Dokumen tersebut membahas tentang proteksi radiasi yang dilakukan terhadap sumber radiasi, pekerja, pasien, dan lingkungan. Proteksi sumber radiasi meliputi jarak, waktu, dan penggunaan perisai timbal/beton. Proteksi pekerja mencakup penggunaan APD dan alat untuk mencatat dosis radiasi. Proteksi pasien bertujuan memastikan dosis sekecil mungkin dan organ vital dilindungi. Proteksi lingkungan meliputi perencanaan lok
- Cyclotrons use magnetic and electric fields to accelerate charged particles in a circular path, increasing their energy each time they pass through the accelerating field. Ernest Lawrence invented the cyclotron in the 1930s.
- Cyclotrons consist of two semicircular electrodes called dees placed between the poles of a magnet. Charged particles are accelerated as they spiral between the dees due to alternating electric fields.
- Cyclotrons are used to accelerate protons and ions for applications such as nuclear physics experiments and particle therapy for cancer treatment. They can also produce short-lived radioactive isotopes used in PET imaging. However, maintaining uniform magnetic fields over large areas is challenging for cyclotrons.
DOWNLOAD THE POWERPOINT FILE FROM HERE:
https://www.dropbox.com/s/d8zbqyvc81pgg5w/compton%20effect.pptx?dl=0
Describing Compton Effect from Quantum Mechanics. Presented in East West University.
BASIC CONCEPT OF RADIATION SHIELDING AND ITS CALCULATION TECHNIQUES mahbubul hassan
油
Training Course on Radiation Protection for Radiation Workers
and RCOs of BAEC, Medical Facilities & Industries
24 - 28 October 2021
Training Institute
Atomic Energy Research Establishment, Savar, Dhaka
This document discusses different types of radiation detectors used for dosimetry. It begins by defining radiation and the different types. It then discusses dosimetry, including common dosimetric quantities like activity, exposure, and absorbed dose. The main types of radiation detectors covered are gas-filled detectors like ionization chambers and Geiger-M端ller counters, as well as scintillation counters. Ionization chambers detect radiation by ionizing gas molecules, while GM counters amplify this signal. Scintillation counters use a scintillator to convert radiation into light, which is then converted to an electrical signal.
Dokumen tersebut membahas tentang dasar-dasar kelistrikan, meliputi penjelasan tentang komposisi atom, elektron bebas, tipe listrik (statis dan dinamis), arus listrik, tegangan listrik, tahanan listrik, dan pengaruh arus listrik."
The document discusses methods for detecting radioactive contamination. It describes radioactive elements, decay, and half-life. Sources of contamination include natural radioactive minerals and fallout from nuclear explosions. Detection methods covered are Geiger-Muller counters and gamma-ray spectroscopy. Health effects of radiation exposure can include acute radiation syndrome and cancer depending on dose levels. Checking plant samples can help ensure medicinal herbs are safe for consumption given normal usage amounts.
The document provides an overview of the history of radiation, including key discoveries and events. It describes Wilhelm Roentgen's discovery of X-rays in 1895, Henri Becquerel's accidental discovery of radioactivity in uranium in 1896, and Marie and Pierre Curie's isolation of the radioactive elements polonium and radium in 1898. It also discusses the radium dial painters who suffered health impacts from radium exposure in the early 20th century. Finally, it outlines the 1986 Chernobyl disaster, considered the worst nuclear power plant accident, which occurred at a reactor in Ukraine and spread radioactive debris over parts of Europe.
Quasars are the most luminous and energetic objects in the universe. They are formed when matter falls into supermassive black holes at the centers of galaxies, releasing enormous amounts of energy. Quasars can outshine entire galaxies and their luminosity can vary over time. They serve as reference points for establishing the international celestial reference system due to their brightness, small size, and distant locations throughout the universe.
Radiochemical methods use the specific properties of radionuclides for analytical purposes. There are three main types of radiochemical analysis: radiometric analysis, isotope dilution, and activation analysis. Radiometric analysis uses a radioactive reagent to isolate the analyte. Isotope dilution introduces a known quantity of a radioactive isotope of the analyte. Activation analysis induces radioactivity in sample elements through neutron bombardment, then identifies elements by their characteristic gamma ray emissions. These methods provide sensitive, specific quantitative and qualitative analysis of elements in samples.
SPECTROSCOPY
INFRARED SPECTROSCOPY
HISTORY
PRINCIPLE
MODES OF VIBRATION
INSTRUMENTATION
SAMPLE HANDLING
FTIR (FOURIER TRANSFORM INFRARED) SPECTROMETER
PRINCIPLE
INSTRUMENTATION
WORKING
DISPERSIVE VERSUS FTIR
ADVANTAGES & DISADVANTAGES OF FTIR WITH APPLICATIONS
FACTORS AFFECTING VIBRATIONAL FREQUENCIES
IR SPECTRA REGION
IR SPECTRA INTERPRETATION
EXAMPLES
ADVANTAGES AND DISADVANTAGES OF IR
APPLICATIONS OF IR
Reference
This document provides an overview of Raman spectroscopy. It begins by defining spectroscopy as the study of how atoms and molecules interact with light. It then describes Raman scattering, which was discovered by C.V. Raman in 1928 and involves a change in frequency of scattered light that depends on the chemical structure of molecules. The rest of the document discusses key aspects of Raman spectroscopy such as Stokes and anti-Stokes scattering, the relationship between Raman and infrared spectroscopy, and applications of Raman spectroscopy such as molecular identification and quantification.
EDAX or energy dispersive x-ray analysis is a technique used to identify the elemental composition of a specimen. It works as part of a scanning electron microscope by using an electron beam that excites electrons in an atom, ejecting them and creating an x-ray. The x-rays are measured by an energy-dispersive spectrometer to determine the number and energy of the x-rays emitted from the specimen. The EDAX instrument consists of an electron beam source, x-ray detector, analyzer, and pulse processor which work together to collect and analyze the x-rays for elemental analysis of materials. EDAX has applications in fields like medicine, industry, agriculture, and more.
The document discusses lasers, including their history, characteristics, components, classifications, and uses. It provides details on:
- The invention of the laser by Maiman in 1960 and its influence as a technological achievement.
- The key characteristics of laser light that make it coherent, directional, and monochromatic.
- The basic components and functioning of a laser, including the active medium, excitation mechanism, and optical resonator.
- The various classes of lasers according to output levels and safety standards.
- Applications of lasers in medicine, industry, everyday life, research, and holography.
Summary of operating principles of Surface Enhanced Raman Spectroscopy (SERS) instrumentation technique. Review of experimentation and results obtained using SERS in three scientific journals.
This document provides an overview of photoacoustic spectroscopy (PAS). It discusses the history of PAS, which was discovered by Alexander Graham Bell in 1880. PAS allows for absorption spectroscopy of opaque and scattering samples by detecting the acoustic signal generated from the sample's absorption of modulated light. The document describes the basic photoacoustic effect, conventional PAS setups, applications like surface studies and blood analysis, and examples of PAS spectra. It establishes PAS as a non-destructive technique for obtaining optical absorption data from solids, semisolids, and turbid liquids that conventional spectroscopy cannot analyze due to light scattering.
it covers types of counter for measurem,ent of radioactive substances also cover about radioactivity its causes effects and types of radioactive pollution
Nuclear chain reaction. What is a chain reaction? Nuclear Fission process.Mechanism of the Fission process.Examples of Nuclear Fission Reaction, Fission as a chain mechanism.Critical Mass. Why we use Uranium-235 and Plutonium? Types of Fission chain process. Control Chain Reaction. Uncontrolled Chain reaction. Problem with Nuclear Fission Reactions. Advantages of the fission process. Disadvantages of the Fission process. Applications of the Fission process. A complete explanation by Syed Hammad Ali Gillani.
This document provides information about lasers and their applications. It begins with an introduction to lasers and their invention in the 1960s. It then discusses the basic operating principles and construction of lasers, including the need for population inversion. The properties and types of lasers are described, including solid state lasers like ruby and Nd:YAG, gas lasers like He-Ne and CO2, dye lasers, and semiconductor lasers. Finally, applications of lasers in biomedicine like flow cytometry and industry like drilling and welding are briefly outlined.
This document summarizes research on using bimetallic nanoparticles to enhance surface plasmon resonance. Laser ablation in liquids was used to prepare silver, gold, silver-gold mixture, and silver core/gold shell nanoparticles in aqueous solution. The surface plasmon resonance peaks of the nanoparticles could be tuned from 532 to 546 nm by varying the laser parameters, which changed the nanoparticle size and distribution. Increasing the gold shell ablation time enhanced the intensity of the surface plasmon resonance bands. This research demonstrates that bimetallic nanoparticles allow tunable surface plasmon resonance for applications such as optical communication systems and tunable wavelength filters.
The document provides an overview of the nuclear shell model. It discusses the historical development of the model from 1927 to 1935. It then presents three pieces of evidence from experiments that supported developing the shell model to describe nuclear properties, including excitation energies, neutron absorption cross-sections, and neutron separation energies. The rest of the document outlines how the shell model was developed theoretically by introducing a Woods-Saxon potential well and spin-orbit coupling to explain nuclear magic numbers and properties like ground and excited state configurations and nuclear magnetic moments. The model provides good predictions but has some limitations for deformed nuclei.
This document provides a summary of a presentation on diffraction and diffraction gratings. It discusses Huygens' principle of diffraction, the two types of diffraction (Fresnel and Fraunhofer), conditions for maxima and minima in diffraction patterns, how diffraction gratings produce spectra through different orders, and the condition for absent spectra in diffraction gratings. The summary is presented in 3 bullet points or less.
The document discusses scattering from different levels:
1) Scattering from an electron provides the basis for scattering from larger objects.
2) Scattering from an atom is the sum of waves scattered by its electrons and depends on atomic number.
3) Scattering from a unit cell is required to understand crystal diffraction patterns, as interference between waves scattered from different atoms in the unit cell determines the intensity of reflections.
The document describes the proportional counter, which is a gaseous state particle detector used to detect nuclear particles and radiation. It consists of a cylindrical metal tube filled with argon and methane gas and a thin metal wire running down the center as an anode. When radiation enters the tube, it ionizes the gas, producing electron-ion pairs. An applied voltage between the wire and tube causes gas amplification through avalanching, resulting in a pulse signal. The proportional counter can be used for particle counting and energy determination, and has advantages like low-energy detection but requires stable applied voltages.
This document provides an overview of Raman spectroscopy. It discusses the principle behind Raman spectroscopy, which involves scattering of monochromatic light when it interacts with a sample. It describes the typical instrumentation used, including lasers as the light source and spectrometers to analyze the scattered light. The key differences between Raman and IR spectroscopy are outlined. Various types of Raman techniques and applications are also summarized, such as its use in analyzing inorganic, organic and biological samples.
Spectroscopy is the study of the interaction between electromagnetic radiation and matter such as atoms, molecules, or ions. It uses electromagnetic radiation of specific wavelengths or wavelength ranges to qualitatively or quantitatively analyze matter. Spectroscopy deals with absorption, emission, and scattering of electromagnetic radiation when it interacts with matter. The interaction depends on the energy of the radiation, with more energetic radiations like UV and x-rays potentially causing electron ejection, and less energetic ones like infrared inducing molecular vibrations or microwave causing molecular rotation. Spectroscopy is widely used to study the internal structure of organic and inorganic compounds and has advantages like being non-destructive, sensitive, and requiring small sample sizes.
This document presents information about a group presentation on the photoelectric effect and its applications. The group includes 5 members who are presenting on topics such as photon properties, Einstein's explanation of the photoelectric effect, how photoelectric cells and light dependent resistors work, and equations for photon energy and the photoelectric effect. Characteristics of the photoelectric effect such as threshold frequency and stopping potential proportional to frequency are also discussed.
Dokumen tersebut membahas tentang proteksi radiasi, peralatan dasar kedokteran nuklir, dan penggunaan radioisotop dalam diagnostik klinik. Beberapa peralatan yang dijelaskan adalah Geiger Muller counter, kamera gamma, PET, dan SPECT yang digunakan untuk mendeteksi radiasi dan membuat citra distribusi radioisotop dalam tubuh. Penggunaan radioisotop dalam pemeriksaan fungsi kelenjar tiroid dan ginjal juga dijelaskan.
Dokumen tersebut membahas tentang konsep dasar dalam fisika radiasi untuk mahasiswa radiografi, meliputi definisi dan satuan-satuan dosimetri seperti paparan, dosis serap, dosis ekivalen, dan dosis efektif serta faktor-faktor yang mempengaruhinya. Dokumen ini juga menjelaskan konsep radioaktivitas dan dosis eksternal.
Quasars are the most luminous and energetic objects in the universe. They are formed when matter falls into supermassive black holes at the centers of galaxies, releasing enormous amounts of energy. Quasars can outshine entire galaxies and their luminosity can vary over time. They serve as reference points for establishing the international celestial reference system due to their brightness, small size, and distant locations throughout the universe.
Radiochemical methods use the specific properties of radionuclides for analytical purposes. There are three main types of radiochemical analysis: radiometric analysis, isotope dilution, and activation analysis. Radiometric analysis uses a radioactive reagent to isolate the analyte. Isotope dilution introduces a known quantity of a radioactive isotope of the analyte. Activation analysis induces radioactivity in sample elements through neutron bombardment, then identifies elements by their characteristic gamma ray emissions. These methods provide sensitive, specific quantitative and qualitative analysis of elements in samples.
SPECTROSCOPY
INFRARED SPECTROSCOPY
HISTORY
PRINCIPLE
MODES OF VIBRATION
INSTRUMENTATION
SAMPLE HANDLING
FTIR (FOURIER TRANSFORM INFRARED) SPECTROMETER
PRINCIPLE
INSTRUMENTATION
WORKING
DISPERSIVE VERSUS FTIR
ADVANTAGES & DISADVANTAGES OF FTIR WITH APPLICATIONS
FACTORS AFFECTING VIBRATIONAL FREQUENCIES
IR SPECTRA REGION
IR SPECTRA INTERPRETATION
EXAMPLES
ADVANTAGES AND DISADVANTAGES OF IR
APPLICATIONS OF IR
Reference
This document provides an overview of Raman spectroscopy. It begins by defining spectroscopy as the study of how atoms and molecules interact with light. It then describes Raman scattering, which was discovered by C.V. Raman in 1928 and involves a change in frequency of scattered light that depends on the chemical structure of molecules. The rest of the document discusses key aspects of Raman spectroscopy such as Stokes and anti-Stokes scattering, the relationship between Raman and infrared spectroscopy, and applications of Raman spectroscopy such as molecular identification and quantification.
EDAX or energy dispersive x-ray analysis is a technique used to identify the elemental composition of a specimen. It works as part of a scanning electron microscope by using an electron beam that excites electrons in an atom, ejecting them and creating an x-ray. The x-rays are measured by an energy-dispersive spectrometer to determine the number and energy of the x-rays emitted from the specimen. The EDAX instrument consists of an electron beam source, x-ray detector, analyzer, and pulse processor which work together to collect and analyze the x-rays for elemental analysis of materials. EDAX has applications in fields like medicine, industry, agriculture, and more.
The document discusses lasers, including their history, characteristics, components, classifications, and uses. It provides details on:
- The invention of the laser by Maiman in 1960 and its influence as a technological achievement.
- The key characteristics of laser light that make it coherent, directional, and monochromatic.
- The basic components and functioning of a laser, including the active medium, excitation mechanism, and optical resonator.
- The various classes of lasers according to output levels and safety standards.
- Applications of lasers in medicine, industry, everyday life, research, and holography.
Summary of operating principles of Surface Enhanced Raman Spectroscopy (SERS) instrumentation technique. Review of experimentation and results obtained using SERS in three scientific journals.
This document provides an overview of photoacoustic spectroscopy (PAS). It discusses the history of PAS, which was discovered by Alexander Graham Bell in 1880. PAS allows for absorption spectroscopy of opaque and scattering samples by detecting the acoustic signal generated from the sample's absorption of modulated light. The document describes the basic photoacoustic effect, conventional PAS setups, applications like surface studies and blood analysis, and examples of PAS spectra. It establishes PAS as a non-destructive technique for obtaining optical absorption data from solids, semisolids, and turbid liquids that conventional spectroscopy cannot analyze due to light scattering.
it covers types of counter for measurem,ent of radioactive substances also cover about radioactivity its causes effects and types of radioactive pollution
Nuclear chain reaction. What is a chain reaction? Nuclear Fission process.Mechanism of the Fission process.Examples of Nuclear Fission Reaction, Fission as a chain mechanism.Critical Mass. Why we use Uranium-235 and Plutonium? Types of Fission chain process. Control Chain Reaction. Uncontrolled Chain reaction. Problem with Nuclear Fission Reactions. Advantages of the fission process. Disadvantages of the Fission process. Applications of the Fission process. A complete explanation by Syed Hammad Ali Gillani.
This document provides information about lasers and their applications. It begins with an introduction to lasers and their invention in the 1960s. It then discusses the basic operating principles and construction of lasers, including the need for population inversion. The properties and types of lasers are described, including solid state lasers like ruby and Nd:YAG, gas lasers like He-Ne and CO2, dye lasers, and semiconductor lasers. Finally, applications of lasers in biomedicine like flow cytometry and industry like drilling and welding are briefly outlined.
This document summarizes research on using bimetallic nanoparticles to enhance surface plasmon resonance. Laser ablation in liquids was used to prepare silver, gold, silver-gold mixture, and silver core/gold shell nanoparticles in aqueous solution. The surface plasmon resonance peaks of the nanoparticles could be tuned from 532 to 546 nm by varying the laser parameters, which changed the nanoparticle size and distribution. Increasing the gold shell ablation time enhanced the intensity of the surface plasmon resonance bands. This research demonstrates that bimetallic nanoparticles allow tunable surface plasmon resonance for applications such as optical communication systems and tunable wavelength filters.
The document provides an overview of the nuclear shell model. It discusses the historical development of the model from 1927 to 1935. It then presents three pieces of evidence from experiments that supported developing the shell model to describe nuclear properties, including excitation energies, neutron absorption cross-sections, and neutron separation energies. The rest of the document outlines how the shell model was developed theoretically by introducing a Woods-Saxon potential well and spin-orbit coupling to explain nuclear magic numbers and properties like ground and excited state configurations and nuclear magnetic moments. The model provides good predictions but has some limitations for deformed nuclei.
This document provides a summary of a presentation on diffraction and diffraction gratings. It discusses Huygens' principle of diffraction, the two types of diffraction (Fresnel and Fraunhofer), conditions for maxima and minima in diffraction patterns, how diffraction gratings produce spectra through different orders, and the condition for absent spectra in diffraction gratings. The summary is presented in 3 bullet points or less.
The document discusses scattering from different levels:
1) Scattering from an electron provides the basis for scattering from larger objects.
2) Scattering from an atom is the sum of waves scattered by its electrons and depends on atomic number.
3) Scattering from a unit cell is required to understand crystal diffraction patterns, as interference between waves scattered from different atoms in the unit cell determines the intensity of reflections.
The document describes the proportional counter, which is a gaseous state particle detector used to detect nuclear particles and radiation. It consists of a cylindrical metal tube filled with argon and methane gas and a thin metal wire running down the center as an anode. When radiation enters the tube, it ionizes the gas, producing electron-ion pairs. An applied voltage between the wire and tube causes gas amplification through avalanching, resulting in a pulse signal. The proportional counter can be used for particle counting and energy determination, and has advantages like low-energy detection but requires stable applied voltages.
This document provides an overview of Raman spectroscopy. It discusses the principle behind Raman spectroscopy, which involves scattering of monochromatic light when it interacts with a sample. It describes the typical instrumentation used, including lasers as the light source and spectrometers to analyze the scattered light. The key differences between Raman and IR spectroscopy are outlined. Various types of Raman techniques and applications are also summarized, such as its use in analyzing inorganic, organic and biological samples.
Spectroscopy is the study of the interaction between electromagnetic radiation and matter such as atoms, molecules, or ions. It uses electromagnetic radiation of specific wavelengths or wavelength ranges to qualitatively or quantitatively analyze matter. Spectroscopy deals with absorption, emission, and scattering of electromagnetic radiation when it interacts with matter. The interaction depends on the energy of the radiation, with more energetic radiations like UV and x-rays potentially causing electron ejection, and less energetic ones like infrared inducing molecular vibrations or microwave causing molecular rotation. Spectroscopy is widely used to study the internal structure of organic and inorganic compounds and has advantages like being non-destructive, sensitive, and requiring small sample sizes.
This document presents information about a group presentation on the photoelectric effect and its applications. The group includes 5 members who are presenting on topics such as photon properties, Einstein's explanation of the photoelectric effect, how photoelectric cells and light dependent resistors work, and equations for photon energy and the photoelectric effect. Characteristics of the photoelectric effect such as threshold frequency and stopping potential proportional to frequency are also discussed.
Dokumen tersebut membahas tentang proteksi radiasi, peralatan dasar kedokteran nuklir, dan penggunaan radioisotop dalam diagnostik klinik. Beberapa peralatan yang dijelaskan adalah Geiger Muller counter, kamera gamma, PET, dan SPECT yang digunakan untuk mendeteksi radiasi dan membuat citra distribusi radioisotop dalam tubuh. Penggunaan radioisotop dalam pemeriksaan fungsi kelenjar tiroid dan ginjal juga dijelaskan.
Dokumen tersebut membahas tentang konsep dasar dalam fisika radiasi untuk mahasiswa radiografi, meliputi definisi dan satuan-satuan dosimetri seperti paparan, dosis serap, dosis ekivalen, dan dosis efektif serta faktor-faktor yang mempengaruhinya. Dokumen ini juga menjelaskan konsep radioaktivitas dan dosis eksternal.
Dokumen tersebut membahas tentang fisika inti dan radioaktivitas. Secara singkat, dokumen tersebut membahas tentang partikel penyusun inti seperti proton dan neutron, konsep radioaktivitas dan peluruhan inti, reaksi inti seperti fisi dan fusi, serta manfaat radiasi dan radioisotop.
Dokumen tersebut membahas konsep radiasi dan penggunaannya dalam diagnosa dan terapi kedokteran. Secara ringkas, dokumen menjelaskan proses radioaktivitas dan jenis radiasi seperti sinar alfa, beta, dan gamma. Selanjutnya dibahas efek radiasi terhadap tubuh dan teknik proteksi radiasi.
Power point materi Fisika Inti atau Fisika Nuklir tentang kestabilan Inti Atom. Nuclear is used to refer to the nucleus of an atom, where the protons and neutrons are located. When a radioactive element gives off a neutron, for example, we call this a nuclear event. Atomic, by contrast, is used to refer to the outer layers of the atom, where the electrons that orbit about the nucleus are located.
Tiga kalimat:
Dokumen ini membahas besaran dan satuan yang terkait dengan radiasi, seperti aktivitas, intensitas, dan berbagai jenis dosis seperti dosis serap, dosis ekivalen, dan dosis efektif. Berbagai besaran tersebut digunakan untuk mengukur dan memahami dampak radiasi pada tubuh manusia.
Dokumen tersebut membahas tentang fisika inti, termasuk karakteristik inti atom, jenis-jenis sinar radioaktif, peluruhan radioaktif, deret radioaktif, dan pemanfaatan radioisotop dalam berbagai bidang seperti kedokteran dan industri.
Terapi proton dan pencitraan proton menggunakan sinar proton berenergi tinggi untuk menghancurkan sel kanker dan mencitrakan target dengan presisi tinggi sambil meminimalkan dosis radiasi pada jaringan sehat. Penilaian perisai radiasi menunjukkan bahwa penambahan pencitraan proton pada energi 330 MeV tidak berdampak signifikan pada laju dosis atau dosis tahunan karena kontribusi partikel sekunder seperti pion dapat diabaikan.
Dokumen tersebut membahas tentang radiasi, termasuk pengertian radiasi, jenis-jenis radiasi beserta karakteristiknya, dan kegunaan serta bahaya radiasi. Secara ringkas, dokumen tersebut menjelaskan bahwa radiasi adalah proses di mana energi bergerak melalui media atau ruang dan diserap oleh benda lain, radiasi dibedakan menjadi radiasi non ionisasi dan ionisasi, dan radiasi digunakan dalam kedokteran,
This document summarizes the process for producing puffed snacks from waxy corn. The process involves mixing waxy corn with water and other ingredients, extruding the mixture under heat and pressure to cook and expand it, cutting the extrudate into pieces, drying the pieces, seasoning and coating them, and final packaging. The key steps are mixing, extrusion to cook and expand the corn, drying, seasoning and coating, and final packing for distribution.
Restrukturisasi dan Redistribusi Ekonomi melalui Danantara: Pesimis atau Opti...Dadang Solihin
油
Dari perspektif optimis, Danantara dapat menjadi pilar utama dalam pembangunan ekonomi nasional. Dengan manajemen profesional dan tata kelola yang transparan, lembaga ini berpotensi mengoptimalkan pemanfaatan aset negara secara lebih produktif.
Muqaddimah ANGGARAN DASAR Muhammadiyah .pptxsuwaibahkapa2
油
MUQODDIMAH
惡愕 悋 悋惘忰 悋惘忰
(5) 悋忰惆 惘惡 悋惺悋 (1) 悋惘忰 悋惘忰 (2) 悋惆 (3) 悒悋 惺惡惆 悒悋 愕惠惺 (4) 悋惆悋 悋惶惘悋愀 悋愕惠
(6) 惶惘悋愀 悋悵 悖惺惠 惺 愃惘 悋愃惷惡 惺 悋 悋惷悛
Dengan nama Allah Yang Maha Pemurah dan Penyayang. Segala puji bagi Allah yang mengasuh semua alam, yang Maha Pemurah dan Maha Penyayang, Yang memegang pengadilan pada hari kemudian. Hanya kepada Engkau hamba menyembah, dan hanya kepada Engkau, kami mohon pertolongan. Berilah petunjuk kepada hamba akan jalan yang lempang, jalan orang-orang yang telah Engkau beri kenikmatan, yang tidak dimurkai dan tidak tersesat. (QS Al-Fatihah 1-6)
惘惷惠 惡悋 惘惡悋 惡悋悒愕悋 惆悋 惡忰惆 惶 悋 惺 愕 惡悋 惘愕悋
Saya ridla: Ber-Tuhan kepada ALLAH, ber-Agama kepada ISLAM dan ber-Nabi kepada MUHAMMAD RASULULLAH Shalallahu alaihi wassalam.
AMMA BADU, bahwa sesungguhnya ke-Tuhanan itu adalah hak Allah semata-mata. Ber-Tuhan dan beribadah serta tunduk dan thaat kepada Allah adalah satu-satunya ketentuan yang wajib atas tiap-tiap makhluk, terutama manusia.
Hidup bermasyarakat itu adalah sunnah (hukum qudrat iradat) Allah atas kehidupan manusia di dunia ini.
Masyarakat yang sejahtera, aman damai, makmur dan bahagia hanyalah dapat diwujudkan di atas keadilan, kejujuran, persaudaraan dan gotong-royong, bertolong-tolongan dengan bersendikan hukum Allah yang sebenar-benarnya, lepas dari pengaruh syaitan dan hawa nafsu.
Agama Allah yang dibawa dan diajarkan oleh sekalian Nabi yang bijaksana dan berjiwa suci, adalah satu-satunya pokok hukum dalam masyarakat yang utama dan sebaik-baiknya.
Menjunjung tinggi hukum Allah lebih daripada hukum yang manapun juga, adalah kewajiban mutlak bagi tiap-tiap orang yang mengaku ber-Tuhan kepada Allah.
Agama Islam adalah Agama Allah yang dibawa oleh sekalian Nabi,sejak Nabi Adam sampai Nabi Muhammad saw, dan diajarkan kepada umatnya masing-masing untuk mendapatkan hidup bahagia Dunia dan Akhirat.
Syahdan, untuk menciptakan masyarakat yang bahagia dan sentausa sebagai yang tersebut di atas itu, tiap-tiap orang, terutama umat Islam, umat yang percaya akan Allah dan Hari Kemudian, wajiblah mengikuti jejak sekalian Nabi yang suci: beribadah kepada Allah dan berusaha segiat-giatnya mengumpulkan segala kekuatan dan menggunakannya untuk menjelmakan masyarakat itu di Dunia ini, dengan niat yang murni-tulus dan ikhlas karena Allah semata-mata dan hanya mengharapkan karunia Allah dan ridha-Nya belaka, serta mempunyai rasa tanggung jawab di hadirat Allah atas segala perbuatannya, lagi pula harus sabar dan tawakal bertabah hati menghadapi segala kesukaran atau kesulitan yang menimpa dirinya, atau rintangan yang menghalangi pekerjaannya, dengan penuh pengharapan perlindungan dan pertolongan Allah Yang Maha Kuasa.
Untuk melaksanakan terwujudnya masyarakat yang demikian itu, maka dengan berkat dan rahmat Allah didorong oleh firman Allah dalam Al-Quran:
ル曄惠ル 曄 悖ル悸朏 リ曄惺 悒ル 抉曄悽ル曄惘 ルリ曄莧 惡抉曄リ鉱『悦
PPT ini dipresentasikan dalam acara Seminar dan油Knowledge Sharing Kepustakawanan yang diselenggarakan oleh Forum Perpusdokinfo LPNK Ristek. Tanggal 28 November 2017
1. DASAR
FISIKA RADIASI
Haryo Seno
Pusat Sains dan Teknologi Nuklir Terapan
email: haryo@batan.go.id
Disampaikan pada:
Pelatihan Tanggap Medik pada
Kedaruratan Radiologik
BATAN Bandung, 16 20 Juli 2018
2. www.batan.go.id
BIODATA
2
7/15/2018
Nama : Haryo Seno
Tempat /Tgl Lahir : Pekanbaru, 20 Juli 1985
Kantor : PSTNT - BATAN
Kompetensi : PPR, Radiological Assessor,
Limbah Radioaktif
D4 - Teknokimia Nuklir, STTN-BATAN (2007)
S2 - Fisika, Institut Teknologi Bandung (2015)
Proteksi Radiasi
Radiological Risk Assessment
Emergency Preparedness and Responses
EPR: Field Assistance Team (FAT)
Pelatihan CBRN Terorisme - BNPT
PENDIDIKAN
PELATIHAN
3. www.batan.go.id 15/07/2018 3
3
Tujuan Pembelajaran
Memberikan pengetahuan akan konsep dasar radiasi dan
karakteristik radiasi pengion, yaitu:
Mengetahui perbedaan antara radiasi pengion dan non-pengion
Memahami cara radiasi pengion berinteraksi dengan materi
Memahami bagaimana radiasi pengion dapat dikuantifikasi
Mengetahui berbagai aspek radiasi pengion yang dapat menjadi
dasar untuk perlindungan radiasi selama tanggap darurat
6. www.batan.go.id 6
Radiasi adalah pancaran energi melalui suatu materi
atau ruang dalam bentuk panas, partikel atau
gelombang elektromagnetik / cahaya (foton) dari
sumber radiasi.
Definisi
Radioaktivitas adalah sifat dasar dari suatu materi
Radionuklida (juga disebut nuklida radioaktif)
memancarkan radiasi pengion dalam proses
transformasi nuklir. Radiasi yang dipancarkan dapat
berupa partikel atau elektromagnetik atau keduanya.
15/07/2018
8. www.batan.go.id 8
Nuklida
15/07/2018
X : Lambang atom
A : Nomor massa (jumlah proton +
jumlah neutron)
Z : Nomor atom (jumlah proton)
4
2 He
Jenis Unsur : Helium
Jumlah proton ( Z ) = 2
Jumlah neutron ( N ) = 2
Jenis Unsur : Cobalt
Jumlah proton ( Z ) = 27
Jumlah neutron ( N ) = 32
59
27Co 137
55Cs
131
53 I
32
15 P
60
27Co
9. www.batan.go.id 9
15/07/2018
Radioaktivitas
Radioaktivitas adalah transformasi nuklir
nuklir karena terjadi di inti atom
transformasi karena inti awal dan yang dihasilkan
berbeda
Kata lain untuk transformasi adalah disintegrasi atau
peluruhan nukleus
Sebuah atom radioaktif memancarkan radiasi
10. www.batan.go.id 10
15/07/2018
Peluruhan Beta () dan Alpha (留)
Peluruhan Beta terjadi ketika inti atom memancarkan partikel beta:
Pada peluruhan beta minus (-), elektron dipancarkan
Pada peluruhan beta plus (+), positron (partikel yang mirip
dengan elektron, tetapi bermuatan positif) dipancarkan
Peluruhan Alpha terjadi ketika inti atom berat memancarkan
partikel alfa (dua proton dan dua neutron terikat bersama menjadi
sebuah partikel yang identik dengan inti helium)
11. www.batan.go.id 11
15/07/2018
Fisi Nuklir
141Ba 92Kr
neutron
235U
236U
Fisi nuklir terjadi ketika nukleus atom
terbagi menjadi bagian yang lebih
kecil, menghasilkan beberapa neutron
dan inti radioaktif yang lebih ringan
Fisi unsur berat adalah reaksi yang
melepaskan sejumlah besar energi
Kejadian berbahaya yang melibatkan
peledakan bom atom menggunakan
mekanisme fisi nuklir
13. www.batan.go.id 13
15/07/2018
Pengukuran Radioaktivitas
Ukuran radioaktivitas suatu sumber adalah aktivitasnya
yang didefinisikan sebagai jumlah transformasi nuklir
(radioaktif) per satuan waktu.
Satu unit aktivitas (SI) adalah becquerel (Bq)
1 becquerel = 1 transformasi nuklir per detik
Satuan aktivitas yang juga sering digunakan: curie (Ci)
1 Ci = 3.7 1010 Bq
14. www.batan.go.id 14
15/07/2018
Radiasi Pengion
Energi dari radiasi apa pun dapat ditransfer ke materi.
Transfer energi ini dapat menghilangkan elektron dari
kulit atom dan membentuk pasangan ion-elektron.
Jenis-jenis radiasi yang mampu menghasilkan ion
dalam materi secara kolektif disebut sebagai
"radiasi pengion"
Radiasi Pengion radiasi yang dapat menimbulkan proses ionisasi
15. www.batan.go.id 15
15/07/2018
Radiasi Pengion (2)
Radiasi pengion adalah energi dalam bentuk gelombang
atau partikel
Sinar X dan sinar gamma adalah radiasi gelombang
elektromagnetik (foton)
Radiasi partikel meliputi radiasi alfa, beta dan neutron
Radiasi Non Pengion radiasi yang tidak bisa menimbulkan proses ionisasi
Contoh: TV, Microwave, Handphone, arus listrik tegangan tinggi
16. www.batan.go.id 16
15/07/2018
Unit Energi Pengukuran Radiasi
Energi radiasi biasanya diukur dalam satuan:
o keV (kilo-electron-volt) = 1000 eV ; atau
o MeV (Mega-electron-volt) = 1000000 eV
o 1 eV = 1.602 1019 Joule
Contoh:
14C : (beta, average) 49.4 keV atau 0.0494 MeV
60Co : (gamma) 1250 keV atau 1.25 MeV
241Am : (alpha) 5.48 MeV
17. www.batan.go.id 17
15/07/2018
Paparan Radiasi
Dalam proteksi radiasi, "paparan berarti tindakan atau
kondisi yang menjadi subjek iradiasi oleh radiasi pengion
Dalam dosimetri, "paparan" adalah ukuran radiasi
elektromagnetik dan berhubungan dengan jumlah muatan
listrik yang dihasilkan oleh sinar-X atau sinar gamma di udara
dalam kondisi standar
Satuan paparan : coulomb/kg (C/kg)
Satuan yang juga sering digunakan : roentgen (R)
18. www.batan.go.id 18
15/07/2018
Dosis Serap
Jumlah energi yang diberikan ke dalam satuan massa organ
atau jaringan disebut dosis yang serap dan dinyatakan dalam
satuan gray (Gy)
Satu gray sama dengan satu joule energi radiasi yang
diberikan kepada satu kilogram massa organ atau jaringan
1 Gy = 1 J/kg = 6.24 1012 MeV/kg
1 Gy = 100 rad
rad satuan dosis serap yang juga sering digunakan
pada waktu dulu
19. www.batan.go.id 19
15/07/2018
Laju Dosis
Dosis radiasi dibagi dengan lama waktu paparan radiasi
disebut laju dosis
Pengaruh dosis radiasi tertentu pada jaringan hidup dapat
bergantung pada laju dosis
Secara umum diterima bahwa dosis radiasi yang diberikan
pada tingkat dosis rendah kurang merusak daripada dosis
total yang sama yang diberikan pada tingkat dosis tinggi atau
secara instan (waktu singkat).
26. www.batan.go.id 26
15/07/2018
Efek Radiasi
Tidak mengenal dosis ambang
Timbul setelah melalui masa tenang yang lama
Tingkat keparahan tidak bergantung pada dosis
Tidak ada penyembuhan spontan
Kanker, leukimia
Efek Stokastik
Memiliki dosis ambang
Timbul beberapa saat setelah terpapar radiasi
Tingkat keparahan bergantung pada dosis radiasi
Adanya penyembuhan spontan
Luka bakar, sterilitas, katarak
Efek
Deterministik
27. www.batan.go.id 27
15/07/2018
Paparan terhadap Manusia
Dari radiasi alam (kadang disebut radiasi latar)
Dari prosedur medis (diagnosis dan terapi)
Dari sumber radiasi dan perangkat radiasi
Dari paparan yang tidak direncanakan (pekerja radiasi dan
masyarakat)
Dari peristiwa jahat yang disengaja
Dari pekerjaan, yaitu sebagai pekerja radiasi dan perespon
atas kedaruratan radiasi
28. www.batan.go.id 28
15/07/2018
Batas Dosis Tahunan
Sumber: IAEA GSR Part 3
Kuantitas Organ Pekerja Masyarakat
Dosis Efektif
20 mSv
(rata-rata per 5 tahun)
1 mSv
50 mSv
(sekali dalam 1 tahun)
Dosis
Ekivalen
Lensa
mata
20 mSv
(rata-rata per 5 tahun)
15 mSv
50 mSv
(sekali dalam 1 tahun)
Kulit 500 mSv 50 mSv
29. www.batan.go.id 29
15/07/2018
Pedoman Dosis untuk Perlindungan Pekerja
Saat Terjadinya Kedaruratan
Sumber: IAEA GSG-2
Tindakan Dosis ekivalen personal
Penyelamatan nyawa < 500 mSv*
Untuk mencegah meluasnya bencana < 500 mSv
Untuk menghindari dosis kolektif
yang besar
< 100 mSv
Remediasi < 50 mSv
* Nilai ini dapat dilampaui dalam keadaan dimana manfaat yang diharapkan
kepada orang lain jelas lebih besar daripada risiko kesehatan pekerja
tanggap darurat sendiri dan pekerja tanggap darurat dengan sukarela
mengambil tindakan dan memahami serta menerima risiko kesehatan ini.
30. www.batan.go.id 30
15/07/2018
Kesimpulan
Radioaktivitas adalah properti mendasar dari suatu materi
Nuklida radioaktif dapat memancarkan radiasi pengion dalam
proses transformasi nuklir
Paparan radiasi pengion dapat menyebabkan efek kesehatan
stokastik dan deterministik
Sistem kuantitas dosimetrik diciptakan untuk
mengkarakterisasi paparan dengan tujuan penilaian risiko
peningkatan efek kesehatan radiogenik yang parah pada
manusia.