Data-driven Analysis for Multi-agent Trajectories in Team SportsKeisuke Fujii
?
[17th AIP Open Seminar] Talks by Structured Learning Team
Keisuke Fujii
Abstract:
Understanding the principles of real-world biological multi-agent behaviors is a current challenge in various scientific and engineering fields. The rules regarding the real-world biological multi-agent behaviors such as team sports are often largely unknown due to their inherently higher-order interactions, cognition, and body dynamics. Estimation of the rules from multi-agent trajectories, i.e., data-driven approaches using machine learning, provides an effective way for the analysis of such behaviors. In this talk, I mainly introduce two approaches for understanding such multi-agent behaviors: (1) extracting physically-interpretable features of biological network dynamics and (2) generating and controlling behaviors via decentralized policy learning with partial observation and mechanical constraints.
[DL Hacks]Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternati...Deep Learning JP
?
The document discusses Deep Learning Japan (DL Papers), a website that aggregates and shares Japanese-language papers on deep learning. It provides an overview of the website's features and content, including sections on recent papers, tutorials, tools and frameworks. In summary:
- DL Papers collects and shares Japanese papers on deep learning techniques to help disseminate research.
- The site organizes papers into categories like recent publications, tutorials, tools and frameworks.
- It aims to help more researchers engage with deep learning and accelerate progress in the field through open sharing of ideas.
ZynqMPのブートとパワーマネージメント : (ZynqMP Boot and Power Management)Mr. Vengineer
?
2016年2月20日(金)のZynq Ultrasclae+ MPSoC 勉強会で使った資料です。
追記) 2016.05.08
公式ARM Trusted Firmwareのサイトに、Zynq UltraScale+ MPSoCの実装が追加されていていることを明記した
This is the material I used at Zynq Ultrasclae + MPSoC SIG on 20th February (Friday).
Addendum) 2016.05.08
We stated that the implementation of Zynq UltraScale + MPSoC was added to the official ARM Trusted Firmware site.
Data-driven Analysis for Multi-agent Trajectories in Team SportsKeisuke Fujii
?
[17th AIP Open Seminar] Talks by Structured Learning Team
Keisuke Fujii
Abstract:
Understanding the principles of real-world biological multi-agent behaviors is a current challenge in various scientific and engineering fields. The rules regarding the real-world biological multi-agent behaviors such as team sports are often largely unknown due to their inherently higher-order interactions, cognition, and body dynamics. Estimation of the rules from multi-agent trajectories, i.e., data-driven approaches using machine learning, provides an effective way for the analysis of such behaviors. In this talk, I mainly introduce two approaches for understanding such multi-agent behaviors: (1) extracting physically-interpretable features of biological network dynamics and (2) generating and controlling behaviors via decentralized policy learning with partial observation and mechanical constraints.
[DL Hacks]Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternati...Deep Learning JP
?
The document discusses Deep Learning Japan (DL Papers), a website that aggregates and shares Japanese-language papers on deep learning. It provides an overview of the website's features and content, including sections on recent papers, tutorials, tools and frameworks. In summary:
- DL Papers collects and shares Japanese papers on deep learning techniques to help disseminate research.
- The site organizes papers into categories like recent publications, tutorials, tools and frameworks.
- It aims to help more researchers engage with deep learning and accelerate progress in the field through open sharing of ideas.
ZynqMPのブートとパワーマネージメント : (ZynqMP Boot and Power Management)Mr. Vengineer
?
2016年2月20日(金)のZynq Ultrasclae+ MPSoC 勉強会で使った資料です。
追記) 2016.05.08
公式ARM Trusted Firmwareのサイトに、Zynq UltraScale+ MPSoCの実装が追加されていていることを明記した
This is the material I used at Zynq Ultrasclae + MPSoC SIG on 20th February (Friday).
Addendum) 2016.05.08
We stated that the implementation of Zynq UltraScale + MPSoC was added to the official ARM Trusted Firmware site.
11. 2015/11/11
11
遺伝子型の予測
Step
?2
Step
?1
Step
?3
品種A
品種B
品種C
品種D
品種E
品種F
マーカー
マーカー
マーカー
サンプルで遺伝子型を
?
共有している領域を特定
?
ハプロタイプの情報から
?
欠測している遺伝子型を補完
ゲノムに存在する連鎖不平衡と
?
ハプロタイプブロ ック構造を利用
T C
C A G C G
T
C
G A G G A G C
C C ?
A G C T C C G A G C ?
T C
T C ?
A G C G T C G A ?
G A G C
C C C A A C G T ?
G A G C G T C
A C C A
G C T C C ?
A G G G G T
C C C A G C T C C G A G
G ?
T T
T C C A G C G T C G ?
G G A G C
C C ?
A G C T C C G A G C ?
T C
T C ?
A G C G T C G A ?
G A G C
C C C A A C G T ?
G A G C G T C
A C C A G C T C C ?
A G G G G T
C C C A G C T C C G A G G ?
T T
品種A
品種B
品種C
品種D
品種E
品種F
T C C A G C G T C G A G G A G C
C C C A G C T C C G A G C G T C
T C C A G C G T C G A G G A G C
C C C A A C G T C G A G C G T C
A C C A G C T C C G A G G G G T
C C C A G C T C C G A G G G T T
品種A
品種B
品種C
品種D
品種E
品種F
12. 2015/11/11
12
リファレンスパネルを用いた遺伝子型の予測
サンプル
リファレンスパネル
T ?
C A G C ?
?
?
G A G G A G ?
C C C A G C ?
?
?
G A G C ?
T C
T C C A G C G T C G A G G A G C
C C C A A C G T C G A G C G T C
A C C A G C T C C G A G G G G T
C C C A G C T C C G A G G G T T
T ?
C A G C ?
?
?
G A G G A G ?
C C C A G C ?
?
?
G A G C ?
T C
T C C A G C G T C G A G G A G C
C C C A A C G T C G A G C G T C
A C C A G C T C C G A G G G G T
C C C A G C T C C G A G G G T T
サンプル
リファレンスパネル
T C C A G C G T C G A G G A G C
C C C A A C G T C G A G C G T C
A C C A G C T C C G A G G G G T
C C C A G C T C C G A G G G T T
サンプル
リファレンスパネル
Step
?2
Step
?1
Step
?3
品種A
品種B
品種C
品種D
品種E
品種F
品種A
品種B
品種C
品種D
品種E
品種F
品種A
品種B
品種C
品種D
品種E
品種F
マーカー
マーカー
マーカー
サンプルとリファレンスパネルの中の個体
で、遺伝子型を共有している領域を特定
?
リファレンスパネルの遺伝子型と
?
ハプロタイプの情報から
?
欠測している遺伝子型を補完
ゲノムに存在する連鎖不平衡と
?
ハプロタイプブロ ック構造を利用
T C C A G C G T C G A G G A G C
C C C A G C T C C G A G C G T C
13. 2015/11/11
13
リファレンスパネルを用いた遺伝子型の予測
欠測を含むRAD-?‐seq
ジェノタイピング
?
されていないSNP
リファレンスパネル
ジェノタイピングされて
いないSNPの補完
?
リファレンスパネル
遺伝子型を補完した
サンプルデータ
リファレンスパネルの遺伝子型に基づいて
?
統計学的にサンプルの遺伝子型を予測
遺伝子型を補完することにより、
?
解析するSNP数を増やすことが可能
T C C A G C ?
?
?
G A G G A G C
C C C A G C ?
?
?
G A G C G T C
T C C A G C G T C G A G G A G C
C C C A A C G T C G A G C G T C
A C C A G C T C C G A G G G G T
C C C A G C T C C G A G G G T T
T C C A G C G T C G A G G A G C
C C C A A C G T C G A G C G T C
A C C A G C T C C G A G G G G T
C C C A G C T C C G A G G G T T
T C C A G C G T C G A G G A G C
C C C A G C T C C G A G C G T C
T C C A G C G T C G A G G A G C
C C C A G C T C C G A G C G T C
T ?
C A G C ?
C ?
G A G G A G ?
C C ?
A G C T C C G A G C ?
T C
品種A
品種B
品種A
品種B
マーカー
マーカー