18. KOKUBO AND IDA
FIG. 4. Time evolution of the maximum mass (solid curve) and the mean
mass (dashed curve) of the system.
thanthisrangearenotstatisticallyvalidsinceeachmassbinoften
has only a few bodies. First, the distribution tends to relax to a
暴走的成長の様子
平均値
最大の天体
微惑星の暴走的成長
?→ 原始惑星が誕生する
20 KOKUBO AND IDA
FIG. 3. Snapshots of a planetesimal system on the a–e plane. The circles
represent planetesimals and their radii are proportional to the radii of planetesi-
mals. The system initially consists of 3000 equal-mass (1023 g) planetesimals.
FIG. 4. Time evolution of the maximum mass (solid curve) and the mean
mass (dashed curve) of the system.
thanthisrangearenotstatisticallyvalidsinceeachmassbinoften
has only a few bodies. First, the distribution tends to relax to a
decreasing function of mass through dynamical friction among
(energy equipartition of) bodies (t = 50,000, 100,000 years).
Second, the distributions tend to ?atten (t = 200,000 years). This
is because as a runaway body grows, the system is mainly heated
by the runaway body (Ida and Makino 1993). In this case, the
eccentricity and inclination of planetesimals are scaled by the
軌道長半径 [AU]
軌道離心率
質量[1023g]
時間 [年]
[Kokubo & Ida, 2000]
19. 寡占的成長の様子FORMATION OF PROTOPLANETS FROM PLANETESIMALS 23
FIG. 7. Snapshots of a planetesimal system on the a–e plane. The cir-
cles represent planetesimals and their radii are proportional to the radii of
planetesimals. The system initially consists of 4000 planetesimals whose to-
tal mass is 1.3 × 1027 g. The initial mass distribution is given by the power-
FIG. 8. The number of bodies in linear mass bins is plotted for t = 100,000,
200,000, 300,000, 400,000, and 500,000 years.
In Fig. 10, we plot the maximum mass and the mean mass of
軌道離心率
各場所で微惑星が暴走的成長
?→ 等サイズの原始惑星が並ぶ
寡占的成長とよぶ
=
各軌道での原始惑星
質量 [kg] 形成時間 [yr]
地球軌道 1×1024 7×105
木星軌道 3×1025 4×107
天王星軌道 8×1025 2×109軌道長半径 [AU]
[Kokubo & Ida, 2000]
22. ジャイアントインパクト
軌道長半径 [AU]
軌道離心率
planets is hnM i ’ 2:0 ? 0:6, which means that the typical result-
ing system consists of two Earth-sized planets and a smaller
planet. In this model, we obtain hnai ’ 1:8 ? 0:7. In other words,
one or two planets tend to form outside the initial distribution of
protoplanets. In most runs, these planets are smaller scattered
planets. Thus we obtain a high ef?ciency of h fai ? 0:79 ? 0:15.
The accretion timescale is hTacci ? 1:05 ? 0:58? ? ; 108
yr. These
results are consistent with Agnor et al. (1999), whose initial con-
Fig. 2.—Snapshots of the system on the a-e (left) and a-i (right) planes at t ? 0, 1
are proportional to the physical sizes of the planets.
KOKUBO, KOMIN1134
長い時間をかけて原始惑星同士の軌道が乱れる
?→ 互いに衝突?合体してより大きな天体に成長
[Kokubo & Ida, 2006]
(c) Hidenori Genda
32. 巨大ガス惑星の形成の様子
Fig. 4.—Structure around the Hill sphere for model M04 on the midplane (left) and in three dimensions, shown in bird’s-eye view (right). The gas stream
MACHIDA ET AL.1226 V
1.—Time sequence for model M04. The density (color scale) and velocity distributions (arrows) on the cross section in the ?z ? 0 plane are plotted. The bottom
? 3) are 4 times the spatial magni?cation of the top panels (l ? 1). Three levels of grids are shown in each top (l ? 1, 2, and 3) and bottom (l ? 3, 4, and 5) panel.
l of the outermost grid is denoted in the top left corner of each panel. The elapsed time ?tp and the central density ?c on the midplane are denoted above each of the
ls. The velocity scale in units of the sound speed is denoted below each panel.周囲の円盤ガスが原始惑星の重力圏内に捕獲される
(c) Takayuki Tanigawa
39. Nice Model
?太陽系はもともと 水金地火木土海天 だった
?巨大惑星は現在よりもコンパクトな領域に固まっていた
?巨大惑星同士の重力散乱の結果、海が外に飛ばされた
?海によってエッジワースカイパーベルト天体が散乱された
??→ 散乱された証拠が外縁天体の軌道に残されている
?散乱された天体の一部が地球や月にも落下してきた
??→ 後期重爆撃期の証拠が月のクレーターに残されている
?太陽系は 水金地火木土天海 になった
[Gomes et al., 2005; Morbidelli et al., 2005; Tsiganis et al., 2005]
40. 惑星落下問題
Type I migration(M 10M+)
等温円盤での migration による落下が速すぎる
?→ 原始惑星が円盤内に生き残れない [Tanaka et al., 2002]
Type II migration(M 50M+)
惑星重力により gap を形成し、円盤降着とともに落下
?→ a 1AU にガス惑星を残せない [Hasegawa Ida, 2013]
Type III migration(M 30M+)
Corotation torque の positive feedback
?→ 超高速移動&向きが予測不可能 [Masset Papaloizou, 2003]
41. Grand Tack Model [Walsh et al., 2011]
(c) http://www.exoclimes.com
42. Type I migration のカオス性
? F. Maseet
円盤との重力相互作用による惑星軌道移動 ー 混沌新たな物理:惑星軌道移動
円盤温度勾配、流体素片熱輸送、
乱流拡散等を考慮する
?→ 移動方向が変わる(ただし高速)
?????[Paardekooper et al., 2010, 2011]
乱流による密度ゆらぎからの重力摂動
?→ ランダム運動を引き起こす
? [Ida et al, 2008, Okuzumi Ormel, 2013a, b]
いずれにしても惑星は円盤ガスとの相互作用で動き回る
44. Local Planet Formation Model
Solar%system:%“local”%forma3on??%
!?%I1995,:,uniform,disk,w/o,orbital,migraDon,
!?,1995I,:,uniform,disk,with,orbital,migraDon,
!?,New,idea:,nonIuniform,disk,
,,,,,,,,,,,,,,,,,,,,,,,start,from,2,narrow,disk,regions??,
,,,,,,,,,,,,,,,,,,,,,,,,migraDon,trap?,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,‘Grand,Tack’,model?,(Walsh+,2011),
0.1AU 1AU 10AU
Me V E Ma J S U N
close%scaLering%
%giant%impacts%
,,Morishima+,(2008),
,,Hansen,(2009),,
induced%forma3on%of%Saturn%
,,Kobayashi,,Ormel,,Ida,(2012)%
di?usion%via%planetesimal%scaLering%
,,Fernandez,,Ip,(1994),
secular%perturba3on%by%JS%in%2:1%
,,Nice,model,,
~2M⊕ 50I100M⊕
[Ida-san s talk]
ちゃんとした論文は出ていないが多くの人が何となく思っている
[Sasaki et al., in prep.]