畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vnMegabook
油
但y l 畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 c畛a Megabook. C叩c em c坦 th畛 tham kh畉o nh辿!
------------------------------------------------------------------------------
C叩c em c坦 th畛 tham kh畉o b畛 s叩ch hay c畛a Megabook t畉i 畛a ch畛 sau nh辿 ;)
http://megabook.vn/
Ch炭c c叩c em h畛c t畛t! ^^
畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vnMegabook
油
但y l 畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 c畛a Megabook. C叩c em c坦 th畛 tham kh畉o nh辿!
------------------------------------------------------------------------------
C叩c em c坦 th畛 tham kh畉o b畛 s叩ch hay c畛a Megabook t畉i 畛a ch畛 sau nh辿 ;)
http://megabook.vn/
Ch炭c c叩c em h畛c t畛t! ^^
1. The document discusses integration and properties of integrals. It shows that the integral of the derivative of a function equals the function evaluated from negative infinity to positive infinity.
2. Several integral properties are demonstrated, including properties related to adding or subtracting integrals and integrating with respect to different variables.
3. The document also explores integrals of functions over all real numbers and shows some integrals equal zero while others do not, depending on the properties of the functions.
1. The document provides information about a math exam, including the exam time of 180 minutes and 6 questions ranging from 1 to 2 points each. The questions cover topics such as solving equations, finding roots of equations, integrals, geometry problems, and systems of equations.
2. The responses provide solutions to each question, showing the steps and reasoning for obtaining the answers. Solutions include solving equations, finding integrals, using geometry relationships, and solving a system of inequalities.
3. Diagrams and calculations are shown to visually depict the solutions to the geometry problems involving shapes, angles, and areas.
1. 1
H畛i Nh畛ng Ng動畛i n Thi 畉i H畛c
畛 thi th畛 s畛 1
畛 THI TH畛 畉I H畛C NM 2012
M担n thi : TON - kh畛i A.
Th畛i gian: 180 ph炭t
I. PH畉N CHUNG CHO T畉T C畉 TH SINH (7,0 i畛m)
C但u I (2,0 i畛m) Cho hm s畛 23 23
mxxxy (1) v畛i m l tham s畛 th畛c.
1. Kh畉o s叩t s畛 bi畉n thi棚n v v畉 畛 th畛 c畛a hm s畛 (1) khi m = 0.
2. 畛nh m 畛 hm s畛 (1) c坦 c畛c tr畛, 畛ng th畛i 動畛ng th畉ng i qua hai i畛m c畛c tr畛 c畛a 畛 th畛
hm s畛 t畉o v畛i hai tr畛c t畛a 畛 m畛t tam gi叩c c但n.
C但u II (2,0 i畛m)
1. Gi畉i ph動董ng tr狸nh:
1
2tan cot 2 2sin 2
sin 2
x x x
x
2. Gi畉i b畉t ph動董ng tr狸nh : 2 2
35 5 4 24x x x
C但u III (1,0 i畛m) T鱈nh t鱈ch ph但n
2ln3
0
23
)2( x
e
dx
I .
C但u IV (1,0 i畛m) Cho h狸nh ch坦p t畛 gi叩c S.ABCD c坦 叩y l h狸nh ch畛 nh畉t v畛i SA vu担ng g坦c v畛i
叩y, G l tr畛ng t但m tam gi叩c SAC, m畉t ph畉ng (ABG) c畉t SC t畉i M, c畉t SD t畉i N. T鱈nh th畛 t鱈ch c畛a
kh畛i a di畛n MNABCD bi畉t SA=AB=a v g坦c h畛p b畛i 動畛ng th畉ng AN v mp(ABCD) b畉ng 0
30 .
C但u V (1,0 i畛m) Cho a, b, c l 3 c畉nh c畛a 1 tam gi叩c. T狸m GTLN c畛a bi畛u th畛c
3 3 3 15
2 2 2 2 2 2
a b c abc
T
a b b a b c c b a c c a
II. PH畉N RING (3,0 i畛m)
Th鱈 sinh ch畛 動畛c lm m畛t trong hai ph畉n (ph畉n A ho畉c B)
A. Theo ch藤董ng tr狸nh Chu畉n
C但u VI.a (2,0 i畛m)
1. Trong m畉t ph畉ng t畛a 畛 Oxy, cho h狸nh ch畛 nh畉t ABCD c坦 di畛n t鱈ch b畉ng 12, t但m I thu畛c 動畛ng
th畉ng : 3 0d x y v c坦 honh 畛 xI=9/2, trung i畛m c畛a m畛t c畉nh l giao i畛m c畛a (d) v tr畛c
Ox. T狸m t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t.
2. Trong m畉t phng Oxy cho 動畛ng tr嘆n ( C): x2
+ y2
=1. T狸m t畉t c畉 c叩c gi叩 tr畛 th畛c m 畛 tr棚n 動畛ng
th畉ng y = m t畛n t畉i 炭ng hai i畛m ph但n bi畛t m t畛 m畛i i畛m 坦 k畉 動畛c hai ti畉p tuy畉n v畛i (C) sao
cho g坦c gi畛a hai ti畉p tuy畉n b畉ng 600
C但u VII.a (1,0 i畛m). Gi畉i b畉t ph動董ng tr狸nh:
2
1 2
2
2
1
2
3
log 1 log 1 6
2
log 1
2 log ( 1)
x x
x
x
B. Theo ch藤董ng tr狸nh N但ng cao
C但u VI.b (2,0 i畛m)
1. Trong m畉t ph畉ng Oxy cho 動畛ng tr嘆n (C ): 0216822
緒 yxyx v 動畛ng th畉ng (d): x + y -
1=0. X叩c 畛nh to畉 畛 c叩c 畛nh h狸nh vu担ng ABCD ngo畉i ti畉p 動畛ng tr嘆n (C) bi畉t A n畉m tr棚n (d).
2. Trong kh担ng gian v畛i h畛 t畛a 畛 Oxyz, h達y x叩c 畛nh to畉 畛 t但m v b叩n k鱈nh 動畛ng tr嘆n ngo畉i ti畉p
tam gi叩c ABC, bi畉t A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3).
C但u VII.b (1 i畛m) T狸m s畛 ph畛c z c坦 m担un nh畛 nh畉t th畛a m達n:
z i
z i
1 5
2
3
------------H畉T------------
Thi th畛 畉i h畛c www.toanpt.net
2. http://facebook.com/onthidh 2
S L蕩畛C P N V BI畛U I畛M 畛 THI KH畉O ST L畉N 1_2012
C但u N畛i dung i畛m
I 1.0
2 Hm s畛 c坦 c畛c tr畛 khi v ch畛 khi y = 0 c坦 2 nghi畛m ph但n bi畛t
' 9 3 0 3m m (1) 0.25
3
2)2
3
2
(').1(
3
1
23 23
m
x
m
yx
mxxxy
動畛ng th畉ng qua hai i畛m c畛c tr畛 c畛a 畛 th畛 hm s畛 c坦 ph動董ng tr狸nh
3
2)2
3
2
(
m
x
m
y
0.25
動畛ng th畉ng ny c畉t 2 tr畛c Ox v Oy l畉n l動畛t tai
件
э
3
6
;0,0;
)3(2
6 m
B
m
m
A
Tam gi叩c OAB c但n khi v ch畛 khi OA OB
6 6
2( 3) 3
9 3
6; ;
2 2
m m
m
m m m
0.25
V畛i m = 6 th狸 OBA 削 do 坦 so v畛i i畛u ki畛n ta nh畉n
2
3
m 0.25
II 2.0
1 1.0
1
2tan cot 2 2sin 2
sin 2
x x x
x
,(1)
i畛u ki畛n:
2
x k
2 2
2
2
4sin cos2 2sin 2 1
(1)
sin 2 sin 2
2(1 cos2 ) cos2 2(1 cos 2 ) 1
2cos 2 cos2 1 0
cos2 1 (loai do:sin 2 0)
1
3cos2
2
x x x
x x
x x x
x x
x x
x k
x
緒
0,25
0,25
0,25
0.25
0.25
畛i chi畉u i畛u ki畛n ph動董ng tr狸nh c坦 nghi畛m l: ,
3
x k k Z
逸 0.25
2 1.0
3. http://facebook.com/onthidh 3
BPT t動董ng 動董ng:
2 2 2 2
2 2
11
35 24 5 4 5 4 11 (5 4)( 35 24)
35 24
x x x x x x x
x x
a)N畉u x
4
5
kh担ng th畛a m達n BPT
0.25
b)N畉u x > 4/5: Hm s畛 2 2
(5 4)( 35 24)y x x x v畛i x > 4/5
y
= 2 2
2 2
1 1
5( 35 24) (5 4)( )
35 24
x x x
x x
>0 m畛i x>4/5
0.25
V畉y HSB. +N畉u 4/5<x 1 th狸 y(x) 11 0.25
+N畉u x>1 th狸 y(x)>11 V畉y nghi畛m BPT x>1 0.25
III 1.0
Ta c 坦
2ln3
0 233
3
)2(
xx
x
ee
dxe
I =
畉t u= 3
x
e dxedu
x
3
3 ; 22ln3;10 緒緒緒 uxux
0.25
Ta 動畛c:
2
1
2
)2(
3
uu
du
I =3 du
uuu 件
э
2
1
2
)2(2
1
)2(4
1
4
1 0.25
=3
2
1
)2(2
1
2ln
4
1
ln
4
1
件
э
u
uu
0.25
8
1
)
2
3
ln(
4
3
V畉y I
8
1
)
2
3
ln(
4
3
0.25
IV 1.0
+ Trong mp(SAC) k畉 AG c畉t SC t畉i M, trong mp(SBD) k畉 BG c畉t SD t畉i N.
+ V狸 G l tr畛ng t但m tam gi叩c ABC n棚n d畛 c坦
2
3
SG
SO
suy ra G c滴ng l tr畛ng t但m tam gi叩c SBD.
T畛 坦 suy ra M, N l畉n l動畛t l trung i畛m c畛a
SC, SD.
0.25
+ D畛 c坦: . . .
1 1
2 2
S ABD S BCD S ABCDV V V V .
Theo c担ng th畛c t畛 s畛 th畛 t鱈ch ta c坦:
.
.
.
1 1 1
. . 1.1.
2 2 4
S ABN
S ABN
S ABD
V SA SB SN
V V
V SA SB SD
.
.
.
1 1 1 1
. . 1. .
2 2 4 8
S BMN
S ABN
S BCD
V SB SM SN
V V
V SB SC SD
T畛 坦 suy ra:
. . .
3
.
8
S ABMN S ABN S BMNV V V V
0.25
+ Ta c坦:
1
. ( )
3
V SAdt ABCD ; m theo gi畉 thi畉t ( )SA ABCD n棚n g坦c h畛p b畛i AN v畛i
mp(ABCD) ch鱈nh l g坦c NAD , l畉i c坦 N l trung i畛m c畛a SC n棚n tam gi叩c NAD c但n t畉i N,
suy ra 0
30 .NAD NDA Suy ra: 0
3
tan30
SA
AD a .
0.25
4. http://facebook.com/onthidh 4
Suy ra: 31 1 3
. ( ) . . 3
3 3 3
V SAdt ABCD a a a a .
Suy ra: th畛 t鱈ch c畉n t狸m l:
3
. .
3 5
8 8
5 3
.
24
MNABCD S ABCD S ABMN
a
V V V V V V
0.25
V 1.0
Gi畉 s畛 a b c
X辿t hm s畛
3 3 3 2 2 2 2 2 2( ) 15 3( )f x x b c xbc x b b x b c c b x c c x ,
;x b a
2 2 2( ) 3 15 3(2 2 )f x x bc xb b xc c .
0.25
( ) 6 3(2 2 ) 6( ) 0f x x b c x b c ( )f x l hm gi畉m tr棚n mi畛n ;b a
2 2 2 2 2 2( ) ( ) 3 15 3(2 2 ) 9 6 3 3( )(2 )f x f b b bc b b bc c bc b c b c b c
( )f x l hm gi畉m
0.25
3 3 2 3 2 2 2 2( ) ( ) 2 15 3(2 2 2 ) ( )[4 5 ]
2( ) (4 ) 0
f a f b b c b c b b c c b b c b c bc
b c b c
0.25
( ) 0f a
3 3 3 2 2 2 2 2 215 3( ) 0 3a b c abc a b b a b c c b a c c a T
0.25
VI.a 2.0
1 1.0
I c坦 honh 畛
9
2
Ix v
9 3
: 3 0 ;
2 2
I d x y I
Vai tr嘆 A, B, C, D l nh動 nhau n棚n trung i畛m M c畛a c畉nh AD l giao
i畛m c畛a (d) v Ox, suy ra M(3;0)
2 2 9 9
2 2 2 3 2
4 4
I M I MAB IM x x y y
D
12
. D = 12 AD = 2 2.
3 2
ABCD
ABC
S
S AB A
AB
0.25
AD d
M AD
, suy ra ph動董ng tr狸nh AD: 1. 3 1. 0 0 3 0x y x y .
L畉i c坦 MA = MD = 2 .
V畉y t畛a 畛 A, D l nghi畛m c畛a h畛 ph動董ng tr狸nh:
2 2 22 22
3 0 3 3
3 2 3 3 23 2
x y y x y x
x y x xx y
緒
緒
3 2
3 1 1
y x x
x y
緒
緒
ho畉c
4
1
x
y
緒
.V畉y A(2;1), D(4;-1),
0.25
5. http://facebook.com/onthidh 5
9 3
;
2 2
I
l trung i畛m c畛a AC, suy ra:
2 9 2 72
2 3 1 2
2
A C
I
C I A
A C C I A
I
x x
x
x x x
y y y y y
y
緒 緒
緒
0.25
T動董ng t畛 I c滴ng l trung i畛m BD n棚n ta c坦: B(5;4).
V畉y t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t l (2;1), (5;4), (7;2), (4;-1).
0.25
2 1.0
動畛ng tr嘆n t但m O(0;0); b叩n k鱈nh R = 1
Gi畉 s畛 PA; PB l hai ti畉p tuy畉n c畛a 動畛ng tr嘆n (A; B l hai ti畉p i畛m)
TH 1: 緒 260 0
OPBPA P thu畛c 藤畛ng tr嘆n (C1) t但m O; b叩n k鱈nh R = 2
0.25
TH 2: 緒
3
2
120 0
OPBPA P thu畛c 動畛ng tr嘆n (C2) t但m O;b叩n k鱈nh R =
3
2
0.25
動董ng th畉ng y = m tho畉 m達n y棚u c畉u bi to叩n khi n坦 c畉t (C1) t畉i hai i畛m ph但n bi畛t v
kh担ng c坦 i畛m chung v畛i (C2) 0.25
V畉y c叩c gi叩 tr畛 m tho畉 m達n bi to叩n l:
3
2
2
逸 m v 2
3
2
逸 m 0.25
VII.a 1.0
畉t 2log ( 1)t x ta 動畛c:
2
1 3
6
2 2
2
t t
t
t
0.25
2 6
5 14 24
0 5
4(2 )
2 4
tt t
t
t
o
0.25
v畉y: 2
2
6
log ( 1)
5
2 log ( 1) 4
x
x
o
0.25
6
5
1 2 1
3 15
x
x
o
0.25
VI.b 2.0
1 1.0
動畛ng tr嘆n (C ) c坦 t但m I(4;-3); b叩n k鱈nh R = 2
V狸 I n畉m tr棚n (d), do 坦 AI l m畛t 動畛ng ch辿o c畛a h狸nh vu担ng
x = 2 ho畉c x = 6 l hai ti畉p tuy畉n c畛a (C ) n棚n:
0.25
Ho畉c A l giao i畛m c畛a (d) v畛i 動嘆ng th畉ng: x = 2 A(2; -1)
Ho畉c A l giao i畛m c畛a (d) v畛i 動嘆ng th畉ng: x = 6 A(2; -1)
0.25
V畛i A(2;-1) th狸 C(6;-5); hai 畛nh kia l (2;-5) ; (6;-1) 0.25
V畛i A(6;-5) th狸 C(2;-1) ; hai 畛nh kia l: (6;-1); (2;-5) 0.25
2 1.0
Ta c坦: (2; 2; 2), (0; 2;2).AB AC Suy ra ph藤董ng tr狸nh m畉t ph畉ng trung tr畛c c畛a
AB, AC l: 1 0, 3 0.x y z y z
0.25
6. http://facebook.com/onthidh 6
Vect董 ph叩p tuy畉n c畛a mp(ABC) l , (8; 4;4).n AB AC 刻 Suy ra (ABC):
2 1 0x y z .
0.25
Gi畉i h畛:
1 0 0
3 0 2
2 1 0 1
x y z x
y z y
x y z z
緒
緒
緒
. Suy ra t但m 動畛ng tr嘆n l (0; 2;1).I 0.25
B叩n k鱈nh l 2 2 2
( 1 0) (0 2) (1 1 .) 5 R IA 0.25
VII.b 1.0
G畛i z = a + bi (a,b thu畛c R) z a bi
a b iz i a bi i
a bi i a b iz i
1 51 5 1 5
3 3 13
,
a bz i
z i a b
2 2
2 2
1 51 5
2
3 3 1
0.25
a b
a b a b
a b
2 2
2 2
2 2
1 5
2 10 14 6 0 *
3 1
0.25
* l ph動董ng tr狸nh c畛a 動畛ng tr嘆n trong m畉t ph畉ng ph畛c
N棚n s畛 ph畛c c坦 m担un nh畛 nh畉t ph畉n th畛c v ph畉n 畉o l nghi畛m c畛a
藤畛ng tr嘆n * v 藤畛ng th畉ng IO v畛i I l t但m c畛a 藤畛ng tr嘆n, I(-5;-7)
0.25
緒
緒
t
a t
IO pt t t
b t
t
2
34 2 370
5 37: :37 74 3 0
7 37 2 370
37
z n z l
34 2 370 34 2 370 37 2 370 37 2 370
5 7 , 5 7
37 37 37 37
0.25
C但u V c叩ch kh叩c
Ta s畉 ch畛ng minh 3T , v d畉u 畉ng th畛c x畉y ra khi a b c .
Gi畉 s畛 a b c
畉t
2 2 2 2 2 2 3 3 3
( ) 3( ) 15f a a b b a b c c b a c c a a b c abc
3 3 2 2 2 2 3 3 3 2
( ) 3( ) 15f b b b b c c b b c c b b b c b c
2 2 2 2
2 2
( ) ( ) ( )[3 ( ) 3 3 ( ) 3 ( ) 15 ]
( )(2 5 3 3 12 ) ( ). ( )
f a f b a b b a b b c a b c a b ab bc
a b ab b ac c bc a b g a
v畛i
2 2
2 2 2
( ) 2 5 3 3 12
( ) 2 5 3 3 12
g a ab b ac c bc
g b b b bc c bc
( ) ( ) 2 ( ) 3 ( ) ( )(2 3 ) 0g a g b b a b c a b a b b c , m
2 2
( ) 7 3 9 2. 21 9 0g b b c bc bc
Suy ra ( ) ( )f a f b m
7. http://facebook.com/onthidh 7
3 3 2 2 2 2 3 3 3 2
3 2 2 3 3 3 3 2 2 2
2 2 2 2 2
2
( ) 3( ) 15
4 6 9 3 3 6 6
( )[ 3 6 ] ( )[4 5 ]
( )[4 ( ) ( )] ( ) (4 ) 0
f b b b b c c b b c c b b b c b c
b c b b c c b c b b c c b b c
b c b c bc b bc b c b c bc
b c b b c c b c b c b c
( ) 0 3f a T .
C畉m 董n油Onthdh_fb@yahoo.com..vn油g畛i油t畛i油www.laisac.page.tl