The guided policy search(GPS) is the branch of reinforcement learning developed for real-world robotics, and its utility is substantiated along many research. This slide show contains the comprehensive concept of GPS, and the detail way to implement, so it would be helpful for anyone who want to study this field.
The guided policy search(GPS) is the branch of reinforcement learning developed for real-world robotics, and its utility is substantiated along many research. This slide show contains the comprehensive concept of GPS, and the detail way to implement, so it would be helpful for anyone who want to study this field.
[paper review] 蠏觜 - Eye in the sky & 3D human pose estimation in video with ...Gyubin Son
油
1. Eye in the Sky: Real-time Drone Surveillance System (DSS) for Violent Individuals Identification using ScatterNet Hybrid Deep Learning Network
https://arxiv.org/abs/1806.00746
2. 3D human pose estimation in video with temporal convolutions and semi-supervised training
https://arxiv.org/abs/1811.11742
際際滷s based on "Introduction to Machine Learning with Python" by Andreas Muller and Sarah Guido for Hongdae Machine Learning Study(https://www.meetup.com/Hongdae-Machine-Learning-Study/) (epoch #2)
襾語 ろ磯(https://www.meetup.com/Hongdae-Machine-Learning-Study/) (epoch #2) "伎 殊企襴襯 襾語"(蠍伎 覦伎) 殊企 襭.
Dense sparse-dense training for dnn and Other ModelsDong Heon Cho
油
Learning how to explain neural networks: PatternNet and PatternAttribution
1. Learning how to explain neural networks
PatternNet and PatternAttribution
PJ Kindermans et al. 2017
蠏觜
螻る蟲 一蟆曙螻牛螻
Data Science & Business Analytics 郁規
2. / 29
覈谿
1. 螻手碓 覦覯襦れ 覦 覓語
2. 螻手碓 覦覯襦 覿
1) DeConvNet
2) Guided BackProp
3. Linear model 蟲
1) Deterministic distractor
2) Additive isotropic Gaussian noise
4. Approaches
5. Quality criterion for signal estimator
6. Learning to estimate signal
1) Existing estimators
2) PatternNet & PatternAttribution
7. Experiments
2
3. / 29
0.
Data 譴 覩碁ゼ 願 Signal螻 碁 覿覿 Distractor襦 蟲焔.
螳襯 る Signal 覿覿 譴 伎 .
Model weight Distractor レ 襷 覦蠍 覓語
螳襯 weight襷 譟危覃 譬讌 蟆郁骸襯 碁.
output y distractor correlation朱 signal 讌 , 螳 .
豢覿 給 覈語 { weight, input, output } 螳朱 linear, non-linear
覦朱 signal 蟲 螻, 蠏碁襦 螳.
3
15. / 29
3.1 Linear Model 蟲 - Deterministic distractor
Linear model 牛 signal螻 distractor 讌 蟯谿
15
Notation
w : filter or weight
x : data
y : condensed output
s : relevant signal
d : distracting component.
output 覓企
覲企 螳讌螻 讌 覿覿
a_s : direction of signal.
output 殊 覈
a_d : direction of distractor
s = asyx = s + d
d = ad狼
as = (1,0)T
ad = (1,1)T
y [1,1]
狼 (亮, 2
)
Data x signal s distractor d
襷譟燕蠍 伎
願, 伎伎 蠍 覓
wT
x = y w = [1, 1]T
wT
asy = y wT
ad狼 = 0
16. / 29
3.1 Linear Model 蟲 - Deterministic distractor
16
, 覈襯 豢譟煙貅
weight distractor襯 蟇壱伎狩蠍 覓語 distractor direction螻 orthogonal り
讀 w signal direction螻 align讌 .
weight distractor orthogonal 讌覃伎,
蠍 譟一 牛 讌 .
Weight vector distractor 蟆 譬讌一
weight vector襷朱 企 input pattern output レ 殊讌
wT
asy = y wT
ad狼 = 0
- signal direction 蠏碁襦 讌
- distractor direction 覦
weight direction 覦
wT
as = 1
17. / 29
3.2 Linear Model 蟲 - No distractor, Additive isotropic Gaussian noise
17
Isotropic Gaussian noise襯 伎
zero mean: noise mean bias襯 牛 朱
讌 朱襦 0朱 .
correlation企 structure螳 蠍 覓語
weight vector襯 牛り 伎
noise螳 蟇磯讌 .
Gaussian noise襯 豢螳 蟆
L2 regularization螻 螳 螻朱ゼ 碁.
讀 weight襯 shirink .
譟郁唄 覓語 襷譟燕
螳 weight vector
螳 覦レ vector
< Gaussian pattern >
yn = 硫xn + 狼
N
n=1
(yn |硫xn, 2
)
N
n=1
(yn |硫xn, 2
)(硫|0,了1
)
N
n=1
1
2
(yn 硫xn)2
了硫2
+ const
< Gaussian noise & L2 regularization >
> likelihood,
皙 Logarithm
wT
as = 1
as
as
w
w霞
w
1
18. / 29
4. Approaches
18
Functions
data x output y襯 觸 磯 覦覯. ex) gradients, saliency map
y襯 x襦 覩碁伎 input 覲螳 企至 output 覲蟆讌 危エ覲碁.
企 model gradient襯 磯 蟆願 蟆郁記 gradient weight.
Signal
Signal: 覈語 neuron activate る 一危一 蟲
Output input space蟾讌 gradient襯 backprop貅 覲 蟯谿
DeConvNet, Guded BackProp 蟆 signal企 覲伎 覈詩.
Attribution
轟 Signal 朱 output 蠍一讌 企 讌
Linear model signal螻 weight vector element-wise 螻煙朱 伎伎
Deep taylor decomposition 朱語 activation 螳 input
contribution朱 覿危螻, LRP relevance 豺.
y = wT
x
y/x = w
PatternNet
PatternAttribution
19. / 29
5. Quality criterion for signal estimator
19
伎
wT
x = y
wT
s + wT
d = y
(x = s + d)wT
(s + d) = y
wT
s = y (wT
d = 0)
(wT
)1
wT
s = (wT
)1
y
s = uu1
(wT
)1
y
s = u(wT
u)1
y
u = random vector
(wT
u 0)
Quality measure
S(x) = s
(S) = 1 maxvcorr(wT
x, vT
(x S(x)))
d = x S(x) y = wT
x, ,
= 1 maxv
vT
cov[y, d]
2
vT d
2
y
譬 signal estimator correlation 0朱 ->
w 企 給 覈語 weight 螳
correlation scale invariant 蠍 覓語
覿一 覿郁骸 螳 蟆企 曙^蟇 豢螳
S(x)襯 螻り optimal 襯 谿城謂
覦 d y Least-squares regression
vT d y
v
illposed problem.
企襦 襴讌 .
るジ 覦
20. / 29
6.1 蠍一ヾ Signal estimator 覦
20
The identity estimator
data distractor , signal襷 譟伎 螳
data螳 企語 signal 企語 蠏碁襦企.
linear model attribution 蟲 .
(distractor螳 譟伎朱, attribution )
れ 一危一 distractor螳 螻,
forward pass 蟇磯讌襷
backward pass element wise 螻煙 讌
螳 noise螳 襷 覲伎碁(LRP)
Sx(x) = x
r = w x = w s + w d
The filter based estimator
∬豸° signal weight direction 螳
ex) DeConvNet, Guided BackProp
weight normalize 伎
linear model attribution 螻旧 れ螻 螳螻
signal 襦 蟲燕讌 覈詩
Sw(x) =
w
wTw
wT
x
r =
w w
wTw
y
21. / 29
6.2 PatternNet & PatternAttribution
21
覦 覦 螳
criterion 豕 給逢
覈 螳ロ 覯″ y d correlation 0
signal estimator S螳 optimal企 .
Linear model y d covariance 0企
cov[y, x] cov[y, S(x)] = 0
v
cov[y, x] = cov[y, S(x)]
cov[y, d] = 0
(S) = 1 maxvcorr(wT
x, vT
(x S(x)))
= 1 maxv
vT
cov[y, d]
2
vT d
2
y
Quality measure
22. / 29
6.2 PatternNet & PatternAttribution
22
The linear estimator
linear neuron data x linear signal襷 豢豢 螳
豌 y linear 一一 signal
linear model y, d covariance 0企襦
Sa(x) = awT
x = ay
cov[x, y]
= cov[S(x), y]
= cov[awT
x, y]
= a cov[y, y]
a =
cov[x, y]
2
y
襷 d s螳 orthogonal る
DeConvNet螻 螳 filter-based 覦
螻 殊.
Convolution layer 襷れ
FC layer ReLU螳 郁屋伎 覿覿
correlation 蟇壱
朱襦 豌 criterion 豺
VGG16
criterion 觜蟲
襷蠏碁 襦
random, S_w,
S_a, S_a+-
23. / 29
6.2 PatternNet & PatternAttribution
23
The two-component(Non-linear) estimator
linear estimator 螳 trick 一襷
y 螳 覿語 磯 螳螳 るゴ蟆 豌襴.
企一 燕伎讌 覿 覲企
distractor 譟伎 y螳 覿覿 螻
ReLU 覓語 れ positive domain襷
locally 一危 蠍 覓語 企ゼ 覲伎
covariance 螻旧 れ螻 螳螻
覿語 磯 磯 螻, 螳譴豺襦 .
Sa+(x) =
{
a+w
x if油w
x > 0
aw
x otherwise
x =
{
s+ + d+ if油y > 0
s + d otherwise
cov(x, y) = [xy] [x][y]
cov(x, y) = +(+[xy] +[x][y])
+(1 +)(錫[xy] 錫[x][y])
cov(s, y) = +(+[sy] +[s][y])
+(1 +)(錫[sy] 錫[s][y])
cov(x,y), cov(s,y)螳 殊 , 覿語 覃
a+ =
+[xy] +[x][y]
w +[xy] w +[x][y]