This document discusses generative adversarial networks (GANs) and their relationship to reinforcement learning. It begins with an introduction to GANs, explaining how they can generate images without explicitly defining a probability distribution by using an adversarial training process. The second half discusses how GANs are related to actor-critic models and inverse reinforcement learning in reinforcement learning. It explains how GANs can be viewed as training a generator to fool a discriminator, similar to how policies are trained in reinforcement learning.
The document explores contrastive self-supervised learning, discussing its methodologies that reduce human annotation costs while promoting general representation learning. It highlights the effectiveness of various frameworks like MoCo and SimCLR, emphasizing their capabilities in distinguishing features among instances and the importance of both positive and negative samples. Additionally, the results demonstrate significant improvements in video tasks through the proposed inter-intra contrastive learning framework.
BERT を中心に解説した資料です.BERT に比べると,XLNet と RoBERTa の内容は詳細に追ってないです.
あと,自作の図は上から下ですが,引っ張ってきた図は下から上になっているので注意してください.
もし間違い等あったら修正するので,言ってください.
(特に,RoBERTa の英語を読み間違えがちょっと怖いです.言い訳すいません.)
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
XLNet: Generalized Autoregressive Pretraining for Language Understanding
RoBERTa: A Robustly Optimized BERT Pretraining Approach
BERT を中心に解説した資料です.BERT に比べると,XLNet と RoBERTa の内容は詳細に追ってないです.
あと,自作の図は上から下ですが,引っ張ってきた図は下から上になっているので注意してください.
もし間違い等あったら修正するので,言ってください.
(特に,RoBERTa の英語を読み間違えがちょっと怖いです.言い訳すいません.)
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
XLNet: Generalized Autoregressive Pretraining for Language Understanding
RoBERTa: A Robustly Optimized BERT Pretraining Approach