ݺߣ

ݺߣShare a Scribd company logo
ʴǷɱڱǷ..نظمقدرة.ٳ
• Power-flow studies are of great importance in planning and
designing the future expansion of power systems as well as in
determining the best operation of existing systems.
• The principal information obtained from a power-flow study is the
magnitude and phase angle of the voltage at each bus and the
real and reactive power flowing in each line.
Successful power system operation under normal balanced three-phase
steady-state conditions requires the following:
1. Generation supplies the demand (load) plus losses.
2. Bus voltage magnitudes remain close to rated values.
3. Generators operate within specified real and reactive power limits.
4. Transmission lines and transformers are not overloaded.
• The power-flow computer program (sometimes called load flow) is
the basic tool for investigating these requirements.
• This program computes the voltage magnitude and angle at each
bus in a power system under balanced three-phase steady-state
conditions.
• It also computes real and reactive power flows for all equipment
interconnecting the buses, as well as equipment losses.
•The power-flow problem is therefore formulated as a set of
nonlinear algebraic equations suitable for computer solution.
• Two commonly used iterative techniques:
The system buses are generally classified into three categories:
1- Slack bus (reference bus)
2- Load buses
3- Voltage controlled buses
Steps of solution
Step -1 : Initial computation
Step -2 : Formation of 𝑌𝐵𝑢𝑠 Matrix
Step -3 : Iterative computation of bus voltage
Step -4 : Computation of slack Bus power
Step -5 : Computation of line flows
Step -1 : Initial computation
•Convert all Power in per unit
•Compute net-injected power at buses
Step -2 : Formation of 𝑌𝐵𝑢𝑠 Matrix
𝑌𝐵𝑢𝑠 =
𝑌11 𝑌12 𝑌13
𝑌21 𝑌22 𝑌23
𝑌31 𝑌23 𝑌33
Step -3 : Iterative computation of bus voltage
𝑉𝑖 =
1
𝑌𝑖𝑖
𝑃𝑖 − 𝑗𝑄𝑖
𝑉𝑖
∗ −
𝑘 = 1
𝑘 ≠𝑖
𝑛
𝑌𝑖𝑘𝑉𝑘
𝑉
2
(𝑝+1)
=
1
𝑌22
𝑃2 − 𝑗𝑄2
𝑉
2
(𝑝) ∗ − 𝑌21𝑉1 − 𝑌23 𝑉
3
(𝑃)
𝑉
3
(𝑝+1)
=
1
𝑌33
𝑃3 − 𝑗𝑄3
𝑉
3
(𝑝) ∗ − 𝑌31𝑉1 − 𝑌32 𝑉
2
(𝑃+1)
Step -4 : Computation of slack Bus power
𝑃1 =
𝑘=1
𝑛
𝑉1𝑉𝑘𝑌𝑖𝑘 cos(𝜃1𝑘 − 𝛿𝑖 + 𝛿𝑘)
𝑄1 = −
𝑘=1
𝑛
𝑉1𝑉𝑘𝑌1𝑘 sin(𝜃1𝑘 − 𝛿1 + 𝛿𝑘)
Step -5 : Computation of line flows
𝑃𝑖𝑘 = −𝑉𝑖
2
𝑌𝑖𝑘 cos 𝜃𝑖𝑘 + 𝑉𝑖𝑉𝑘𝑌𝑖𝑘 cos(𝜃𝑖𝑘 − 𝛿𝑖 + 𝛿𝑘)
𝑄𝑖𝑘 = 𝑉𝑖
2
𝑌𝑖𝑘 sin 𝜃𝑖𝑘 − 𝑉𝑖𝑉𝑘𝑌𝑖𝑘 sin (𝜃𝑖𝑘 − 𝛿𝑖 + 𝛿𝑘)
𝑃𝑙𝑜𝑠𝑠𝑖𝑘 = 𝑃𝑖𝑘 + 𝑃𝑘𝑖
𝑄𝑙𝑜𝑠𝑠𝑖𝑘 = 𝑄𝑖𝑘 + 𝑄𝑘𝑖
Example
Single line diagram of a sample 3- bus power system , data
for this system are given in table.
ʴǷɱڱǷ..نظمقدرة.ٳ
1- Using the Gauss Seidel Method, determine the phasor values of
the voltage at buses 2 and 3 (perform only two iterations).
2- find the slack bus real and reactive power after second iteration.
3- determine the line flows and line losses after second iteration
(neglect line charging admittance).
Solution
Step -1 : initial computation
𝑃𝐿2 =
305.6
100
= 3.056 𝑝𝑢 , 𝑄𝐿2 =
140.2
100
= 1.402 𝑝𝑢
𝑃𝐿3 =
138.6
100
= 1.386 𝑝𝑢 , 𝑄𝐿3 =
45.2
100
= 0.452 𝑝𝑢
𝑃𝑔2 =
50
100
= 0.50 𝑝𝑢 , 𝑄𝑔2 =
30
100
= 0.30 𝑝𝑢
𝑃2 = 𝑃𝑔2 − 𝑃𝐿2 = 0.5 − 3.056 = −2.556 pu
𝑄2 = 𝑄𝑔2 − 𝑄𝐿2 = 0.3 − 1.402 = −1.102 pu
𝑃3 = 𝑃𝑔3 − 𝑃𝐿3 = 0 − 1.386 = −1.386 pu
𝑄3 = 𝑄𝑔3 − 𝑄𝐿3 = 0 − 0.452 = −0.452 pu
Step -2 : Formation of 𝑌𝐵𝑢𝑠 Matrix
𝑦12 = 𝑦21 =
1
𝑧12
=
1
0.02 + 𝑗 0.04
= 10 − 𝑗20
𝑦13 = 𝑦31 =
1
𝑧13
=
1
0.01 + 𝑗 0.03
= 10 − 𝑗30
𝑦23 = 𝑦23 =
1
𝑧23
=
1
0.0125 + 𝑗 0.025
= 16 − 𝑗32
𝑌11 = 𝑦12 + 𝑦13 = 53.85/−68.2
𝑌22 = 𝑦21 + 𝑦23 = 58.13/−63.4
𝑌33 = 𝑦31 + 𝑦32 = 67.23/−67.2
𝑌12 = 𝑌21 = − 𝑦12 = 22.36/116.6
𝑌13 = 𝑌31 = − 𝑦13 = 31.62/108.4
𝑌23 = 𝑌32 = − 𝑦23 = 35.77/116.6
𝑌𝑏𝑢𝑠 =
53.85/−68.2 22.36/116.6 31.62/108.4
22.36/116.6 58.13/−63.4 35.77/116.6
31.62/108.4 35.77/116.6 67.23/−67.2
Step -3 : Iterative computation of bus voltage
𝑉𝑖 =
1
𝑌𝑖𝑖
𝑃𝑖 − 𝑗𝑄𝑖
𝑉𝑖
∗ −
𝑘 = 1
𝑘 ≠𝑖
𝑛
𝑌𝑖𝑘𝑉𝑘
𝑉
2
(𝑝+1)
=
1
𝑌22
𝑃2 − 𝑗𝑄2
𝑉
2
(𝑝) ∗ − 𝑌21𝑉1 − 𝑌23 𝑉
3
(𝑃)
𝑉
3
(𝑝+1)
=
1
𝑌33
𝑃3 − 𝑗𝑄3
𝑉
3
(𝑝) ∗ − 𝑌31𝑉1 − 𝑌32 𝑉
2
(𝑃+1)
Slacks bus voltage :
𝑉1 = (1.05 + 𝑗 0.0)
Starting voltage :
𝑉
2
(0)
= (1 + 𝑗 0.0)
𝑉
3
(0)
= (1 + 𝑗 0.0)
𝑃2 − 𝑗𝑄2
𝑌22
= 0.0478/−139.9
𝑌21
𝑌22
= −0.3846
𝑌23
𝑌22
= −0.6153
𝑉
2
(𝑝+1)
=
0.0478/−139.9
𝑉
2
(𝑝) ∗ + 0.3846 𝑉1 + 0.6153 𝑉
3
(𝑃)
P = 0 𝑉
2
(1)
= 0.98305 /−1.8
𝑃3 − 𝑗𝑄3
𝑌33
= 0.0217/−130.86
𝑌31
𝑌33
= 0.47/175.6
𝑌32
𝑌33
= 0.532/183.8
𝑉
3
(𝑝+1)
=
0.0217/−130.86
𝑉
3
(𝑝) ∗ − 0.47/175.6𝑉1 − 0.532/183.8𝑉
2
(𝑃+1)
P = 0 𝑉
3
(1)
= 1.0011 /−2.06
P = 1 𝑉
2
(2)
= 0.98265 /−3.048
P = 1 𝑉
3
(2)
= 1.00099 /−2.68
ʴǷɱڱǷ..نظمقدرة.ٳ
Step -4 : Computation of slack Bus power
𝑃1 = 𝑉1
2
𝑌11 cos 𝜃11 + 𝑉1𝑉2𝑌12 cos 𝜃12 − 𝛿1 + 𝛿2
+ 𝑉1𝑉3𝑌13 cos 𝜃13 − 𝛿1 + 𝛿3
𝑃1 = (1.05)2
× 53.85 × cos(−68.2) + 1.05 × 0.98265 ×
22.36 cos 116.56 − 0 − 3.048 + 1.05 × 1.00099 ×
31.62 cos 108.4 − 0 − 2.68
𝑃1 =
𝑘=1
𝑛
𝑉1𝑉𝑘𝑌1𝑘 cos(𝜃1𝑘 − 𝛿𝑖 + 𝛿𝑘)
𝑃1 = 3.84 𝑃𝑢 𝐵𝑎𝑠𝑒 = 100
𝑃1 = 384 𝑀𝑊
𝑄1 = −
𝑘=1
𝑛
𝑉1𝑉𝑘𝑌1𝑘 sin(𝜃1𝑘 − 𝛿1 + 𝛿𝑘)
𝑄1 = −𝑉1
2
𝑌11 sin 𝜃11 − 𝑉1𝑉2𝑌12 sin 𝜃12 − 𝛿1 + 𝛿2
− 𝑉1𝑉3𝑌13 sin 𝜃13 − 𝛿1 + 𝛿3
𝑄1 = −(1.05)2
× 53.85 × sin (−68.2) − 1.05 ×
0.98265 × 22.36 sin 116.56 − 0 − 3.048 − 1.05 ×
1.00099 × 31.62 sin 108.4 − 0 − 2.68
𝑄1 = 1.9786 𝑃𝑢 𝐵𝑎𝑠𝑒 = 100
𝑄1 = 197.86 𝑀𝑊
Step -5 : Computation of line flows
𝑃𝑖𝑘 = −𝑉𝑖
2
𝑌𝑖𝑘 cos 𝜃𝑖𝑘 + 𝑉𝑖𝑉𝑘𝑌𝑖𝑘 cos(𝜃𝑖𝑘 − 𝛿𝑖 + 𝛿𝑘)
𝑃12 = 1.8189 𝑃𝑢
𝑃13 = 2 𝑃𝑢
𝑃23 = − 0.4903 𝑃𝑢
𝑃21 = − 1.744 𝑃𝑢
𝑃31 = −1.95 𝑃𝑢
𝑃32 = 0.496 𝑃𝑢
Real power losses
𝑃𝑙𝑜𝑠𝑠𝑖𝑘 = 𝑃𝑖𝑘 + 𝑃𝑘𝑖
𝑃𝑙𝑜𝑠𝑠12 = 0.0749 𝑃𝑢
𝑃𝑙𝑜𝑠𝑠13 = 0.05 𝑃𝑢
𝑃𝑙𝑜𝑠𝑠23 = 0.0057 𝑃𝑢
𝑄𝑖𝑘 = 𝑉𝑖
2
𝑌𝑖𝑘 sin 𝜃𝑖𝑘 − 𝑉𝑖𝑉𝑘𝑌𝑖𝑘 sin (𝜃𝑖𝑘 − 𝛿𝑖 + 𝛿𝑘)
𝑄12 = 0.8948 𝑃𝑢
𝑄13 = 1.088 𝑃𝑢
𝑄23 = − 0.4746 𝑃𝑢
𝑄21 = − 0.746 𝑃𝑢
𝑄31 = − 0.9469 𝑃𝑢
𝑄32 = 0.4866 𝑃𝑢
Reactive power losses
𝑄𝑙𝑜𝑠𝑠𝑖𝑘 = 𝑄𝑖𝑘 + 𝑄𝑘𝑖
𝑄𝑙𝑜𝑠𝑠12 = 0.1488 𝑃𝑢
𝑄𝑙𝑜𝑠𝑠13 = 0.1411 𝑃𝑢
𝑄𝑙𝑜𝑠𝑠23 = 0.012 𝑃𝑢

More Related Content

Similar to ʴǷɱڱǷ..نظمقدرة.ٳ (20)

Vectors in mechanics
Vectors in mechanicsVectors in mechanics
Vectors in mechanics
Maurice Verreck
Analysis of variance
Analysis of varianceAnalysis of variance
Analysis of variance
Nadeem Uddin
Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
tesfahun meshesha
Numerical Techniques
Numerical TechniquesNumerical Techniques
Numerical Techniques
Yasir Mahdi
Vector analysis Mechanics Engineering Dynamics .pptx
Vector analysis Mechanics Engineering Dynamics .pptxVector analysis Mechanics Engineering Dynamics .pptx
Vector analysis Mechanics Engineering Dynamics .pptx
kennycokro
Diapositivas maqueta en coordenadas normales_y_tangenciales
Diapositivas maqueta en coordenadas normales_y_tangencialesDiapositivas maqueta en coordenadas normales_y_tangenciales
Diapositivas maqueta en coordenadas normales_y_tangenciales
ARIELMATHEOCHANCUSIG
Regression Analysis.pptx
Regression Analysis.pptxRegression Analysis.pptx
Regression Analysis.pptx
MdRokonMia1
Electrical circuits in concept of linear algebra
Electrical circuits in concept of linear algebraElectrical circuits in concept of linear algebra
Electrical circuits in concept of linear algebra
Rajesh Kumar
Multiple Regression with two Independent Variable- by Dr. Vikramjit Singh.pdf
Multiple Regression with  two Independent Variable- by Dr. Vikramjit Singh.pdfMultiple Regression with  two Independent Variable- by Dr. Vikramjit Singh.pdf
Multiple Regression with two Independent Variable- by Dr. Vikramjit Singh.pdf
Vikramjit Singh
Multiple Regression with two Independent Variable- by Dr. Vikramjit Singh.pdf
Multiple Regression with  two Independent Variable- by Dr. Vikramjit Singh.pdfMultiple Regression with  two Independent Variable- by Dr. Vikramjit Singh.pdf
Multiple Regression with two Independent Variable- by Dr. Vikramjit Singh.pdf
Vikramjit Singh
Matrix
MatrixMatrix
Matrix
ST ZULAIHA NURHAJARURAHMAH
Ee321 lab 2
Ee321 lab 2Ee321 lab 2
Ee321 lab 2
Seci Durivou
Signal flow graph
Signal flow graphSignal flow graph
Signal flow graph
jani parth
Presentation on the power quality and accuracy
Presentation on the power quality and accuracyPresentation on the power quality and accuracy
Presentation on the power quality and accuracy
BinjalBhavsar
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptxnewaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
Gopal Mahato
newsssssssssssssssssssssssssssssssssssssssss.pptx
newsssssssssssssssssssssssssssssssssssssssss.pptxnewsssssssssssssssssssssssssssssssssssssssss.pptx
newsssssssssssssssssssssssssssssssssssssssss.pptx
Gopal Mahato
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptxnewaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
Gopal Mahato
Longest Common Subsequence & Matrix Chain Multiplication
Longest Common Subsequence & Matrix Chain MultiplicationLongest Common Subsequence & Matrix Chain Multiplication
Longest Common Subsequence & Matrix Chain Multiplication
JaneAlamAdnan
Consistence deformation of trusses
Consistence deformation of trusses Consistence deformation of trusses
Consistence deformation of trusses
Abdulrahman Shaaban
18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt
BAGARAGAZAROMUALD2
Vector analysis Mechanics Engineering Dynamics .pptx
Vector analysis Mechanics Engineering Dynamics .pptxVector analysis Mechanics Engineering Dynamics .pptx
Vector analysis Mechanics Engineering Dynamics .pptx
kennycokro
Diapositivas maqueta en coordenadas normales_y_tangenciales
Diapositivas maqueta en coordenadas normales_y_tangencialesDiapositivas maqueta en coordenadas normales_y_tangenciales
Diapositivas maqueta en coordenadas normales_y_tangenciales
ARIELMATHEOCHANCUSIG
Regression Analysis.pptx
Regression Analysis.pptxRegression Analysis.pptx
Regression Analysis.pptx
MdRokonMia1
Electrical circuits in concept of linear algebra
Electrical circuits in concept of linear algebraElectrical circuits in concept of linear algebra
Electrical circuits in concept of linear algebra
Rajesh Kumar
Multiple Regression with two Independent Variable- by Dr. Vikramjit Singh.pdf
Multiple Regression with  two Independent Variable- by Dr. Vikramjit Singh.pdfMultiple Regression with  two Independent Variable- by Dr. Vikramjit Singh.pdf
Multiple Regression with two Independent Variable- by Dr. Vikramjit Singh.pdf
Vikramjit Singh
Multiple Regression with two Independent Variable- by Dr. Vikramjit Singh.pdf
Multiple Regression with  two Independent Variable- by Dr. Vikramjit Singh.pdfMultiple Regression with  two Independent Variable- by Dr. Vikramjit Singh.pdf
Multiple Regression with two Independent Variable- by Dr. Vikramjit Singh.pdf
Vikramjit Singh
Presentation on the power quality and accuracy
Presentation on the power quality and accuracyPresentation on the power quality and accuracy
Presentation on the power quality and accuracy
BinjalBhavsar
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptxnewaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
Gopal Mahato
newsssssssssssssssssssssssssssssssssssssssss.pptx
newsssssssssssssssssssssssssssssssssssssssss.pptxnewsssssssssssssssssssssssssssssssssssssssss.pptx
newsssssssssssssssssssssssssssssssssssssssss.pptx
Gopal Mahato
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptxnewaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
newaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.pptx
Gopal Mahato
Longest Common Subsequence & Matrix Chain Multiplication
Longest Common Subsequence & Matrix Chain MultiplicationLongest Common Subsequence & Matrix Chain Multiplication
Longest Common Subsequence & Matrix Chain Multiplication
JaneAlamAdnan
18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt18-21 Principles of Least Squares.ppt
18-21 Principles of Least Squares.ppt
BAGARAGAZAROMUALD2

Recently uploaded (20)

How to Build a Maze Solving Robot Using Arduino
How to Build a Maze Solving Robot Using ArduinoHow to Build a Maze Solving Robot Using Arduino
How to Build a Maze Solving Robot Using Arduino
CircuitDigest
Env and Water Supply Engg._Dr. Hasan.pdf
Env and Water Supply Engg._Dr. Hasan.pdfEnv and Water Supply Engg._Dr. Hasan.pdf
Env and Water Supply Engg._Dr. Hasan.pdf
MahmudHasan747870
Turbocor Product and Technology Review.pdf
Turbocor Product and Technology Review.pdfTurbocor Product and Technology Review.pdf
Turbocor Product and Technology Review.pdf
Totok Sulistiyanto
Cloud Computing concepts and technologies
Cloud Computing concepts and technologiesCloud Computing concepts and technologies
Cloud Computing concepts and technologies
ssuser4c9444
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptxGROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
meneememoo
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
J. Agricultural Machinery
Industrial Construction shed PEB MFG.pdf
Industrial Construction shed PEB MFG.pdfIndustrial Construction shed PEB MFG.pdf
Industrial Construction shed PEB MFG.pdf
PLINTH & ROOFS
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
Thane Heins NOBEL PRIZE WINNING ENERGY RESEARCHER
AI, Tariffs and Supply Chains in Knowledge Graphs
AI, Tariffs and Supply Chains in Knowledge GraphsAI, Tariffs and Supply Chains in Knowledge Graphs
AI, Tariffs and Supply Chains in Knowledge Graphs
Max De Marzi
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
US Patented ReGenX Generator, ReGen-X Quatum Motor EV Regenerative Accelerati...
Thane Heins NOBEL PRIZE WINNING ENERGY RESEARCHER
Water Industry Process Automation & Control Monthly - March 2025.pdf
Water Industry Process Automation & Control Monthly - March 2025.pdfWater Industry Process Automation & Control Monthly - March 2025.pdf
Water Industry Process Automation & Control Monthly - March 2025.pdf
Water Industry Process Automation & Control
Engineering at Lovely Professional University (LPU).pdf
Engineering at Lovely Professional University (LPU).pdfEngineering at Lovely Professional University (LPU).pdf
Engineering at Lovely Professional University (LPU).pdf
Sona
BS_EN_ISO_19650_Detailed_Presentation.pptx
BS_EN_ISO_19650_Detailed_Presentation.pptxBS_EN_ISO_19650_Detailed_Presentation.pptx
BS_EN_ISO_19650_Detailed_Presentation.pptx
VinkuMeena
only history of java.pptx real bihind the name java
only history of java.pptx real bihind the name javaonly history of java.pptx real bihind the name java
only history of java.pptx real bihind the name java
mushtaqsaliq9
Industrial Valves, Instruments Products Profile
Industrial Valves, Instruments Products ProfileIndustrial Valves, Instruments Products Profile
Industrial Valves, Instruments Products Profile
zebcoeng
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
slayshadow705
Lectureof nano 1588236675-biosensors (1).ppt
Lectureof nano 1588236675-biosensors (1).pptLectureof nano 1588236675-biosensors (1).ppt
Lectureof nano 1588236675-biosensors (1).ppt
SherifElGohary7
CS3451 INTRODUCTIONN TO OS unit ONE .pdf
CS3451 INTRODUCTIONN TO OS unit ONE .pdfCS3451 INTRODUCTIONN TO OS unit ONE .pdf
CS3451 INTRODUCTIONN TO OS unit ONE .pdf
PonniS7
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
NgocThang9
CS3451-OPERATING-SYSTEM NOTES ALL123.pdf
CS3451-OPERATING-SYSTEM NOTES ALL123.pdfCS3451-OPERATING-SYSTEM NOTES ALL123.pdf
CS3451-OPERATING-SYSTEM NOTES ALL123.pdf
PonniS7
How to Build a Maze Solving Robot Using Arduino
How to Build a Maze Solving Robot Using ArduinoHow to Build a Maze Solving Robot Using Arduino
How to Build a Maze Solving Robot Using Arduino
CircuitDigest
Env and Water Supply Engg._Dr. Hasan.pdf
Env and Water Supply Engg._Dr. Hasan.pdfEnv and Water Supply Engg._Dr. Hasan.pdf
Env and Water Supply Engg._Dr. Hasan.pdf
MahmudHasan747870
Turbocor Product and Technology Review.pdf
Turbocor Product and Technology Review.pdfTurbocor Product and Technology Review.pdf
Turbocor Product and Technology Review.pdf
Totok Sulistiyanto
Cloud Computing concepts and technologies
Cloud Computing concepts and technologiesCloud Computing concepts and technologies
Cloud Computing concepts and technologies
ssuser4c9444
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptxGROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
GROUP-3-GRID-CODE-AND-DISTRIBUTION-CODE.pptx
meneememoo
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
Optimization of Cumulative Energy, Exergy Consumption and Environmental Life ...
J. Agricultural Machinery
Industrial Construction shed PEB MFG.pdf
Industrial Construction shed PEB MFG.pdfIndustrial Construction shed PEB MFG.pdf
Industrial Construction shed PEB MFG.pdf
PLINTH & ROOFS
AI, Tariffs and Supply Chains in Knowledge Graphs
AI, Tariffs and Supply Chains in Knowledge GraphsAI, Tariffs and Supply Chains in Knowledge Graphs
AI, Tariffs and Supply Chains in Knowledge Graphs
Max De Marzi
Engineering at Lovely Professional University (LPU).pdf
Engineering at Lovely Professional University (LPU).pdfEngineering at Lovely Professional University (LPU).pdf
Engineering at Lovely Professional University (LPU).pdf
Sona
BS_EN_ISO_19650_Detailed_Presentation.pptx
BS_EN_ISO_19650_Detailed_Presentation.pptxBS_EN_ISO_19650_Detailed_Presentation.pptx
BS_EN_ISO_19650_Detailed_Presentation.pptx
VinkuMeena
only history of java.pptx real bihind the name java
only history of java.pptx real bihind the name javaonly history of java.pptx real bihind the name java
only history of java.pptx real bihind the name java
mushtaqsaliq9
Industrial Valves, Instruments Products Profile
Industrial Valves, Instruments Products ProfileIndustrial Valves, Instruments Products Profile
Industrial Valves, Instruments Products Profile
zebcoeng
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
Structural QA/QC Inspection in KRP 401600 | Copper Processing Plant-3 (MOF-3)...
slayshadow705
Lectureof nano 1588236675-biosensors (1).ppt
Lectureof nano 1588236675-biosensors (1).pptLectureof nano 1588236675-biosensors (1).ppt
Lectureof nano 1588236675-biosensors (1).ppt
SherifElGohary7
CS3451 INTRODUCTIONN TO OS unit ONE .pdf
CS3451 INTRODUCTIONN TO OS unit ONE .pdfCS3451 INTRODUCTIONN TO OS unit ONE .pdf
CS3451 INTRODUCTIONN TO OS unit ONE .pdf
PonniS7
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
15. Smart Cities Big Data, Civic Hackers, and the Quest for a New Utopia.pdf
NgocThang9
CS3451-OPERATING-SYSTEM NOTES ALL123.pdf
CS3451-OPERATING-SYSTEM NOTES ALL123.pdfCS3451-OPERATING-SYSTEM NOTES ALL123.pdf
CS3451-OPERATING-SYSTEM NOTES ALL123.pdf
PonniS7

ʴǷɱڱǷ..نظمقدرة.ٳ

  • 2. • Power-flow studies are of great importance in planning and designing the future expansion of power systems as well as in determining the best operation of existing systems. • The principal information obtained from a power-flow study is the magnitude and phase angle of the voltage at each bus and the real and reactive power flowing in each line.
  • 3. Successful power system operation under normal balanced three-phase steady-state conditions requires the following: 1. Generation supplies the demand (load) plus losses. 2. Bus voltage magnitudes remain close to rated values. 3. Generators operate within specified real and reactive power limits. 4. Transmission lines and transformers are not overloaded.
  • 4. • The power-flow computer program (sometimes called load flow) is the basic tool for investigating these requirements. • This program computes the voltage magnitude and angle at each bus in a power system under balanced three-phase steady-state conditions. • It also computes real and reactive power flows for all equipment interconnecting the buses, as well as equipment losses.
  • 5. •The power-flow problem is therefore formulated as a set of nonlinear algebraic equations suitable for computer solution. • Two commonly used iterative techniques:
  • 6. The system buses are generally classified into three categories: 1- Slack bus (reference bus) 2- Load buses 3- Voltage controlled buses
  • 7. Steps of solution Step -1 : Initial computation Step -2 : Formation of 𝑌𝐵𝑢𝑠 Matrix Step -3 : Iterative computation of bus voltage Step -4 : Computation of slack Bus power Step -5 : Computation of line flows
  • 8. Step -1 : Initial computation •Convert all Power in per unit •Compute net-injected power at buses
  • 9. Step -2 : Formation of 𝑌𝐵𝑢𝑠 Matrix 𝑌𝐵𝑢𝑠 = 𝑌11 𝑌12 𝑌13 𝑌21 𝑌22 𝑌23 𝑌31 𝑌23 𝑌33
  • 10. Step -3 : Iterative computation of bus voltage 𝑉𝑖 = 1 𝑌𝑖𝑖 𝑃𝑖 − 𝑗𝑄𝑖 𝑉𝑖 ∗ − 𝑘 = 1 𝑘 ≠𝑖 𝑛 𝑌𝑖𝑘𝑉𝑘 𝑉 2 (𝑝+1) = 1 𝑌22 𝑃2 − 𝑗𝑄2 𝑉 2 (𝑝) ∗ − 𝑌21𝑉1 − 𝑌23 𝑉 3 (𝑃) 𝑉 3 (𝑝+1) = 1 𝑌33 𝑃3 − 𝑗𝑄3 𝑉 3 (𝑝) ∗ − 𝑌31𝑉1 − 𝑌32 𝑉 2 (𝑃+1)
  • 11. Step -4 : Computation of slack Bus power 𝑃1 = 𝑘=1 𝑛 𝑉1𝑉𝑘𝑌𝑖𝑘 cos(𝜃1𝑘 − 𝛿𝑖 + 𝛿𝑘) 𝑄1 = − 𝑘=1 𝑛 𝑉1𝑉𝑘𝑌1𝑘 sin(𝜃1𝑘 − 𝛿1 + 𝛿𝑘)
  • 12. Step -5 : Computation of line flows 𝑃𝑖𝑘 = −𝑉𝑖 2 𝑌𝑖𝑘 cos 𝜃𝑖𝑘 + 𝑉𝑖𝑉𝑘𝑌𝑖𝑘 cos(𝜃𝑖𝑘 − 𝛿𝑖 + 𝛿𝑘) 𝑄𝑖𝑘 = 𝑉𝑖 2 𝑌𝑖𝑘 sin 𝜃𝑖𝑘 − 𝑉𝑖𝑉𝑘𝑌𝑖𝑘 sin (𝜃𝑖𝑘 − 𝛿𝑖 + 𝛿𝑘) 𝑃𝑙𝑜𝑠𝑠𝑖𝑘 = 𝑃𝑖𝑘 + 𝑃𝑘𝑖 𝑄𝑙𝑜𝑠𝑠𝑖𝑘 = 𝑄𝑖𝑘 + 𝑄𝑘𝑖
  • 13. Example Single line diagram of a sample 3- bus power system , data for this system are given in table.
  • 15. 1- Using the Gauss Seidel Method, determine the phasor values of the voltage at buses 2 and 3 (perform only two iterations). 2- find the slack bus real and reactive power after second iteration. 3- determine the line flows and line losses after second iteration (neglect line charging admittance).
  • 16. Solution Step -1 : initial computation 𝑃𝐿2 = 305.6 100 = 3.056 𝑝𝑢 , 𝑄𝐿2 = 140.2 100 = 1.402 𝑝𝑢 𝑃𝐿3 = 138.6 100 = 1.386 𝑝𝑢 , 𝑄𝐿3 = 45.2 100 = 0.452 𝑝𝑢 𝑃𝑔2 = 50 100 = 0.50 𝑝𝑢 , 𝑄𝑔2 = 30 100 = 0.30 𝑝𝑢
  • 17. 𝑃2 = 𝑃𝑔2 − 𝑃𝐿2 = 0.5 − 3.056 = −2.556 pu 𝑄2 = 𝑄𝑔2 − 𝑄𝐿2 = 0.3 − 1.402 = −1.102 pu 𝑃3 = 𝑃𝑔3 − 𝑃𝐿3 = 0 − 1.386 = −1.386 pu 𝑄3 = 𝑄𝑔3 − 𝑄𝐿3 = 0 − 0.452 = −0.452 pu
  • 18. Step -2 : Formation of 𝑌𝐵𝑢𝑠 Matrix 𝑦12 = 𝑦21 = 1 𝑧12 = 1 0.02 + 𝑗 0.04 = 10 − 𝑗20 𝑦13 = 𝑦31 = 1 𝑧13 = 1 0.01 + 𝑗 0.03 = 10 − 𝑗30 𝑦23 = 𝑦23 = 1 𝑧23 = 1 0.0125 + 𝑗 0.025 = 16 − 𝑗32
  • 19. 𝑌11 = 𝑦12 + 𝑦13 = 53.85/−68.2 𝑌22 = 𝑦21 + 𝑦23 = 58.13/−63.4 𝑌33 = 𝑦31 + 𝑦32 = 67.23/−67.2
  • 20. 𝑌12 = 𝑌21 = − 𝑦12 = 22.36/116.6 𝑌13 = 𝑌31 = − 𝑦13 = 31.62/108.4 𝑌23 = 𝑌32 = − 𝑦23 = 35.77/116.6
  • 21. 𝑌𝑏𝑢𝑠 = 53.85/−68.2 22.36/116.6 31.62/108.4 22.36/116.6 58.13/−63.4 35.77/116.6 31.62/108.4 35.77/116.6 67.23/−67.2
  • 22. Step -3 : Iterative computation of bus voltage 𝑉𝑖 = 1 𝑌𝑖𝑖 𝑃𝑖 − 𝑗𝑄𝑖 𝑉𝑖 ∗ − 𝑘 = 1 𝑘 ≠𝑖 𝑛 𝑌𝑖𝑘𝑉𝑘 𝑉 2 (𝑝+1) = 1 𝑌22 𝑃2 − 𝑗𝑄2 𝑉 2 (𝑝) ∗ − 𝑌21𝑉1 − 𝑌23 𝑉 3 (𝑃) 𝑉 3 (𝑝+1) = 1 𝑌33 𝑃3 − 𝑗𝑄3 𝑉 3 (𝑝) ∗ − 𝑌31𝑉1 − 𝑌32 𝑉 2 (𝑃+1)
  • 23. Slacks bus voltage : 𝑉1 = (1.05 + 𝑗 0.0) Starting voltage : 𝑉 2 (0) = (1 + 𝑗 0.0) 𝑉 3 (0) = (1 + 𝑗 0.0)
  • 24. 𝑃2 − 𝑗𝑄2 𝑌22 = 0.0478/−139.9 𝑌21 𝑌22 = −0.3846 𝑌23 𝑌22 = −0.6153
  • 25. 𝑉 2 (𝑝+1) = 0.0478/−139.9 𝑉 2 (𝑝) ∗ + 0.3846 𝑉1 + 0.6153 𝑉 3 (𝑃) P = 0 𝑉 2 (1) = 0.98305 /−1.8
  • 26. 𝑃3 − 𝑗𝑄3 𝑌33 = 0.0217/−130.86 𝑌31 𝑌33 = 0.47/175.6 𝑌32 𝑌33 = 0.532/183.8
  • 27. 𝑉 3 (𝑝+1) = 0.0217/−130.86 𝑉 3 (𝑝) ∗ − 0.47/175.6𝑉1 − 0.532/183.8𝑉 2 (𝑃+1) P = 0 𝑉 3 (1) = 1.0011 /−2.06
  • 28. P = 1 𝑉 2 (2) = 0.98265 /−3.048 P = 1 𝑉 3 (2) = 1.00099 /−2.68
  • 30. Step -4 : Computation of slack Bus power 𝑃1 = 𝑉1 2 𝑌11 cos 𝜃11 + 𝑉1𝑉2𝑌12 cos 𝜃12 − 𝛿1 + 𝛿2 + 𝑉1𝑉3𝑌13 cos 𝜃13 − 𝛿1 + 𝛿3 𝑃1 = (1.05)2 × 53.85 × cos(−68.2) + 1.05 × 0.98265 × 22.36 cos 116.56 − 0 − 3.048 + 1.05 × 1.00099 × 31.62 cos 108.4 − 0 − 2.68 𝑃1 = 𝑘=1 𝑛 𝑉1𝑉𝑘𝑌1𝑘 cos(𝜃1𝑘 − 𝛿𝑖 + 𝛿𝑘)
  • 31. 𝑃1 = 3.84 𝑃𝑢 𝐵𝑎𝑠𝑒 = 100 𝑃1 = 384 𝑀𝑊
  • 32. 𝑄1 = − 𝑘=1 𝑛 𝑉1𝑉𝑘𝑌1𝑘 sin(𝜃1𝑘 − 𝛿1 + 𝛿𝑘) 𝑄1 = −𝑉1 2 𝑌11 sin 𝜃11 − 𝑉1𝑉2𝑌12 sin 𝜃12 − 𝛿1 + 𝛿2 − 𝑉1𝑉3𝑌13 sin 𝜃13 − 𝛿1 + 𝛿3 𝑄1 = −(1.05)2 × 53.85 × sin (−68.2) − 1.05 × 0.98265 × 22.36 sin 116.56 − 0 − 3.048 − 1.05 × 1.00099 × 31.62 sin 108.4 − 0 − 2.68
  • 33. 𝑄1 = 1.9786 𝑃𝑢 𝐵𝑎𝑠𝑒 = 100 𝑄1 = 197.86 𝑀𝑊
  • 34. Step -5 : Computation of line flows 𝑃𝑖𝑘 = −𝑉𝑖 2 𝑌𝑖𝑘 cos 𝜃𝑖𝑘 + 𝑉𝑖𝑉𝑘𝑌𝑖𝑘 cos(𝜃𝑖𝑘 − 𝛿𝑖 + 𝛿𝑘) 𝑃12 = 1.8189 𝑃𝑢 𝑃13 = 2 𝑃𝑢 𝑃23 = − 0.4903 𝑃𝑢 𝑃21 = − 1.744 𝑃𝑢 𝑃31 = −1.95 𝑃𝑢 𝑃32 = 0.496 𝑃𝑢
  • 35. Real power losses 𝑃𝑙𝑜𝑠𝑠𝑖𝑘 = 𝑃𝑖𝑘 + 𝑃𝑘𝑖 𝑃𝑙𝑜𝑠𝑠12 = 0.0749 𝑃𝑢 𝑃𝑙𝑜𝑠𝑠13 = 0.05 𝑃𝑢 𝑃𝑙𝑜𝑠𝑠23 = 0.0057 𝑃𝑢
  • 36. 𝑄𝑖𝑘 = 𝑉𝑖 2 𝑌𝑖𝑘 sin 𝜃𝑖𝑘 − 𝑉𝑖𝑉𝑘𝑌𝑖𝑘 sin (𝜃𝑖𝑘 − 𝛿𝑖 + 𝛿𝑘) 𝑄12 = 0.8948 𝑃𝑢 𝑄13 = 1.088 𝑃𝑢 𝑄23 = − 0.4746 𝑃𝑢 𝑄21 = − 0.746 𝑃𝑢 𝑄31 = − 0.9469 𝑃𝑢 𝑄32 = 0.4866 𝑃𝑢
  • 37. Reactive power losses 𝑄𝑙𝑜𝑠𝑠𝑖𝑘 = 𝑄𝑖𝑘 + 𝑄𝑘𝑖 𝑄𝑙𝑜𝑠𝑠12 = 0.1488 𝑃𝑢 𝑄𝑙𝑜𝑠𝑠13 = 0.1411 𝑃𝑢 𝑄𝑙𝑜𝑠𝑠23 = 0.012 𝑃𝑢