 1 0 0 0 1 2 0 2 1 0 0 0 1 1 1 1 1 1 1 0 0 3 1 2 2 2 1 3 0 0 3 0 2 2 2 0 3 0 0 3 0 1 1 1 0 3 0 0 3 1 2 0 0 0 3 0 0 1 1 1 0 0 1 2 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Convolution Max Pooling 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 1 1 1 2 0 1 1 1 2 0 1 2 1 0 0 0 0 0 1 1 1 1 2 0 1 1 1 2 0 2 2 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 2 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 3 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 2 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 2 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 3 0 0 0 0 0 0 0 1 0 1 0 2 0 1 1 0 0 0 3 0 0 0 0 0 0 1 1 0 2 0 2 0 1 2 0 0 1 2 0 0 0 0 0 1 1 1 0 2 0 3 1 1 2 0 1 1 1 0 0 0 0 1 1 1 1 0 3 0 2 2 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 2 0 1 2 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 2 1 0 0 0 0 0 1 1 1 0 0 0 0 0 2 1 0 1 2 1 0 0 0 0 1 1 1 0 0 0 0 0 0 3 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 3 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 2 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 2 2 1 2 2 2 0 0 2 1 1 0 0 1 1 0 0 0 3 0 0 1 1 1 0 0 0 1 2 0 2 1 0 0 0 1 1 2 1 0 3 0 0 0 1 2 2 3 2 1 2 0 0 1 1 3 2 2 1 1 0 0 1 1 1 1 0 1 1 0 0 2 1 2 1 0 1 1 0 0 0 3 1 1 1 1 1 0 0 0 0 3 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 Convolution : ??? ??
  • 98. ?? ??? ??? ??? ? ??? ??? ???? ?? Convolution?
  • 100. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 3 3 3 0 0 0 0 0 0 0 0 0 0 1 1 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 2 2 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 2 2 2 2 3 3 3 3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 3 3 3 3 1 1 1 1 0 0 0 0 0 0 2 2 2 2 3 3 3 3 2 2 2 2 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 3 3 3 0 0 0 0 1 3 3 3 3 0 0 0 0 2 3 3 3 3 0 0 0 0 1 1 3 3 3 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 3 3 3 0 0 0 0 2 2 3 3 3 2 2 0 0 3 3 3 3 3 3 3 0 0 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 3 3 3 0 0 0 0 0 0 0 0 0 0 1 1 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 2 2 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 2 2 2 2 3 3 3 3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 3 3 3 3 1 1 1 1 0 0 0 0 0 0 2 2 2 2 3 3 3 3 2 2 2 2 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 3 3 0 0 0 0 0 1 3 3 3 0 0 0 0 0 2 3 3 3 0 0 0 0 0 1 1 3 3 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0 3 3 0 0 0 0 0 2 2 3 3 2 2 0 0 0 3 3 3 3 3 3 0 0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 MLP - ? 38 pixel ?? Pooling - ? 12 pixel ?? ?? pixel ? ? 70% ?? ???? 1? ??? ?
  • 101. ??? ??? ?? ?? ??? ? ??? ? ?? ?? ?? Pooling?
  • 102. CNN ? ??? ??? ??????
  • 103. ?+ = ? ? ? ? ?? ?? MLP ? ?????
  • 105. 12 X 12 Convolution Layer 6 X 6 Pooling Layer 4 X 4 Convolution Layer 2 X 2 Pooling Layer 4 X 1 Fully-Connected layer 15 X 15 Input 4 ? 4 ??????????? ?????? 2 ? 2 ?????????? ???? 3 ? 3 ??????????? ?????? 2 ? 2 ?????????? ???? ? ? 1 ? ? + 1 ?, ? +2
  • 106. ??? ????? ??????? 3 ? 3 ??????????? ??????
  • 107. ?, ? +2? + 1 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1 ? ?+1 ? ?? Cost ? ?? ??? ???? ??? ??? ??????
  • 108. ?, ? +2? + 1 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1 ?? ?? ?+1 ? ??? ?? ????? ? ?????
  • 109. ?, ? +2? + 1 ? ?+1 = ?(? ?+1 ) | ? ? = ? ?? ?? ?+1 = ?? ?? ? ?? ? ?? ? ?? ? ? ?? ?+1 ? ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ? ? = ? ? ? ? ?+2 ?? ? ?+1 ?? ?> ?> ?+1 = ??? ??(? ?? ?+1) ?? ?00 ?+1 = ?00 ?+1 , ?01 ?+1 , ?10 ?+1 , ?11 ?+1 ? ?? ?+1 = ? ?=0 ??1 ? ?=0 ??1 ? ?? ?+1 ?(?+?)(?+?) ? 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1
  • 110. ?, ? +2? + 1 ? ?? ?+1 = ?(? ?+1 ) | ? ? = ? ?? ?? ?+1 = ?? ?? ? ?? ? ?? ? ?? ? ? ?? ?+1 ? ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ? ? = ? ? ? ? ?+2 ?? ? ?+1 ?? ?> ?> ?+1 = ??? ??(? ?? ?+1) ?? ?00 ?+1 = ?00 ?+1 , ?01 ?+1 , ?10 ?+1 , ?11 ?+1 ? ?? ?+1 = ? ?=0 ??1 ? ?=0 ??1 ? ?? ?+1 ?(?+?)(?+?) ? 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1 ? ? ? Fully Connected Layer ? ?? ? ?? ? ???
  • 111. ?, ? +2? + 1 ? ?? ?+1 = ?(? ?+1 ) | ? ? = ? ?? ?? ?+1 = ?? ?? ? ?? ? ?? ? ?? ? ? ?? ?+1 ? ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ? ? = ? ? ? ? ?+2 ?? ? ?+1 ?? ?> ?> ?+1 = ??? ??(? ?? ?+1) ?? ?00 ?+1 = ?00 ?+1 , ?01 ?+1 , ?10 ?+1 , ?11 ?+1 ? ?? ?+1 = ? ?=0 ??1 ? ?=0 ??1 ? ?? ?+1 ?(?+?)(?+?) ? 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1 ?? ?> ?> ?+1 ? MaxPooling Layer ? ?? ? ? ???
  • 112. ?, ? +2? + 1 ? ?? ?+1 = ?(? ?+1 ) | ? ? = ? ?? ?? ?+1 = ?? ?? ? ?? ? ?? ? ?? ? ? ?? ?+1 ? ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ? ? = ? ? ? ? ?+2 ?? ? ?+1 ?? ?> ?> ?+1 = ??? ??(? ?? ?+1) ?? ?00 ?+1 = ?00 ?+1 , ?01 ?+1 , ?10 ?+1 , ?11 ?+1 ? ?? ?+1 = ? ?=0 ??1 ? ?=0 ??1 ? ?? ?+1 ?(?+?)(?+?) ? 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1 ?? ?00 ?+1 ? MaxPooling Layer ? ??? ?? ??? ??? ???? ??? ???
  • 113. ?, ? +2? + 1 ? ?? ?+1 = ?(? ?+1 ) | ? ? = ? ?? ?? ?+1 = ?? ?? ? ?? ? ?? ? ?? ? ? ?? ?+1 ? ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ? ? = ? ? ? ? ?+2 ?? ? ?+1 ?? ?> ?> ?+1 = ??? ??(? ?? ?+1) ?? ?00 ?+1 = ?00 ?+1 , ?01 ?+1 , ?10 ?+1 , ?11 ?+1 ? ?? ?+1 = ? ?=0 ??1 ? ?=0 ??1 ? ?? ?+1 ?(?+?)(?+?) ? 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1 ? ?? ?+1? ? ?? ?+1? ??? ??? ??? ? ?? ???? ?? ????? ??? ??? ?? ????? ?????
  • 114. ?, ? +2? + 1 ? ?? ?+1 = ?(? ?+1 ) | ? ? = ? ?? ?? ?+1 = ?? ?? ? ?? ? ?? ? ?? ? ? ?? ?+1 ? ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ? ? = ? ? ? ? ?+2 ?? ? ?+1 ?? ?> ?> ?+1 = ??? ??(? ?? ?+1) ?? ?00 ?+1 = ?00 ?+1 , ?01 ?+1 , ?10 ?+1 , ?11 ?+1 ? ?? ?+1 = ? ?=0 ??1 ? ?=0 ??1 ? ?? ?+1 ?(?+?)(?+?) ? 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1 ? ?? ?+1? ?? ?> ?> ? ? 3 ? 3 ???? ????? ? ??? ? ?? ????
  • 115. ?, ? +2? + 1 ? ?? ?+1 = ?(? ?+1 ) | ? ? = ? ?? ?? ?+1 = ?? ?? ? ?? ? ?? ? ?? ? ? ?? ?+1 ? ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ?? ?+1 ? ? = ? ? ? ? ?+2 ?? ? ?+1 ?? ?> ?> ?+1 = ??? ??(? ?? ?+1) ?? ?00 ?+1 = ?00 ?+1 , ?01 ?+1 , ?10 ?+1 , ?11 ?+1 ? ?? ?+1 = ? ?=0 ??1 ? ?=0 ??1 ? ?? ?+1 ?(?+?)(?+?) ? 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1 ? ?+1 ? ????? ? ?+1 ? Cost ? ??? ??? ???? ?? ?? ?+1 ??? ???
  • 116. ?, ? +2? + 1 ?? ?? ?+1 = ?? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ? ?? ?> ?> ?+1 ? ?? ?> ?> ?+1 ?? ?? ?+1 ?? ?? ?+1 ?? ?? ?+1 ?? ?? ?+1 ?? ?? ?+1 ?? ? ? ? ?? ?> ?> ?+1 = ? σ ?> ?> ? ?> ?> ?+2 ?? ?> ?> ?+1 ? ?? ?> ?> ?+1 = ? ?> ?> ?+2 ? ?? ?> ?> ?+1 ?? ?? ?+1 = ?max[? ?+1] ?? ?? ?+1 = 1, ?? ? ?? ?+1 = max(?) { 0, ????????? ?? ?? ?+1 ?? ?? ?+1 = ? σ ? σ ? ? ?? ?+1 ??(?>+?)(?>+?) ? ?? ?? ?+1 = ? ? ? ? ? ?? ?+1 ??(?>+?)(?>+?) ? = ?????? ? ? ? ? ? ?1 ?? ?? ? ? 2 ? 2 ?????????? ???? ????? ? ?>, ?> ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?> ?> ? ? ?? ?+1, ? ?? ?+1 ?? ?? ?+1 ? ??? ???? ??? ???? ??? ??? ???? ?? ???
  • 117. 2 ? 2 ?????????? ???? ????? ? ?>, ?> ?, ? +2? + 1 ? ? ?? ?> ?> ?+1 1 ? 4 | ? ?+2 ?????? ?????? 3 ? 3 | ? ?+1 ??????????? ?????? ????? ? ?, ? ?? ?? ?+1 = ?? ?? ? ? ?? ? ? ?? ? ? ?? ? ? ? ?? ?> ?> ?+1 ? ?? ?> ?> ?+1 ?? ?? ?+1 ?? ?? ?+1 ?? ?? ?+1 ?? ?? ?+1 ?? ?? ?+1 ?? ?> ?> ? = ? ?????? ? ? ? ? ? ? ?> ?> ?+2 ? ? ? ? ? ? ?? ?+1 ??(?>+?)(?>+?) ? ? ?? ?+1, ? ?? ?+1 ?+ = ? ? ? ? ?? ?? = ? + ? ? ?????? ? ? ? ? ? ? ?> ?> ?+2 ? ? ? ? ? ? ?? ?+1 ??(?>+?)(?>+?) ?
  • 118. ?? ??? Filter ? ?????? ????´ ??? ???????
  • 119. VGG, GoogleNet, ResNet ? ?? ???? ?? ??? ??? ??? ???? ?? ???? ???? ???
  • 120. # Layers ?? ??? ?? ??? ??? ?? ??? ???? ????? ???
  • 122. ?? ??? ?? ??? ???
  • 125. ? ???? ?? ?? ??? ?? ?????
  • 126. ???? ?? ??? ???? CNN ?? ?????
  • 127. Detect Model : OverFeat NewYork Univ - 2014 ??? ????? ?? ??? ???? ?? ???? ????
  • 128. Detect Model : OverFeat NewYork Univ - 2014 ??? ????? ???? ??? ??? ?? ??? ?? ??
  • 129. Detect Model : OverFeat NewYork Univ - 2014 ??? ??? ??? ???? ??
  • 130. Detect Model : OverFeat NewYork Univ - 2014 ?? ??? ???? ????? ???
  • 131. ??? OverFeat? ??? ?? ?? ??? ?? ?? ????
  • 132. ?? ?? ??? ?? ?? CNN ?? ?????
  • 133. Detect Model : R-CNN UC Berkeley - 2014 Input Region Proposals (Selective Search) classifier Compute Regions DOG CAT Classify # ??? ?? ?? ??? ??
  • 134. OverFeat ??? ????? ??? ??? ??? ???? ??
  • 135. R-CNN ?? ?? ??? ?? Region proposal, Classifier ? ??
  • 137. Detect Model : Fast R-CNN Microsoft - 2015 Region Proposals (Selective Search) Compute Regions classifier Classify DOG CAT convolution & pooling R-CNN ? ??? ?? ?? ?? ?? ?? ?? ??
  • 138. Convolution, Pooling ?? ?? ???? ?? ?? Fast R-CNN
  • 140. Detect Model : Faster R-CNN Microsoft - 2015??? Region Proposal ??? ??? Region Proposal Network ?? ?? Region Proposal Network
  • 141. R-CNN Fast R-CNN Faster R-CNN Time per image 50 secs 2 secs 0.2 secs SpeedUp 1x 25x 250x mAP 66.00% 66.90% 66.90% R-CNN benchmark Faster R-CNN ? ?? ?? 5 frame ? ??? ????? Real-Time Image Detection ? ???? ????
  • 142. ???? Yolo, SSD ? ??? ???? ??? ?? ?? ?? ????
  • 143. Image Detection ? ??? ?? ??? ???? ????
  • 144. ?? ??? ?? ??? ? ??? ?? ??? ?? ? ????? ???
  • 145. ???? ???? ??? ?? ?? ??? ??? RNN, Gan ? ?????´ gomguard.tistory.com