ŗŻŗŻß£
Submit Search
03. linear regression
Oct 11, 2016
0 likes
1,271 views
Jeonghun Yoon
[Machine-learing] 3. linear regression
Read less
Read more
1 of 43
Download now
Downloaded 36 times
Recommended
04. logistic regression ( ė”ģ§ģ¤ķ± ķź· )
04. logistic regression ( ė”ģ§ģ¤ķ± ķź· )
Jeonghun Yoon
Ģż
logistic regression in machine learning ( ė”ģ§ģ¤ķ± ķź·ė¶ģ , źø°ź³ķģµ ) ė”ģ§ģ¤ķ± ķź·ė¶ģģ ź“ķ ė“ģ©ģ ģźø° ģ½ź² ģ¤ėŖ ķ źøģ“ė¤. ėķ MLE, MAPģ ėķ ģ¤ėŖ ź³¼ ģ ź·ķ(regularization)ģ ėķ ģ¤ėŖ ģ ķ“ėģ źøģ“ė¤.
0207 1 gradient
0207 1 gradient
Jeonghun Yoon
Ģż
ź²½ģ¬ķź°ė²ģ gradient ė„¼ ė¤ė£Øźø° ģ ģ źø°ģ“ėÆøė¶ ė° ģµģ ķė„¼ ė°°ģ°ė ģė£ģ ėė¤.
08. spectal clustering
08. spectal clustering
Jeonghun Yoon
Ģż
Spectral clusteringģ ģźø° ģ½ź² ģ¤ėŖ ķ ģė£ģ ėė¤. Eignevalueģ Eigenvectorė„¼ ķ“ė¬ģ¤ķ°ė§ģ ģ“ė»ź² ģ¬ģ©ķėģ§ė„¼ ģ ģ ģė ģė£ģ ėė¤.
Decision tree
Decision tree
Jeonghun Yoon
Ģż
Decision tree(ģģ¬ź²°ģ ėė¬“)ģ ėķ ģøėÆøė ģė£ģ ėė¤. Decisionģ ė“ė¦¬źø° ģķģ¬ ķģķ źø°ģ¤ė¤, ķ¹ķ entropyģ ėķ ź°ė ź³¼ ź³ģ°ģ ėķ ģģøķ ģ¤ėŖ ģ“ ėģ ģģµėė¤.
02. naive bayes classifier revision
02. naive bayes classifier revision
Jeonghun Yoon
Ģż
[Machine-learning] 2. Naive Bayes classifier
0228 2 sample_distribution
0228 2 sample_distribution
Jeonghun Yoon
Ģż
ė°ģ“ķ° ė¶ģģģ ģ¬ģ©ķė ķė³øė¶ķ¬ģ ėķ“ ź³µė¶ķė ė“ģ©ģ ėė¤.
07. PCA
07. PCA
Jeonghun Yoon
Ģż
ėØøģ ė¬ėģģ ģ¤ģķ ģ»Øģ ģ¤ģ ķėģø PCAģ ėķ ģ¬ė¼ģ“ėģ“ė¤. ė³ø ģ¬ė¼ģ“ėģģė DRģ ģ»Øģ , PCAģ ģ“ė” ģ ė°°ź²½, ķ¹ķ ź³ ģ ź°, ź³ ģ ė²”ķ°ģ ėķ ģ¤ėŖ ģ“ ė¤ģ“ģė¤.
0131 2 spectral_theorem_eigenvalue
0131 2 spectral_theorem_eigenvalue
Jeonghun Yoon
Ģż
Spectral theorem ģ¤ģģ ź³ ģ ė²”ķ°ģ ź“ė Øė ė“ģ©ģ ėė¤.
06. graph mining
06. graph mining
Jeonghun Yoon
Ģż
ģ“ė² ģ¬ė¼ģ“ėė Graph miningģ źø°ģ“ģ ėķ ź²ģ“ė¤. ź³ ģ ė¬øģ ģø Graph cutģ ėķ ź°ė ź³¼ ģķģ ģø ė°°ź²½ģ ģ¤ėŖ ķź³ , ģ“ ź°ė ģ“ clustering (ķ“ė¬ģ¤ķ°ė§)ģģ ģ“ė»ź² ģ¬ģ©ėėģ§ė„¼ ģ¤ėŖ ķė¤. Graph mining, cut, clustringģ źø°ģ“ė„¼ ģźø°ģ ė§¤ģ° ģ ķ©ķ ģė£ģ“ė¤.
SVM
SVM
Jeonghun Yoon
Ģż
SVM ģ§ģ§ė²”ķ°ėØøģ ģ“ė” ģ ėė¤. ģ“ė” ģ ėķ ģģøķ ģ¤ėŖ ź³¼, ģķģ ė°°ź²½ģ“ ģ ė¤ģ“ ģģµėė¤.
Neural network (perceptron)
Neural network (perceptron)
Jeonghun Yoon
Ģż
ģøź³µģ ź²½ė§ Neural network (perceptron) ģ ź“ķ ė“ģ©ģ ėė¤. ģķģ ģø ė°°ź²½ź³¼ ģ“ė” ģ¤ėŖ ģ“ ė¤ģ“ ģģµėė¤.
Association rule mining
Association rule mining
Jeonghun Yoon
Ģż
Association rule miningģ ėķ“ ģ¤ėŖ ķ ģė£ģ ėė¤. Apriori ģź³ ė¦¬ģ¦ź³¼ FP treeģ ėķ ģ¤ėŖ ģ“ ėģ ģė ģė£ģ ėė¤.
05. k means clustering ( k-means ķ“ė¬ģ¤ķ°ė§)
05. k means clustering ( k-means ķ“ė¬ģ¤ķ°ė§)
Jeonghun Yoon
Ģż
k-menas clustering (k-means ķ“ė¬ģ¤ķ°ė§) unsupervised learningģ ź°ģ„ źø°ė³øģ“ ėė k-means ķ“ė¬ģ¤ķ°ė§ģ ė¤ė£Øź³ ģė¤.
0124 2 linear_algebra_basic_matrix
0124 2 linear_algebra_basic_matrix
Jeonghun Yoon
Ģż
ė°ģ“ķ° ź³¼ķģģ ģ¬ģ©ķė ģ ķėģ ė“ģ©ģ¤ģģ, ķė ¬ģ ėķ ė“ģ©ģ ėė¤.
0307 1 estimation_theory
0307 1 estimation_theory
Jeonghun Yoon
Ģż
ė°ģ“ķ° ė¶ģģģ ģ¬ģ©ķė ģ¶ģ ģ“ė” ģ ėķ“ģ ź³µė¶ķė ė“ģ©ģ ėė¤. estimationģ ėķ“ģ ź³µė¶ķė ė“ģ©ģ ėė¤.
Ensemble Model (Hybrid model)
Ensemble Model (Hybrid model)
Jeonghun Yoon
Ģż
ėØøģ ė¬ė źø°ė² ģ¤ ģģėø ėŖØėøģ ėķ ģķģ ģø ė°°ź²½ź³¼ ė“ģ©ģ“ ė¤ģ“ ģģµėė¤.
0124 1 linear_algebra_basic_vector
0124 1 linear_algebra_basic_vector
Jeonghun Yoon
Ģż
ė°ģ“ķ° ź³¼ķģģ ģ¬ģ©ėė ģ ķėģ(ė²”ķ°)ģ ėķ ź°ģģ ėė¤. ź¶źøķģ ģ¬ķģ jeonghun.yoon123@gmail.comģ¼ė” ģ°ė½ģ£¼ģźø° ė°ėėė¤.
Topic models
Topic models
Jeonghun Yoon
Ģż
[Topic models, LDA, LSA, HDP, Coherence] This is for topic modeling in NLP.
0314 1 anova
0314 1 anova
Jeonghun Yoon
Ģż
ė°ģ“ķ° ė¶ģģģ ģ¬ģ©ķė ė¶ģ°ė¶ģģ ėķ“ ź³µė¶ķė ė“ģ©ģ ėė¤.
0131 1 spectral_theorem_transformation
0131 1 spectral_theorem_transformation
Jeonghun Yoon
Ģż
Spectral theorem ģ¤ģģ ķė ¬ė³ķģ ėķ ė“ģ©ģ ėė¤.
01. introduction
01. introduction
Jeonghun Yoon
Ģż
[Machine-learning] 1.Introduction
0221 basic probability theory
0221 basic probability theory
Jeonghun Yoon
Ģż
ė°ģ“ķ° ź³¼ķģģ ģ¬ģ©ķė ķė„ ģ ėķ“ ź³µė¶ķė ģė£ģ ėė¤.
0314 2 correlation
0314 2 correlation
Jeonghun Yoon
Ģż
ė°ģ“ķ° ź³¼ķģģ ģ¬ģ©ķė ģź“ė¶ģģ ėķ“ ź³µė¶ķė ė“ģ©ģ ėė¤.
0307 2 hypothesis_testing
0307 2 hypothesis_testing
Jeonghun Yoon
Ģż
ė°ģ“ķ° ė¶ģģģ ģ¬ģ©ķė ź°ģ¤ ź²ģ ģ ėķ“ģ ź³µė¶ķė ė“ģ©ģ ėė¤.
Variational AutoEncoder(VAE)
Variational AutoEncoder(VAE)
ź°ėƼźµ ź°ėƼźµ
Ģż
Variational Autoencoder explained PPT, it contains tensorflow code for it
Linear algebra
Linear algebra
Sungbin Lim
Ģż
źø°ģ“ģ ģø Linear Algebra ģ Matrix Calculus ė¶ķ° Back-propagation ź¹ģ§ ģ ėķė ģ¬ė¼ģ“ėģ ėė¤. ė³ø ģ¬ė¼ģ“ėģģė NumPy ģ ģ ķėģė„¼ ė¤ė£¹ėė¤.
ESM Mid term Review
ESM Mid term Review
Mario Cho
Ģż
ESM(ģØģė¹ ėØøģ ė¬ė) 11ģ£¼ģ°Ø ģ¤ź° ź°ė¬“ė¦¬
Wasserstein GAN ģķ ģ“ķ“ķźø° I
Wasserstein GAN ģķ ģ“ķ“ķźø° I
Sungbin Lim
Ģż
ģ“ ģ¬ė¼ģ“ėė Martin Arjovsky, Soumith Chintala, LĆ©on Bottou ģ Wasserstein GAN (https://arxiv.org/abs/1701.07875v2) ė ¼ė¬ø ģ¤ Example 1 ģ ķ“ģ¤ķė ģė£ģ ėė¤
Linear regression
Linear regression
ģ ķ¬ģ²
Ģż
ģ ķķź· ź°ģė øķøģ ėė¤
[Probability for machine learning]
[Probability for machine learning]
ź°ėƼźµ ź°ėƼźµ
Ģż
Probability for machine learning
More Related Content
What's hot
(20)
06. graph mining
06. graph mining
Jeonghun Yoon
Ģż
ģ“ė² ģ¬ė¼ģ“ėė Graph miningģ źø°ģ“ģ ėķ ź²ģ“ė¤. ź³ ģ ė¬øģ ģø Graph cutģ ėķ ź°ė ź³¼ ģķģ ģø ė°°ź²½ģ ģ¤ėŖ ķź³ , ģ“ ź°ė ģ“ clustering (ķ“ė¬ģ¤ķ°ė§)ģģ ģ“ė»ź² ģ¬ģ©ėėģ§ė„¼ ģ¤ėŖ ķė¤. Graph mining, cut, clustringģ źø°ģ“ė„¼ ģźø°ģ ė§¤ģ° ģ ķ©ķ ģė£ģ“ė¤.
SVM
SVM
Jeonghun Yoon
Ģż
SVM ģ§ģ§ė²”ķ°ėØøģ ģ“ė” ģ ėė¤. ģ“ė” ģ ėķ ģģøķ ģ¤ėŖ ź³¼, ģķģ ė°°ź²½ģ“ ģ ė¤ģ“ ģģµėė¤.
Neural network (perceptron)
Neural network (perceptron)
Jeonghun Yoon
Ģż
ģøź³µģ ź²½ė§ Neural network (perceptron) ģ ź“ķ ė“ģ©ģ ėė¤. ģķģ ģø ė°°ź²½ź³¼ ģ“ė” ģ¤ėŖ ģ“ ė¤ģ“ ģģµėė¤.
Association rule mining
Association rule mining
Jeonghun Yoon
Ģż
Association rule miningģ ėķ“ ģ¤ėŖ ķ ģė£ģ ėė¤. Apriori ģź³ ė¦¬ģ¦ź³¼ FP treeģ ėķ ģ¤ėŖ ģ“ ėģ ģė ģė£ģ ėė¤.
05. k means clustering ( k-means ķ“ė¬ģ¤ķ°ė§)
05. k means clustering ( k-means ķ“ė¬ģ¤ķ°ė§)
Jeonghun Yoon
Ģż
k-menas clustering (k-means ķ“ė¬ģ¤ķ°ė§) unsupervised learningģ ź°ģ„ źø°ė³øģ“ ėė k-means ķ“ė¬ģ¤ķ°ė§ģ ė¤ė£Øź³ ģė¤.
0124 2 linear_algebra_basic_matrix
0124 2 linear_algebra_basic_matrix
Jeonghun Yoon
Ģż
ė°ģ“ķ° ź³¼ķģģ ģ¬ģ©ķė ģ ķėģ ė“ģ©ģ¤ģģ, ķė ¬ģ ėķ ė“ģ©ģ ėė¤.
0307 1 estimation_theory
0307 1 estimation_theory
Jeonghun Yoon
Ģż
ė°ģ“ķ° ė¶ģģģ ģ¬ģ©ķė ģ¶ģ ģ“ė” ģ ėķ“ģ ź³µė¶ķė ė“ģ©ģ ėė¤. estimationģ ėķ“ģ ź³µė¶ķė ė“ģ©ģ ėė¤.
Ensemble Model (Hybrid model)
Ensemble Model (Hybrid model)
Jeonghun Yoon
Ģż
ėØøģ ė¬ė źø°ė² ģ¤ ģģėø ėŖØėøģ ėķ ģķģ ģø ė°°ź²½ź³¼ ė“ģ©ģ“ ė¤ģ“ ģģµėė¤.
0124 1 linear_algebra_basic_vector
0124 1 linear_algebra_basic_vector
Jeonghun Yoon
Ģż
ė°ģ“ķ° ź³¼ķģģ ģ¬ģ©ėė ģ ķėģ(ė²”ķ°)ģ ėķ ź°ģģ ėė¤. ź¶źøķģ ģ¬ķģ jeonghun.yoon123@gmail.comģ¼ė” ģ°ė½ģ£¼ģźø° ė°ėėė¤.
Topic models
Topic models
Jeonghun Yoon
Ģż
[Topic models, LDA, LSA, HDP, Coherence] This is for topic modeling in NLP.
0314 1 anova
0314 1 anova
Jeonghun Yoon
Ģż
ė°ģ“ķ° ė¶ģģģ ģ¬ģ©ķė ė¶ģ°ė¶ģģ ėķ“ ź³µė¶ķė ė“ģ©ģ ėė¤.
0131 1 spectral_theorem_transformation
0131 1 spectral_theorem_transformation
Jeonghun Yoon
Ģż
Spectral theorem ģ¤ģģ ķė ¬ė³ķģ ėķ ė“ģ©ģ ėė¤.
01. introduction
01. introduction
Jeonghun Yoon
Ģż
[Machine-learning] 1.Introduction
0221 basic probability theory
0221 basic probability theory
Jeonghun Yoon
Ģż
ė°ģ“ķ° ź³¼ķģģ ģ¬ģ©ķė ķė„ ģ ėķ“ ź³µė¶ķė ģė£ģ ėė¤.
0314 2 correlation
0314 2 correlation
Jeonghun Yoon
Ģż
ė°ģ“ķ° ź³¼ķģģ ģ¬ģ©ķė ģź“ė¶ģģ ėķ“ ź³µė¶ķė ė“ģ©ģ ėė¤.
0307 2 hypothesis_testing
0307 2 hypothesis_testing
Jeonghun Yoon
Ģż
ė°ģ“ķ° ė¶ģģģ ģ¬ģ©ķė ź°ģ¤ ź²ģ ģ ėķ“ģ ź³µė¶ķė ė“ģ©ģ ėė¤.
Variational AutoEncoder(VAE)
Variational AutoEncoder(VAE)
ź°ėƼźµ ź°ėƼźµ
Ģż
Variational Autoencoder explained PPT, it contains tensorflow code for it
Linear algebra
Linear algebra
Sungbin Lim
Ģż
źø°ģ“ģ ģø Linear Algebra ģ Matrix Calculus ė¶ķ° Back-propagation ź¹ģ§ ģ ėķė ģ¬ė¼ģ“ėģ ėė¤. ė³ø ģ¬ė¼ģ“ėģģė NumPy ģ ģ ķėģė„¼ ė¤ė£¹ėė¤.
ESM Mid term Review
ESM Mid term Review
Mario Cho
Ģż
ESM(ģØģė¹ ėØøģ ė¬ė) 11ģ£¼ģ°Ø ģ¤ź° ź°ė¬“ė¦¬
Wasserstein GAN ģķ ģ“ķ“ķźø° I
Wasserstein GAN ģķ ģ“ķ“ķźø° I
Sungbin Lim
Ģż
ģ“ ģ¬ė¼ģ“ėė Martin Arjovsky, Soumith Chintala, LĆ©on Bottou ģ Wasserstein GAN (https://arxiv.org/abs/1701.07875v2) ė ¼ė¬ø ģ¤ Example 1 ģ ķ“ģ¤ķė ģė£ģ ėė¤
06. graph mining
06. graph mining
Jeonghun Yoon
Ģż
SVM
SVM
Jeonghun Yoon
Ģż
Neural network (perceptron)
Neural network (perceptron)
Jeonghun Yoon
Ģż
Association rule mining
Association rule mining
Jeonghun Yoon
Ģż
05. k means clustering ( k-means ķ“ė¬ģ¤ķ°ė§)
05. k means clustering ( k-means ķ“ė¬ģ¤ķ°ė§)
Jeonghun Yoon
Ģż
0124 2 linear_algebra_basic_matrix
0124 2 linear_algebra_basic_matrix
Jeonghun Yoon
Ģż
0307 1 estimation_theory
0307 1 estimation_theory
Jeonghun Yoon
Ģż
Ensemble Model (Hybrid model)
Ensemble Model (Hybrid model)
Jeonghun Yoon
Ģż
0124 1 linear_algebra_basic_vector
0124 1 linear_algebra_basic_vector
Jeonghun Yoon
Ģż
Topic models
Topic models
Jeonghun Yoon
Ģż
0314 1 anova
0314 1 anova
Jeonghun Yoon
Ģż
0131 1 spectral_theorem_transformation
0131 1 spectral_theorem_transformation
Jeonghun Yoon
Ģż
01. introduction
01. introduction
Jeonghun Yoon
Ģż
0221 basic probability theory
0221 basic probability theory
Jeonghun Yoon
Ģż
0314 2 correlation
0314 2 correlation
Jeonghun Yoon
Ģż
0307 2 hypothesis_testing
0307 2 hypothesis_testing
Jeonghun Yoon
Ģż
Variational AutoEncoder(VAE)
Variational AutoEncoder(VAE)
ź°ėƼźµ ź°ėƼźµ
Ģż
Linear algebra
Linear algebra
Sungbin Lim
Ģż
ESM Mid term Review
ESM Mid term Review
Mario Cho
Ģż
Wasserstein GAN ģķ ģ“ķ“ķźø° I
Wasserstein GAN ģķ ģ“ķ“ķźø° I
Sungbin Lim
Ģż
Similar to 03. linear regression
(20)
Linear regression
Linear regression
ģ ķ¬ģ²
Ģż
ģ ķķź· ź°ģė øķøģ ėė¤
[Probability for machine learning]
[Probability for machine learning]
ź°ėƼźµ ź°ėƼźµ
Ģż
Probability for machine learning
RLCodeģ A3C ģ½ź³ ź¹ź² ģ“ķ“ķźø°
RLCodeģ A3C ģ½ź³ ź¹ź² ģ“ķ“ķźø°
Woong won Lee
Ģż
ģµź·¼ģ DeepRLģģ ė² ģ“ģ¤ė¼ģø ģź³ ė¦¬ģ¦ģ“ ė A3Cģ ėķ“ģ ģ§ź“ģ ģ¼ė” ģ“ķ“ė³“ź³ Policy gradientė¶ķ° ģģķ“ģ A3Cź¹ģ§ ģ“ė” ģ ģ¼ė” ź¹ź² ģ“ķ“ė³øė¤.
įį ¢įį „įį ¦įį ¦ įį „į«įį ¢įį ³įÆįį ³į« įį „įį µį«į į „įį µį¼ #3
įį ¢įį „įį ¦įį ¦ įį „į«įį ¢įį ³įÆįį ³į« įį „įį µį«į į „įį µį¼ #3
Haesun Park
Ģż
ķė¹ėÆøėģ“ ė¦¬ģ¼ķģ ģøėÆøė 'ķ“ģ»¤ģź² ģ ķ“ė¤ģ ėØøģ ė¬ė' ź°ģ ģė£(3/4) http://www.hanbit.co.kr/store/education/edu_view.html?p_code=S4788493436
Multinomial classification and application of ML
Multinomial classification and application of ML
ķ¬ģ ė°
Ģż
https://hunkim.github.io/ml/ ź¹ģ±ķ źµģėģ ėŖØėė„¼ ģķ ėØøģ ė¬ė ź°ģģ¤ (1)Softmax Regression (Multinomial Logistic Regression) (2)MLģ ģ¤ģ©ź³¼ ėŖź°ģ§ ķ ģ ė£ź³ ģ¤ķ°ė ģøėÆøėģģ ė°ķķ ppt
Lecture 2: Supervised Learning
Lecture 2: Supervised Learning
Sang Jun Lee
Ģż
- POSTECH EECE695J, "ė„ė¬ė źø°ģ“ ė° ģ² ź°ź³µģ ģģ ķģ©", Lecture 2 - Contents: categorization of machine learning, supervised learning (linear regression and logistic regression), multiclass classification
Deep Learning from scratch 4ģ„ : neural network learning
Deep Learning from scratch 4ģ„ : neural network learning
JinSooKim80
Ģż
Deep Learning from scratch 4ģ„ [neural network learning] ģģ½ė³ø
Probability with MLE, MAP
Probability with MLE, MAP
Junho Lee
Ģż
ģøź³µģ§ė„ ź³µė¶ė„¼ ģķ MLE, MAP ź³µė¶ģė£
Deep learning study 1
Deep learning study 1
San Kim
Ģż
Deep learning study 1. this slide includes basic mathematical theorems for deep learning, such as Bayes's theorem, Bayesian inference, information theorem.
Deep Learning from scratch 5ģ„ : backpropagation
Deep Learning from scratch 5ģ„ : backpropagation
JinSooKim80
Ģż
Deep Learning from scratch 5ģ„ [backpropagation] ģģ½ė³ø
ģ ķėģ 08. ģ ķ ė³ķ (Linear Transformation)
ģ ķėģ 08. ģ ķ ė³ķ (Linear Transformation)
AHRA CHO
Ģż
ķģė ģ“ģķ źµģė <ģ ķėģ> KOCW 9ź° ģ ķ ė³ķ (Linear Transformation) ź°ģ ģ ė¦¬ ė øķø
Gaussian Mixture Model
Gaussian Mixture Model
KyeongUkJang
Ģż
Gaussian Mixture Model
[GomGuard] ė“ė°ė¶ķ° YOLO ź¹ģ§ - ė„ė¬ė ģ ė°ģ ėķ ģ“ģ¼źø°
[GomGuard] ė“ė°ė¶ķ° YOLO ź¹ģ§ - ė„ė¬ė ģ ė°ģ ėķ ģ“ģ¼źø°
JungHyun Hong
Ģż
ė“ė°, perceptron, cnn, r-cnn, fast r-cnn, faster r-cnn ė° backpropagation, activation function, batch normalization, cost function, optimizer ė± ģ ė°ģ ģø ė„ė“ė“ ė¤ķøģķ¬ģ ėķ ģ§ģģ ė¤ė£Øź³ ģģµėė¤. mail : knholic@gmail.com blog : gomguard.tistory.com
Vae
Vae
Lee Gyeong Hoon
Ģż
Variational autoencoder
ź°ķķģµ ģź³ ė¦¬ģ¦ģ ķė¦ė Part 2
ź°ķķģµ ģź³ ė¦¬ģ¦ģ ķė¦ė Part 2
Dongmin Lee
Ģż
ģė ķģøģ. ź°ķķģµ ģź³ ė¦¬ģ¦ģ ķė¦ėė„¼ ģģ ģ¤ģ ģ¼ė” ė§ė¤ģ“ė“¤ģµėė¤. Part 1ģ MDP, ģ ģ± , ź°ģ¹ķØģ, ė¤ģ“ėėƹ ķė”ź·øėė°ģ¼ė” Part 2ģģė ė¤ģ“ėėƹ ķė”ź·øėė°ģ ķź³, ź°ķķģµģ ķģ, ģ“ģ¬, ķė¬ėģģ¼ė” ģ ė¦¬ķģģµėė¤. ź°ķķģµ ģź³ ė¦¬ģ¦ģ ķė¦ģ ģ“ķ“ķ“ė“ ģė¤~!
ź°ķ ķģµ źø°ģ“ Reinforcement Learning an introduction
ź°ķ ķģµ źø°ģ“ Reinforcement Learning an introduction
Taehoon Kim
Ģż
Sutton's book
Eigendecomposition and pca
Eigendecomposition and pca
Jinhwan Suk
Ģż
linear algebra
Auto-Encoders and Variational Auto-Encoders
Auto-Encoders and Variational Auto-Encoders
Jinho Lee
Ģż
Introduction to Auto-Encoders, Denoising Auto-Encoders and Variational Auto-Encoders
Random walk, brownian motion, black scholes equation
Random walk, brownian motion, black scholes equation
ģ°½ķø ģ
Ģż
Introduction to Stochastic calculus and proof of Black-Scholes equation.
Linear algebra.pptx
Linear algebra.pptx
GeonWooYoo1
Ģż
Linear algebra
Linear regression
Linear regression
ģ ķ¬ģ²
Ģż
[Probability for machine learning]
[Probability for machine learning]
ź°ėƼźµ ź°ėƼźµ
Ģż
RLCodeģ A3C ģ½ź³ ź¹ź² ģ“ķ“ķźø°
RLCodeģ A3C ģ½ź³ ź¹ź² ģ“ķ“ķźø°
Woong won Lee
Ģż
įį ¢įį „įį ¦įį ¦ įį „į«įį ¢įį ³įÆįį ³į« įį „įį µį«į į „įį µį¼ #3
įį ¢įį „įį ¦įį ¦ įį „į«įį ¢įį ³įÆįį ³į« įį „įį µį«į į „įį µį¼ #3
Haesun Park
Ģż
Multinomial classification and application of ML
Multinomial classification and application of ML
ķ¬ģ ė°
Ģż
Lecture 2: Supervised Learning
Lecture 2: Supervised Learning
Sang Jun Lee
Ģż
Deep Learning from scratch 4ģ„ : neural network learning
Deep Learning from scratch 4ģ„ : neural network learning
JinSooKim80
Ģż
Probability with MLE, MAP
Probability with MLE, MAP
Junho Lee
Ģż
Deep learning study 1
Deep learning study 1
San Kim
Ģż
Deep Learning from scratch 5ģ„ : backpropagation
Deep Learning from scratch 5ģ„ : backpropagation
JinSooKim80
Ģż
ģ ķėģ 08. ģ ķ ė³ķ (Linear Transformation)
ģ ķėģ 08. ģ ķ ė³ķ (Linear Transformation)
AHRA CHO
Ģż
Gaussian Mixture Model
Gaussian Mixture Model
KyeongUkJang
Ģż
[GomGuard] ė“ė°ė¶ķ° YOLO ź¹ģ§ - ė„ė¬ė ģ ė°ģ ėķ ģ“ģ¼źø°
[GomGuard] ė“ė°ė¶ķ° YOLO ź¹ģ§ - ė„ė¬ė ģ ė°ģ ėķ ģ“ģ¼źø°
JungHyun Hong
Ģż
Vae
Vae
Lee Gyeong Hoon
Ģż
ź°ķķģµ ģź³ ė¦¬ģ¦ģ ķė¦ė Part 2
ź°ķķģµ ģź³ ė¦¬ģ¦ģ ķė¦ė Part 2
Dongmin Lee
Ģż
ź°ķ ķģµ źø°ģ“ Reinforcement Learning an introduction
ź°ķ ķģµ źø°ģ“ Reinforcement Learning an introduction
Taehoon Kim
Ģż
Eigendecomposition and pca
Eigendecomposition and pca
Jinhwan Suk
Ģż
Auto-Encoders and Variational Auto-Encoders
Auto-Encoders and Variational Auto-Encoders
Jinho Lee
Ģż
Random walk, brownian motion, black scholes equation
Random walk, brownian motion, black scholes equation
ģ°½ķø ģ
Ģż
Linear algebra.pptx
Linear algebra.pptx
GeonWooYoo1
Ģż
03. linear regression
1.
Jeonghun Yoon
2.
ģ§ė ģź°.....Naive Bayes
Classifier arg max š¦ š š„1, ā¦ , š„ š š¦ š(š¦) = arg max š¦ š š„š š¦ š(š¦) š š=1 class š¦ ģ ė°ģ ķė„ ź³¼ test setģģ class š¦ģ labelģ ź°ģ§ ė°ģ“ķ°ģ ķ¹ģ± ė²”ķ°ģ ģģ š„š (ė¬øģģ ģģģė ėØģ“) ź° ėģ¬ ķė„ ģ ź³± ex) (I, love, you)ź° spamģøģ§ ģėģ§ ģźø° ģķ“ģė, test setģģ spamģ“ ģ°Øģ§ķė ė¹ģØź³¼ spamģ¼ė” labeling ė ė¬øģģģ Iģ loveģ youź° ė°ģķė ķė„ ģ ėŖØė ź³±ķ ź²ź³¼, test setģģ hamģ“ ģ°Øģ§ķė ė¹ģØź³¼ hamģ¼ė” labeling ė ė¬øģģģ Iģ loveģ youź° ė°ģķė ķė„ ģ ėŖØė ź³±ķ ź²ģ, ė¹źµķė¤.
3.
ģ§ė ģź° ėÆøė¹ķė
ģ ė¤... 1. Laplacian Smoothing (appendix ģ°øź³ ) 2. MLE / MAP 1
4.
Bayesā Rule š š
š© = š š© š š(š) š š© š š(š) posteriori (ģ¬ķ ķė„ ) likelihood (ģ°ė ź°) prior (ģ¬ģ ķė„ ) ģ¬ķ ķė„ : ź“ģ°° ź°ė¤ģ“ ź“ģ°° ė ķģ ėŖØģ(parameter)ģ ė°ģ ķė„ ģ źµ¬ķė¤. ģ¬ģ ķė„ : ź“ģ°° ź°ė¤ģ“ ź“ģ°° ėźø° ģ ģ ėŖØģģ ė°ģ ķė„ ģ źµ¬ķė¤. ģ°ė ź° : ėŖØģģ ź°ģ“ ģ£¼ģ“ģ”ģ ė ź“ģ°° ź°ė¤ģ“ ė°ģķ ķė„
5.
Maximum Likelihood Estimate š©
= (š„1, ā¦ , š„ š) š š½ = š š© š½ ģ°ė(likelihood)ė ė¤ģź³¼ ź°ģ“ ģ ģ ėė¤. ė³ģ(parameter) šź° ģ£¼ģ“ģ”ģ ė, data set š© = (š„1, ā¦ , š„ š) (ź“ģ°° ė, observed) ė„¼ ģ»ģ ģ ģė(obtaining) ķė„ š(š©|š) š šģ ķØģ. šģ pdfė ģė. š© = (š„1, ā¦ , š„ š)
6.
Maximum Likelihood Estimateė
ė¤ģź³¼ ź°ģ“ ģ ģ ėė¤. ź“ģ°° ė data set š© = š„1, ā¦ , š„ š ģ ģ»ģ ģ ģė ķė„ ģ“ ź°ģ„ ķ° šź° MLEģ“ė¤. š(š©|š1) š š© = (š„1, ā¦ , š„ š) š½ = šš«š š¦šš± š½ š š½ = šš«š š¦šš± š½ š(š©|š½)Ģ š(š©|š2) š(š©|š3) š(š©|š) š = š2 Ģ
7.
ģ°ė¦¬ź° likelihood function
š(š©|š)ģ prior š(š)ė„¼ ģ ė, Bayes ruleģ ģķģ¬ posteriori functionģ ź°ģ źµ¬ķ ģ ģė¤. š š½ š© ā š š© š½ š(š½) Maximum A Posteriori Estimate š š š© = š š© š š(š) š š© š š(š) posteriori (ģ¬ķ ķė„ ) likelihood (ģ°ė ź°) prior (ģ¬ģ ķė„ )
8.
Likelihood š(š©|š) Prior š(š) Posterior š
š š© ā š š© š š(š)
9.
Likelihood š(š©|š) Prior š(š) Posterior š
š š© ā š š© š š(š)
10.
š½ = šš«š
š¦šš± š½ š(š½|š©) Likelihood š(š©|š) Prior š(š) Posterior š š š© ā š š© š š(š)
11.
Regression
12.
ėė ķ° ģ ė°ķģ¬ģ
CEOģ“ė¤. ė§ģ ģ§ģ ė¤ģ ź°ģ§ź³ ģė¤. ź·øė¦¬ź³ ģ“ė²ģ ģė”ģ“ ģ§ģ ģ ė“ź³ ģ¶ė¤. ģ“ė ģ§ģģ ė“ģ¼ ė ź¹? ė“ź° ģė”ģ“ ģ§ģ ģ ė“ź³ ģ¶ģ“ķė ģ§ģė¤ģ ģģ ģģµė§ ķģ ķ ģ ģģ¼ė©“ ķ° ėģģ“ ė ź²ģøė°! ė“ź° ź°ģ§ź³ ģė ģė£(data)ė ź° ģ§ģ ģ ģģµ(profits)ź³¼ ź° ģ§ģ ģ“ ģė ģ§ģģ ģøźµ¬ģ(populations)ģ“ė¤. ķ“ź²°ģ± ! Linear Regression! ģ“ź²ģ ķµķģ¬, ģė”ģ“ ģ§ģģ ģøźµ¬ģė„¼ ģź² ė ź²½ģ°, ź·ø ģ§ģģ ģģ ģģµģ źµ¬ ķ ģ ģė¤. Example 1)
13.
Example 2) ėė ģ§źø
Pittsburghė” ģ“ģ¬ė„¼ ģė¤ ėė ź°ģ„ ķ©ė¦¬ģ ģø ź°ź²©ģ ģķķøė„¼ ģ»źø° ģķė¤. ź·øė¦¬ź³ ė¤ģģ ģ”°ź±“ė¤ģ ė“ź° ģ§ģ ģ¬źø° ģķ“ ź³ ė ¤ķė ź²ė¤ģ“ė¤. square-ft(ķė°©ėÆøķ°), ģ¹Øģ¤ģ ģ, ķźµ ź¹ģ§ģ ź±°ė¦¬... ė“ź° ģķė ķ¬źø°ģ ģ¹Øģ¤ģ ģė„¼ ź°ģ§ź³ ģė ģ§ģ ź°ź²©ģ ź³¼ģ° ģ¼ė§ģ¼ź¹?
14.
ā Given an
input š„ we would like to compute an output š¦. (ė“ź° ģķė ģ§ģ ķ¬źø°ģ, ė°©ģ ź°ģė„¼ ģ ė „ķģ ė, ģ§ ź°ź²©ģ ģģø” ź°ģ ź³ģ°) ā” For example 1) Predict height from age (height = š¦, age = š„) 2) Predict Google`s price from Yahoo`s price (Google's price = š¦, Yahoo's price = š„) š¦ = š0 + š1 š„ ģ¦, źø°ģ”“ģ dataė¤ģģ ģ§ģ (š¦ = š0 + š1 š„)ģ ģ°¾ģė“ė©“, ģė”ģ“ ź° š„ ššš¤ź° ģ£¼ģ“ģ”ģ ė, ķ“ė¹ķė š¦ģ ź°ģ ģģø”ķ ģ ģź² źµ¬ė! learning, training prediction
15.
Input : ģ§ģ
ķ¬źø°(š„1), ė°©ģ ź°ģ(š„2), ķźµź¹ģ§ģ ź±°ė¦¬(š„3),..... (š„1, š„2, ā¦ , š„ š) : ķ¹ģ± ė²”ķ° feature vector Output : ģ§ ź°(š¦) š = š½ š + š½ š š š + š½ š š š + āÆ + š½ š š š training setģ ķµķģ¬ ķģµ(learning)
16.
Simple Linear Regression
17.
š¦š = š0
+ š1 š„š + šš šė²ģ§ø ź“ģ°°ģ š¦š, š„š ź° ģ£¼ģ“ģ”ģ ė ėØģ ķź· ėŖØķģ ė¤ģź³¼ ź°ė¤. š3 šš : šė²ģ§ø ź“ģ°°ģ ģģ ģ°ė¦¬ź° źµ¬ķź³ ģ ķė ķź·ģ§ģ ź³¼ ģ¤ģ ź“ģ°°ė š¦šģ ģ°Øģ“ (error) ģ°ė¦¬ė ģ¤ė„ģ ķ©ģ ź°ģ„ ģź² ė§ėė ģ§ģ ģ ģ°¾ź³ ģ¶ė¤. ģ¦ ź·øė ź² ė§ėė š½ šģ š½ šģ ģ¶ģ ķź³ ģ¶ė¤ ! How!! ģµģ ģ ź³± ė²! (Least Squares Method) min š¦š ā š0 + š1 š„š 2 š = ššš šš 2 š š¦ = š0 + š1 š„ ģ¤ģ ź“ģø” ź° ķź· ģ§ģ ģ ź°(ģ“ģģ ģø ź°) ģ¢ ģ ė³ģ ģ¤ėŖ ė³ģ, ė ė¦½ ė³ģ
18.
min š¦š ā
š0 + š1 š„š 2 š = min šš 2 š ģ¤ģ ź“ģø” ź° ķź· ģ§ģ ģ ź°(ģ“ģģ ģø ź°) ģģ ģģ ģµėķ ė§ģ”± ģķ¤ė š0, š1ģ ģ¶ģ ķė ė°©ė²ģ ė¬“ģģ¼ź¹? (ģ“ė¬ķ š1, š2ė„¼ š1, š2 ė¼ź³ ķģ.) - Normal Equation - Steepest Gradient Descent Ė Ė
19.
What is normal
equation? ź·¹ė ź°, ź·¹ģ ź°ģ źµ¬ķ ė, ģ£¼ģ“ģ§ ģģ ėÆøė¶ķ ķģ, ėÆøė¶ķ ģģ 0ģ¼ė” ė§ėė ź°ģ ģ°¾ėė¤. min š¦š ā š0 + š1 š„š 2 š ėؼģ , š0ģ ėķģ¬ ėÆøė¶ķģ. ā š¦š ā š0 + š1 š„š = 0 š š šš0 š¦š ā š0 + š1 š„š 2 š = ė¤ģģ¼ė”, š1ģ ėķģ¬ ėÆøė¶ķģ. ā š¦š ā š0 + š1 š„š š„š = 0 š š šš1 š¦š ā š0 + š1 š„š 2 š = ģ ģ ė ģģ 0ģ¼ė” ė§ģ”±ģķ¤ė š0, š1ė„¼ ģ°¾ģ¼ė©“ ėė¤. ģ“ģ²ė¼ 2ź°ģ ėÆøģ§ģģ ėķģ¬, 2ź°ģ ė°©ģ ģ(system)ģ“ ģģ ė, ģ°ė¦¬ė ģ“ systemģ normal equation(ģ ź·ė°©ģ ģ)ģ“ė¼ ė¶ė„øė¤.
20.
The normal equation
form š©š = 1, š„š š , Ī = š0, š1 š , šŖ = š¦1, š¦2, ā¦ , š¦ š š , š = 1 1 ā¦ š„1 š„2 ā¦ 1 š„ š , š = (š1, ā¦ , š š) ė¼ź³ ķģ. šŖ = šĪ + š š¦1 = š0 + š1 š„1 + š1 š¦2 = š0 + š1 š„2 + š2 ....... š¦ šā1 = š0 + š1 š„ šā1 + š šā1 š¦ š = š0 + š1 š„ š + š š šź°ģ ź“ģø” ź° (š„š, š¦š)ģ ģėģ ź°ģ ķź· ėŖØķģ ź°ģ§ė¤ź³ ź°ģ ķģ. š¦1 š¦2 š¦3 ā¦ š¦ š = 1 1 1 ā¦ š„1 š„2 š„3 ā¦ 1 š„ š š0 š1 + š1 š2 š3 ā¦ š š
21.
šš 2 š š=1 = š š š
= šŖ ā šĪ š (šŖ ā šĪ) = šŖ š šŖ ā Ī š š š šŖ ā šŖ š šĪ + Ī š š š šĪ = šŖ š šŖ ā 2Ī š š š šŖ + Ī š š š šĪ 1 by 1 ķė ¬ģ“ėÆė” ģ ģ¹ķė ¬ģ ź°ģ“ ź°ė¤! š(š š š) šĪ = š š(š š š) šĪ = ā2š š šŖ + 2š š šĪ = š š š ššÆ = š š šŖ šÆ = š š š ā1 š š šŖĖ ģ ź·ė°©ģ ģ šŖ = šĪ + š š = šŖ ā šĪ Minimize šš 2 š š=1
22.
What is Gradient
Descent? machine learningģģė ė§¤ź° ė³ģ(parameter, ģ ķķź·ģģė š0, š1)ź° ģģ~ ģė°± ģ°Øģģ ė²”ķ°ģø ź²½ģ°ź° ėė¶ė¶ģ“ė¤. ėķ ėŖ©ģ ķØģ(ģ ķķź·ģģė Ī£šš 2 )ź° ėŖØė źµ¬ź°ģģ ėÆøė¶ ź°ė„ķė¤ė ė³“ģ„ģ“ ķģ ģė ź²ė ģėė¤. ė°ė¼ģ ķ ė²ģ ģģ ģ ź°ė” ķ“ė„¼ źµ¬ķ ģ ģė ģķ©ģ“ ģ ģ§ ģź² ģė¤. ģ“ė° ź²½ģ°ģė ģ“źø° ķ“ģģ ģģķģ¬ ķ“ė„¼ ė°ė³µģ ģ¼ė” ź°ģ ķ“ ėź°ė ģģ¹ģ ė°©ė²ģ ģ¬ģ©ķė¤. (ėÆøė¶ģ“ ģ¬ģ© ėØ)
23.
What is Gradient
Descent? ģ“źø°ķ“ š¼0 ģ¤ģ š” = 0 š¼ š”ź° ė§ģ”±ģ¤ė½ė? š¼ š”+1 = š š¼ š” š” = š” + 1 š¼ = š¼ š” ĖNo Yes
24.
What is Gradient
Descent? Gradient Descent ķģ¬ ģģ¹ģģ ź²½ģ¬ź° ź°ģ„ źøķź² ķź°ķė ė°©ķ„ģ ģ°¾ź³ , ź·ø ė°©ķ„ģ¼ė” ģ½ź° ģ“ėķģ¬ ģė”ģ“ ģģ¹ė„¼ ģ”ėė¤. ģ“ė¬ķ ź³¼ģ ģ ė°ė³µķØģ¼ė”ģØ ź°ģ„ ė®ģ ģ§ģ (ģ¦ ģµģ ģ )ģ ģ°¾ģ ź°ė¤. Gradient Ascent ķģ¬ ģģ¹ģģ ź²½ģ¬ź° ź°ģ„ źøķź² ģģ¹ķė ė°©ķ„ģ ģ°¾ź³ , ź·ø ė°©ķ„ģ¼ė” ģ½ź° ģ“ėķģ¬ ģė”ģ“ ģģ¹ė„¼ ģ”ėė¤. ģ“ė¬ķ ź³¼ģ ģ ė°ė³µķØģ¼ė”ģØ ź°ģ„ ėģ ģ§ģ (ģ¦ ģµė ģ )ģ ģ°¾ģ ź°ė¤.
25.
What is Gradient
Descent? Gradient Descent š¼ š”+1 = š¼ š” ā š šš½ šš¼ š¼ š” š½ = ėŖ©ģ ķØģ šš½ šš¼ š¼ š” : š¼ š”ģģģ ėķØģ šš½ šš¼ ģ ź° š¼ š” š¼ š”+1 ā šš± šš¶ š¶ š šš± šš¶ š¶ š š¼ š”ģģģ ėÆøė¶ź°ģ ģģģ“ė¤. ź·øėģ šJ šĪ± Ī±t ė„¼ ėķź² ėė©“ ģ¼ģŖ½ģ¼ė” ģ“ėķź² ėė¤. ź·øė¬ė©“ ėŖ©ģ ķØģģ ź°ģ“ ģ¦ź°ķė ė°©ķ„ģ¼ė” ģ“ėķź² ėė¤. ė°ė¼ģ šJ šĪ± Ī±t ė„¼ ė¹¼ģ¤ė¤. ź·øė¦¬ź³ ģ ė¹ķ šė„¼ ź³±ķ“ģ£¼ģ“ģ ģ”°źøė§ ģ“ėķź² ķė¤. āš šš± šš¶ š¶ š
26.
What is Gradient
Descent? Gradient Descent š¼ š”+1 = š¼ š” ā š šš½ šš¼ š¼ š” Gradient Ascent š¼ š”+1 = š¼ š” + š šš½ šš¼ š¼ š” š½ = ėŖ©ģ ķØģ šš½ šš¼ š¼ š” : š¼ š”ģģģ ėķØģ šš½ šš¼ ģ ź° Gradient Descent, Gradient Ascentė ģ ķģ ģø Greedy algorithmģ“ė¤. ź³¼ź±° ėė ėÆøėė„¼ ź³ ė ¤ķģ§ ģź³ ķģ¬ ģķ©ģģ ź°ģ„ ģ ė¦¬ķ ė¤ģ ģģ¹ė„¼ ģ°¾ģ Local optimal pointė” ėė ź°ė„ģ±ģ ź°ģ§ ģź³ ė¦¬ģ¦ģ“ė¤.
27.
š½ Ī = 1 2 š0
+ š1 š„š ā š¦š 2 š š=1 = 1 2 Ī š š©š ā š¦š 2 š š=1 š©š = 1, š„š š , Ī = š0, š1 š , šŖ = š¦1, š¦2, ā¦ , š¦š š , š = 1 1 ā¦ š„1 š„2 ā¦ 1 š„ š , š = (š1, ā¦ , š š) ė¼ź³ ķģ. š0 š”+1 = š0 š” ā š¼ š šš0 š½(Ī)š” š1 š”+1 = š1 š” ā š¼ š šš1 š½(Ī)š” š0ģ š”ė²ģ§ø ź°ģ, š½(Ī)ė„¼ š0ģ¼ė” ėÆøė¶ķ ģģė¤ź° ėģ . ź·ø ķģ, ģ“ ź°ģ š0ģģ ė¹¼ ģ¤. ėÆøė¶ķ ė ģ“ģ©. Gradient descentė„¼ ģ¤ģ§ķė źø°ģ¤ģ“ ėė ķØģ
28.
š½ Ī = 1 2 š0
+ š1 š„š ā š¦š 2 š š=1 = 1 2 Ī š š©š ā š¦š 2 š š=1 š©š = 1, š„š š , Ī = š0, š1 š , šŖ = š¦1, š¦2, ā¦ , š¦š š , š = 1 1 ā¦ š„1 š„2 ā¦ 1 š„ š , š = (š1, ā¦ , š š) ė¼ź³ ķģ. Gradient of š½(Ī) š šš0 š½ š = (Ī š š©š ā š¦š) š š=1 1 š šš1 š½ š = (Ī š š©š ā š¦š) š š=1 š„š š»š½ Ī = š šš0 š½ Ī , š šš1 š½ Ī š = Ī š š©š ā š¦š š©š š š=1
29.
š©š = 1,
š„š š , Ī = š0, š1 š , šŖ = š¦1, š¦2, ā¦ , š¦š š , š = 1 1 ā¦ š„1 š„2 ā¦ 1 š„ š , š = (š1, ā¦ , š š) ė¼ź³ ķģ. š0 š”+1 = š0 š” ā š¼ (Ī š š©š ā š¦š) š š=1 1 ėØ, ģ“ ėģ Īģė¦¬ģė š”ė²ģ§øģ ģ»ģ“ģ§ Īź°ģ ėģ ķ“ģ¼ ķė¤. š1 š”+1 = š1 š” ā š¼ Ī š š©š ā š¦š š„š š š=1
30.
Steepest Descent
31.
Steepest Descent ģ„ģ :
easy to implement, conceptually clean, guaranteed convergence ėØģ : often slow converging Ī š”+1 = Ī š” ā š¼ {(Ī š”) š š©š ā š¦š}š©š š š=1 Normal Equations ģ„ģ : a single-shot algorithm! Easiest to implement. ėØģ : need to compute pseudo-inverse š š š ā1 , expensive, numerical issues (e.g., matrix is singular..), although there are ways to get around this ... š = š š š ā1 š š šŖĖ
32.
Multivariate Linear Regression
33.
š = š½
š + š½ š š š + š½ š š š + āÆ + š½ š š š ėØģ ģ ķ ķź· ė¶ģģ, input ė³ģź° 1. ė¤ģ¤ ģ ķ ķź· ė¶ģģ, input ė³ģź° 2ź° ģ“ģ. Googleģ ģ£¼ģ ź°ź²© Yahooģ ģ£¼ģ ź°ź²© Microsoftģ ģ£¼ģ ź°ź²©
34.
š = š½
š + š½ š š š š + š½ š š š š + š ģė„¼ ė¤ģ“, ģėģ ź°ģ ģģ ģ ķģ¼ė” ģź°ķģ¬ ķ ģ ģėź°? ė¬¼ė” , input ė³ģź° polynomial(ė¤ķģ)ģ ķķģ“ģ§ė§, coefficients ššź° ģ ķ(linear)ģ“ėÆė” ģ ķ ķź· ė¶ģģ ķ“ė²ģ¼ė” ķ ģ ģė¤. šÆ = š š š ā1 š š šŖĖ š0, š1, ā¦ , š š š
35.
General Linear Regression
36.
š = š½
š + š½ š š š + š½ š š š + āÆ + š½ š š šģ¤ ķź· ė¶ģ ģ¼ė° ķź· ė¶ģ š = š½ š + š½ š š š(š š) + š½ š š š(š š) + āÆ + š½ š š š(š š) ššė š„ š ėė (š„āš š) 2š š ėė 1 1+exp(āš š š„) ė±ģ ķØģź° ė ģ ģė¤. ģ“ź²ė ė§ģ°¬ź°ģ§ė” ģ ķ ķź· ķģ“ ė°©ė²ģ¼ė” ė¬øģ ė„¼ ķ ģ ģė¤.
37.
š¤ š = (š¤0,
š¤1, ā¦ , š¤ š) š š„ š š = š0 š„ š , š1 š„ š , ā¦ , š š š„ š
38.
š¤ š = (š¤0,
š¤1, ā¦ , š¤ š) š š„ š š = š0 š„ š , š1 š„ š , ā¦ , š š š„ š normal equation
39.
[ ģė£ģ ė¶ģ
] ā ėŖ©ģ : ģ§ģ ķźø° ģķØ. ģė§ģ ź°ź²©ģ ģ°¾źø° ģķØ. ā” ź³ ė ¤ķ ė³ģ(feature) : ģ§ģ ķ¬źø°(in square feet), ģ¹Øģ¤ģ ź°ģ, ģ§ ź°ź²©
40.
(ģ¶ģ² : http://aimotion.blogspot.kr/2011/10/machine-learning-with-python-linear.html) ā¢
ģ£¼ģģ¬ķ : ģ§ģ ķ¬źø°ģ ģ¹Øģ¤ģ ź°ģģ ģ°Øģ“ź° ķ¬ė¤. ģė„¼ ė¤ģ“, ģ§ģ ķ¬źø°ź° 4000 square feetģøė°, ģ¹Øģ¤ģ ź°ģė 3ź°ģ“ė¤. ģ¦, ė°ģ“ķ° ģ featureė¤ ź° ź·ėŖØģ ģ°Øģ“ź° ķ¬ė¤. ģ“ė“ ź²½ģ°, featureģ ź°ģ ģ ź·ķ(normalizing)ė„¼ ķ“ģ¤ė¤. ź·øėģ¼, Gradient Descentė„¼ ģķķ ė, ź²°ź³¼ź°ģ¼ė” ė¹ ė„“ź² ģė “ķė¤. ā£ ģ ź·ķģ ė°©ė² - featureģ mean(ķź· )ģ źµ¬ķ ķ, featureė“ģ ėŖØė dataģ ź°ģģ meanģ ė¹¼ģ¤ė¤. - dataģģ meanģ ė¹¼ ģ¤ ź°ģ, ź·ø dataź° ģķė standard deviation(ķģ¤ ķøģ°Ø)ė” ėėģ“ ģ¤ė¤. (scaling) ģ“ķ“ź° ģ ėė©“, ģ°ė¦¬ź° ź³ ė±ķźµ ė ė°°ģ ė ģ ź·ė¶ķ¬ė„¼ ķģ¤ģ ź·ė¶ķ¬ė” ė°ź¾øģ“ģ£¼ė ź²ģ ė ģ¬ė ¤ė³“ģ. ķģ¤ģ ź·ė¶ķ¬ė„¼ ģ¬ģ©ķė ģ“ģ ģ¤ ķėė, ģė” ė¤ė„ø ė ė¶ķ¬, ģ¦ ė¹źµź° ė¶ź°ė„ķź±°ė ģ“ė ¤ģ“ ė ė¶ķ¬ė„¼ ģ½ź² ė¹źµķ ģ ģź² ķ“ģ£¼ė ź²ģ“ģė¤. š = š ā š š If š~(š, š) then š~š(1,0)
41.
1. http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture5-LiR.pdf 2. http://www.cs.cmu.edu/~10701/lecture/RegNew.pdf 3.
ķź·ė¶ģ ģ 3ķ (ė°ģ±ķ ģ ) 4. ķØķ“ģøģ (ģ¤ģ¼ģ ģ§ģ) 5. ģė¦¬ķµź³ķ ģ 3ķ (ģ ėŖ ģ ģ§ģ)
42.
Laplacian Smoothing multinomial random
variable š§ : š§ė 1ė¶ķ° šź¹ģ§ģ ź°ģ ź°ģ§ ģ ģė¤. ģ°ė¦¬ė test setģ¼ė” šź°ģ ė ė¦½ģø ź“ģ°° ź° š§ 1 , ā¦ , š§ š ģ ź°ģ§ź³ ģė¤. ģ°ė¦¬ė ź“ģ°° ź°ģ ķµķ“, š(š = š) ė„¼ ģ¶ģ ķź³ ģ¶ė¤. (š = 1, ā¦ , š) ģ¶ģ ź°(MLE)ģ, š š§ = š = š¼{š§ š = š}š š=1 š ģ“ė¤. ģ¬źø°ģ š¼ . ė ģ§ģ ķØģ ģ“ė¤. ź“ģ°° ź° ė“ģģģ ė¹ėģė„¼ ģ¬ģ©ķģ¬ ģ¶ģ ķė¤. ķ ź°ģ§ ģ£¼ģ ķ ź²ģ, ģ°ė¦¬ź° ģ¶ģ ķė ¤ė ź°ģ ėŖØģ§ėØ(population)ģģģ ėŖØģ š(š§ = š)ė¼ė ź²ģ“ė¤. ģ¶ģ ķźø° ģķģ¬ test set(or ķė³ø ģ§ėØ)ģ ģ¬ģ©ķė ź² ėæģ“ė¤. ģė„¼ ė¤ģ“, š§(š) ā 3 for all š = 1, ā¦ , š ģ“ė¼ė©“, š š§ = 3 = 0 ģ“ ėė ź²ģ“ė¤. ģ“ź²ģ, ķµź³ģ ģ¼ė” ė³¼ ė, ģ¢ģ§ ģģ ģź°ģ“ė¤. ėØģ§, ķė³ø ģ§ėØģģ ė³“ģ“ģ§ ģė ė¤ė ģ“ģ ė” ģ°ė¦¬ź° ģ¶ģ ķź³ ģ ķė ėŖØģ§ėØģ ėŖØģ ź°ģ 0ģ¼ė” ķė¤ė ź²ģ ķµź³ģ ģ¼ė” ģ¢ģ§ ģģ ģź°(bad idea)ģ“ė¤. (MLEģ ģ½ģ )
43.
ģ“ź²ģ ź·¹ė³µķźø° ģķ“ģė, ā
ė¶ģź° 0ģ“ ėģ“ģė ģ ėė¤. ā” ģ¶ģ ź°ģ ķ©ģ“ 1ģ“ ėģ“ģ¼ ķė¤. š š§ = šš§ =1 (āµ ķė„ ģ ķ©ģ 1ģ“ ėģ“ģ¼ ķØ) ė°ė¼ģ, š š = š = š° š š = š + šš š=š š + š ģ“ė¼ź³ ķģ. ā ģ ģ±ė¦½ : test set ė“ģ šģ ź°ģ“ ģģ“ė, ķ“ė¹ ģ¶ģ ź°ģ 0ģ“ ėģ§ ģėė¤. ā”ģ ģ±ė¦½ : š§(š) = šģø dataģ ģė„¼ ššė¼ź³ ķģ. š š§ = 1 = š1+1 š+š , ā¦ , š š§ = š = š š+1 š+š ģ“ė¤. ź° ģ¶ģ ź°ģ ė¤ ėķź² ėė©“ 1ģ“ ėģØė¤. ģ“ź²ģ“ ė°ė” Laplacian smoothingģ“ė¤. š§ź° ė ģ ģė ź°ģ“ 1ė¶ķ° šź¹ģ§ ź· ė±ķź² ėģ¬ ģ ģė¤ė ź°ģ ģ“ ģ¶ź°ėģė¤ź³ ģ§ź“ģ ģ¼ė” ģ ģ ģė¤. 1
Download