際際滷

際際滷Share a Scribd company logo
1
H畛i Nh畛ng Ng動畛i n Thi 畉i H畛c
畛 thi th畛 s畛 1
畛 THI TH畛 畉I H畛C NM 2012
M担n thi : TON - kh畛i A.
Th畛i gian: 180 ph炭t
I. PH畉N CHUNG CHO T畉T C畉 TH SINH (7,0 i畛m)
C但u I (2,0 i畛m) Cho hm s畛 23 23
 mxxxy (1) v畛i m l tham s畛 th畛c.
1. Kh畉o s叩t s畛 bi畉n thi棚n v v畉 畛 th畛 c畛a hm s畛 (1) khi m = 0.
2. 畛nh m 畛 hm s畛 (1) c坦 c畛c tr畛, 畛ng th畛i 動畛ng th畉ng i qua hai i畛m c畛c tr畛 c畛a 畛 th畛
hm s畛 t畉o v畛i hai tr畛c t畛a 畛 m畛t tam gi叩c c但n.
C但u II (2,0 i畛m)
1. Gi畉i ph動董ng tr狸nh:
1
2tan cot 2 2sin 2
sin 2
x x x
x
  
2. Gi畉i b畉t ph動董ng tr狸nh : 2 2
35 5 4 24x x x    
C但u III (1,0 i畛m) T鱈nh t鱈ch ph但n  

2ln3
0
23
)2( x
e
dx
I .
C但u IV (1,0 i畛m) Cho h狸nh ch坦p t畛 gi叩c S.ABCD c坦 叩y l h狸nh ch畛 nh畉t v畛i SA vu担ng g坦c v畛i
叩y, G l tr畛ng t但m tam gi叩c SAC, m畉t ph畉ng (ABG) c畉t SC t畉i M, c畉t SD t畉i N. T鱈nh th畛 t鱈ch c畛a
kh畛i a di畛n MNABCD bi畉t SA=AB=a v g坦c h畛p b畛i 動畛ng th畉ng AN v mp(ABCD) b畉ng 0
30 .
C但u V (1,0 i畛m) Cho a, b, c l 3 c畉nh c畛a 1 tam gi叩c. T狸m GTLN c畛a bi畛u th畛c
3 3 3 15
2 2 2 2 2 2
a b c abc
T
a b b a b c c b a c c a
  

    
II. PH畉N RING (3,0 i畛m)
Th鱈 sinh ch畛 動畛c lm m畛t trong hai ph畉n (ph畉n A ho畉c B)
A. Theo ch藤董ng tr狸nh Chu畉n
C但u VI.a (2,0 i畛m)
1. Trong m畉t ph畉ng t畛a 畛 Oxy, cho h狸nh ch畛 nh畉t ABCD c坦 di畛n t鱈ch b畉ng 12, t但m I thu畛c 動畛ng
th畉ng  : 3 0d x y   v c坦 honh 畛 xI=9/2, trung i畛m c畛a m畛t c畉nh l giao i畛m c畛a (d) v tr畛c
Ox. T狸m t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t.
2. Trong m畉t phng Oxy cho 動畛ng tr嘆n ( C): x2
+ y2
=1. T狸m t畉t c畉 c叩c gi叩 tr畛 th畛c m 畛 tr棚n 動畛ng
th畉ng y = m t畛n t畉i 炭ng hai i畛m ph但n bi畛t m t畛 m畛i i畛m 坦 k畉 動畛c hai ti畉p tuy畉n v畛i (C) sao
cho g坦c gi畛a hai ti畉p tuy畉n b畉ng 600
C但u VII.a (1,0 i畛m). Gi畉i b畉t ph動董ng tr狸nh:
 
 
2
1 2
2
2
1
2
3
log 1 log 1 6
2
log 1
2 log ( 1)
x x
x
x
 
    
   
 
B. Theo ch藤董ng tr狸nh N但ng cao
C但u VI.b (2,0 i畛m)
1. Trong m畉t ph畉ng Oxy cho 動畛ng tr嘆n (C ): 0216822
緒 yxyx v 動畛ng th畉ng (d): x + y -
1=0. X叩c 畛nh to畉 畛 c叩c 畛nh h狸nh vu担ng ABCD ngo畉i ti畉p 動畛ng tr嘆n (C) bi畉t A n畉m tr棚n (d).
2. Trong kh担ng gian v畛i h畛 t畛a 畛 Oxyz, h達y x叩c 畛nh to畉 畛 t但m v b叩n k鱈nh 動畛ng tr嘆n ngo畉i ti畉p
tam gi叩c ABC, bi畉t A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3).
C但u VII.b (1 i畛m) T狸m s畛 ph畛c z c坦 m担un nh畛 nh畉t th畛a m達n:
 

 
z i
z i
1 5
2
3
------------H畉T------------
Thi th畛 畉i h畛c www.toanpt.net
http://facebook.com/onthidh 2
S L蕩畛C P N V BI畛U I畛M 畛 THI KH畉O ST L畉N 1_2012
C但u N畛i dung i畛m
I 1.0
2 Hm s畛 c坦 c畛c tr畛 khi v ch畛 khi y = 0 c坦 2 nghi畛m ph但n bi畛t
' 9 3 0 3m m        (1) 0.25
3
2)2
3
2
(').1(
3
1
23 23
m
x
m
yx
mxxxy


動畛ng th畉ng qua hai i畛m c畛c tr畛 c畛a 畛 th畛 hm s畛 c坦 ph動董ng tr狸nh
3
2)2
3
2
(
m
x
m
y 
0.25
動畛ng th畉ng ny c畉t 2 tr畛c Ox v Oy l畉n l動畛t tai 




 
件


э




3
6
;0,0;
)3(2
6 m
B
m
m
A
Tam gi叩c OAB c但n khi v ch畛 khi OA OB
6 6
2( 3) 3
9 3
6; ;
2 2
m m
m
m m m
 
 

     
0.25
V畛i m = 6 th狸 OBA 削 do 坦 so v畛i i畛u ki畛n ta nh畉n
2
3
m 0.25
II 2.0
1 1.0
1
2tan cot 2 2sin 2
sin 2
x x x
x
   ,(1)
i畛u ki畛n:
2
x k


2 2
2
2
4sin cos2 2sin 2 1
(1)
sin 2 sin 2
2(1 cos2 ) cos2 2(1 cos 2 ) 1
2cos 2 cos2 1 0
cos2 1 (loai do:sin 2 0)
1
3cos2
2
x x x
x x
x x x
x x
x x
x k
x


 
 
     
   
 緒
    
  

0,25
0,25
0,25
0.25
0.25
畛i chi畉u i畛u ki畛n ph動董ng tr狸nh c坦 nghi畛m l: ,
3
x k k Z

逸    0.25
2 1.0
http://facebook.com/onthidh 3
BPT t動董ng 動董ng:
2 2 2 2
2 2
11
35 24 5 4 5 4 11 (5 4)( 35 24)
35 24
x x x x x x x
x x
             
  
a)N畉u x
4
5
 kh担ng th畛a m達n BPT
0.25
b)N畉u x > 4/5: Hm s畛 2 2
(5 4)( 35 24)y x x x     v畛i x > 4/5
y
= 2 2
2 2
1 1
5( 35 24) (5 4)( )
35 24
x x x
x x
     
 
>0 m畛i x>4/5
0.25
V畉y HSB. +N畉u 4/5<x 1 th狸 y(x)  11 0.25
+N畉u x>1 th狸 y(x)>11 V畉y nghi畛m BPT x>1 0.25
III 1.0
Ta c 坦 


2ln3
0 233
3
)2(
xx
x
ee
dxe
I =
畉t u= 3
x
e  dxedu
x
3
3  ; 22ln3;10 緒緒緒 uxux
0.25
Ta 動畛c:  

2
1
2
)2(
3
uu
du
I =3 du
uuu 件



э




2
1
2
)2(2
1
)2(4
1
4
1 0.25
=3
2
1
)2(2
1
2ln
4
1
ln
4
1
件


э




u
uu
0.25
8
1
)
2
3
ln(
4
3
 V畉y I
8
1
)
2
3
ln(
4
3
 0.25
IV 1.0
+ Trong mp(SAC) k畉 AG c畉t SC t畉i M, trong mp(SBD) k畉 BG c畉t SD t畉i N.
+ V狸 G l tr畛ng t但m tam gi叩c ABC n棚n d畛 c坦
2
3
SG
SO
 suy ra G c滴ng l tr畛ng t但m tam gi叩c SBD.
T畛 坦 suy ra M, N l畉n l動畛t l trung i畛m c畛a
SC, SD.
0.25
+ D畛 c坦: . . .
1 1
2 2
S ABD S BCD S ABCDV V V V   .
Theo c担ng th畛c t畛 s畛 th畛 t鱈ch ta c坦:
.
.
.
1 1 1
. . 1.1.
2 2 4
S ABN
S ABN
S ABD
V SA SB SN
V V
V SA SB SD
    
.
.
.
1 1 1 1
. . 1. .
2 2 4 8
S BMN
S ABN
S BCD
V SB SM SN
V V
V SB SC SD
    
T畛 坦 suy ra:
. . .
3
.
8
S ABMN S ABN S BMNV V V V  
0.25
+ Ta c坦:
1
. ( )
3
V SAdt ABCD ; m theo gi畉 thi畉t ( )SA ABCD n棚n g坦c h畛p b畛i AN v畛i
mp(ABCD) ch鱈nh l g坦c NAD , l畉i c坦 N l trung i畛m c畛a SC n棚n tam gi叩c NAD c但n t畉i N,
suy ra 0
30 .NAD NDA  Suy ra: 0
3
tan30
SA
AD a  .
0.25
http://facebook.com/onthidh 4
Suy ra: 31 1 3
. ( ) . . 3
3 3 3
V SAdt ABCD a a a a   .
Suy ra: th畛 t鱈ch c畉n t狸m l:
3
. .
3 5
8 8
5 3
.
24
     MNABCD S ABCD S ABMN
a
V V V V V V
0.25
V 1.0
Gi畉 s畛 a b c 
X辿t hm s畛
3 3 3 2 2 2 2 2 2( ) 15 3( )f x x b c xbc x b b x b c c b x c c x          ,
 ;x b a
2 2 2( ) 3 15 3(2 2 )f x x bc xb b xc c       .
0.25
( ) 6 3(2 2 ) 6( ) 0f x x b c x b c         ( )f x l hm gi畉m tr棚n mi畛n  ;b a
2 2 2 2 2 2( ) ( ) 3 15 3(2 2 ) 9 6 3 3( )(2 )f x f b b bc b b bc c bc b c b c b c               
 ( )f x l hm gi畉m
0.25
3 3 2 3 2 2 2 2( ) ( ) 2 15 3(2 2 2 ) ( )[4 5 ]
2( ) (4 ) 0
f a f b b c b c b b c c b b c b c bc
b c b c
            
    
0.25
( ) 0f a  
3 3 3 2 2 2 2 2 215 3( ) 0 3a b c abc a b b a b c c b a c c a T           
0.25
VI.a 2.0
1 1.0
I c坦 honh 畛
9
2
Ix  v  
9 3
: 3 0 ;
2 2
I d x y I
 
      
 
Vai tr嘆 A, B, C, D l nh動 nhau n棚n trung i畛m M c畛a c畉nh AD l giao
i畛m c畛a (d) v Ox, suy ra M(3;0)
   
2 2 9 9
2 2 2 3 2
4 4
I M I MAB IM x x y y       
D
12
. D = 12 AD = 2 2.
3 2
ABCD
ABC
S
S AB A
AB
   
0.25
 AD d
M AD



, suy ra ph動董ng tr狸nh AD:    1. 3 1. 0 0 3 0x y x y        .
L畉i c坦 MA = MD = 2 .
V畉y t畛a 畛 A, D l nghi畛m c畛a h畛 ph動董ng tr狸nh:
       
2 2 22 22
3 0 3 3
3 2 3 3 23 2
x y y x y x
x y x xx y
  緒         
   
      緒      
3 2
3 1 1
y x x
x y
  緒 
  
   緒 
ho畉c
4
1
x
y
緒

 
.V畉y A(2;1), D(4;-1),
0.25
http://facebook.com/onthidh 5
9 3
;
2 2
I
 
 
 
l trung i畛m c畛a AC, suy ra:
2 9 2 72
2 3 1 2
2
A C
I
C I A
A C C I A
I
x x
x
x x x
y y y y y
y

緒     緒
 
     緒 

0.25
T動董ng t畛 I c滴ng l trung i畛m BD n棚n ta c坦: B(5;4).
V畉y t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t l (2;1), (5;4), (7;2), (4;-1).
0.25
2 1.0
動畛ng tr嘆n t但m O(0;0); b叩n k鱈nh R = 1
Gi畉 s畛 PA; PB l hai ti畉p tuy畉n c畛a 動畛ng tr嘆n (A; B l hai ti畉p i畛m)
TH 1: 緒 260 0
OPBPA P thu畛c 藤畛ng tr嘆n (C1) t但m O; b叩n k鱈nh R = 2
0.25
TH 2: 緒
3
2
120 0
OPBPA P thu畛c 動畛ng tr嘆n (C2) t但m O;b叩n k鱈nh R =
3
2
0.25
動董ng th畉ng y = m tho畉 m達n y棚u c畉u bi to叩n khi n坦 c畉t (C1) t畉i hai i畛m ph但n bi畛t v
kh担ng c坦 i畛m chung v畛i (C2) 0.25
V畉y c叩c gi叩 tr畛 m tho畉 m達n bi to叩n l:
3
2
2

 逸 m v 2
3
2
逸 m 0.25
VII.a 1.0
畉t 2log ( 1)t x  ta 動畛c:
2
1 3
6
2 2
2
t t
t
t
 
   
  
 0.25
2 6
5 14 24
0 5
4(2 )
2 4
tt t
t
t

     

 o
0.25
v畉y: 2
2
6
log ( 1)
5
2 log ( 1) 4
x
x

  

  o
0.25
6
5
1 2 1
3 15
x
x

   
  o
0.25
VI.b 2.0
1 1.0
動畛ng tr嘆n (C ) c坦 t但m I(4;-3); b叩n k鱈nh R = 2
V狸 I n畉m tr棚n (d), do 坦 AI l m畛t 動畛ng ch辿o c畛a h狸nh vu担ng 
x = 2 ho畉c x = 6 l hai ti畉p tuy畉n c畛a (C ) n棚n:
0.25
Ho畉c A l giao i畛m c畛a (d) v畛i 動嘆ng th畉ng: x = 2  A(2; -1)
Ho畉c A l giao i畛m c畛a (d) v畛i 動嘆ng th畉ng: x = 6  A(2; -1)
0.25
V畛i A(2;-1) th狸 C(6;-5); hai 畛nh kia l (2;-5) ; (6;-1) 0.25
V畛i A(6;-5) th狸 C(2;-1) ; hai 畛nh kia l: (6;-1); (2;-5) 0.25
2 1.0
Ta c坦: (2; 2; 2), (0; 2;2).AB AC   Suy ra ph藤董ng tr狸nh m畉t ph畉ng trung tr畛c c畛a
AB, AC l: 1 0, 3 0.x y z y z      
0.25
http://facebook.com/onthidh 6
Vect董 ph叩p tuy畉n c畛a mp(ABC) l , (8; 4;4).n AB AC 刻    Suy ra (ABC):
2 1 0x y z    .
0.25
Gi畉i h畛:
1 0 0
3 0 2
2 1 0 1
x y z x
y z y
x y z z
    緒 
 
    緒 
     緒 
. Suy ra t但m 動畛ng tr嘆n l (0; 2;1).I 0.25
B叩n k鱈nh l 2 2 2
( 1 0) (0 2) (1 1 .) 5        R IA 0.25
VII.b 1.0
G畛i z = a + bi (a,b thu畛c R)   z a bi
   
   
      
 
      
a b iz i a bi i
a bi i a b iz i
1 51 5 1 5
3 3 13
,
   
   
   
 
    
a bz i
z i a b
2 2
2 2
1 51 5
2
3 3 1
0.25
   
   
 
  
      
  
a b
a b a b
a b
2 2
2 2
2 2
1 5
2 10 14 6 0 *
3 1
0.25
 * l ph動董ng tr狸nh c畛a 動畛ng tr嘆n trong m畉t ph畉ng ph畛c
N棚n s畛 ph畛c c坦 m担un nh畛 nh畉t ph畉n th畛c v ph畉n 畉o l nghi畛m c畛a
藤畛ng tr嘆n  * v 藤畛ng th畉ng IO v畛i I l t但m c畛a 藤畛ng tr嘆n, I(-5;-7)
0.25
 
緒           
緒
t
a t
IO pt t t
b t
t
2
34 2 370
5 37: :37 74 3 0
7 37 2 370
37
      
     z n z l
34 2 370 34 2 370 37 2 370 37 2 370
5 7 , 5 7
37 37 37 37
0.25
C但u V c叩ch kh叩c
Ta s畉 ch畛ng minh 3T  , v d畉u 畉ng th畛c x畉y ra khi a b c  .
Gi畉 s畛 a b c 
畉t
2 2 2 2 2 2 3 3 3
( ) 3( ) 15f a a b b a b c c b a c c a a b c abc         
3 3 2 2 2 2 3 3 3 2
( ) 3( ) 15f b b b b c c b b c c b b b c b c         
2 2 2 2
2 2
( ) ( ) ( )[3 ( ) 3 3 ( ) 3 ( ) 15 ]
( )(2 5 3 3 12 ) ( ). ( )
f a f b a b b a b b c a b c a b ab bc
a b ab b ac c bc a b g a
            
       
v畛i
2 2
2 2 2
( ) 2 5 3 3 12
( ) 2 5 3 3 12
g a ab b ac c bc
g b b b bc c bc
    
    
( ) ( ) 2 ( ) 3 ( ) ( )(2 3 ) 0g a g b b a b c a b a b b c          , m
 2 2
( ) 7 3 9 2. 21 9 0g b b c bc bc     
Suy ra ( ) ( )f a f b m
http://facebook.com/onthidh 7
3 3 2 2 2 2 3 3 3 2
3 2 2 3 3 3 3 2 2 2
2 2 2 2 2
2
( ) 3( ) 15
4 6 9 3 3 6 6
( )[ 3 6 ] ( )[4 5 ]
( )[4 ( ) ( )] ( ) (4 ) 0
f b b b b c c b b c c b b b c b c
b c b b c c b c b b c c b b c
b c b c bc b bc b c b c bc
b c b b c c b c b c b c
         
         
         
        
( ) 0 3f a T    .
C畉m 董n油Onthdh_fb@yahoo.com..vn油g畛i油t畛i油www.laisac.page.tl

More Related Content

What's hot (20)

Thi th畛 to叩n chuy棚n phan b畛i ch但u na 2011 l畉n 2 k ab
Thi th畛 to叩n chuy棚n phan b畛i ch但u na 2011 l畉n 2 k abThi th畛 to叩n chuy棚n phan b畛i ch但u na 2011 l畉n 2 k ab
Thi th畛 to叩n chuy棚n phan b畛i ch但u na 2011 l畉n 2 k ab
Th畉 Gi畛i Tinh Hoa
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
Marco Reus Le
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
Marco Reus Le
畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vn
畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vn畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vn
畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vn
Megabook
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
Marco Reus Le
[Vnmath.com] de thi thu thptqg lan 4 chuyen vinh phuc 2015
[Vnmath.com]  de thi thu thptqg lan 4  chuyen vinh phuc 2015[Vnmath.com]  de thi thu thptqg lan 4  chuyen vinh phuc 2015
[Vnmath.com] de thi thu thptqg lan 4 chuyen vinh phuc 2015
Dang_Khoi
Bo de thi thu dh khoi d nam 2014 thay hung
Bo de thi thu dh khoi d nam 2014 thay hungBo de thi thu dh khoi d nam 2014 thay hung
Bo de thi thu dh khoi d nam 2014 thay hung
Quang D滴ng
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
[Vnmath.com]  de thi thpt qg 2015 quynh luu 3[Vnmath.com]  de thi thpt qg 2015 quynh luu 3
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
Dang_Khoi
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Trungt但mluy畛nthi Qsc
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015 c坦 叩p 叩n chi ti畉t
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015   c坦 叩p 叩n chi ti畉t60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015   c坦 叩p 叩n chi ti畉t
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015 c坦 叩p 叩n chi ti畉t
D動董ng Ng畛c Taeny
200 bai tap hinh hoc toa do phang tran si tung (2)
200 bai tap hinh hoc toa do phang   tran si tung (2)200 bai tap hinh hoc toa do phang   tran si tung (2)
200 bai tap hinh hoc toa do phang tran si tung (2)
Song T畛 M畉t N但u
Toan pt.de031.2010
Toan pt.de031.2010Toan pt.de031.2010
Toan pt.de031.2010
B畉O H鱈
25 畛 Thi th畛 qu畛c gia nm 2015 m担n To叩n Hay
25 畛 Thi th畛 qu畛c gia nm 2015 m担n To叩n Hay25 畛 Thi th畛 qu畛c gia nm 2015 m担n To叩n Hay
25 畛 Thi th畛 qu畛c gia nm 2015 m担n To叩n Hay
Zaj B辿 畉p
14 畛 thi th畛 k狸 thi Qu畛c gia 2015 c坦 叩p 叩n
14 畛 thi th畛 k狸 thi Qu畛c gia 2015 c坦 叩p 叩n14 畛 thi th畛 k狸 thi Qu畛c gia 2015 c坦 叩p 叩n
14 畛 thi th畛 k狸 thi Qu畛c gia 2015 c坦 叩p 叩n
T担i H畛c T畛t
Khoi a.2010
Khoi a.2010Khoi a.2010
Khoi a.2010
B畉O H鱈
3 畛 thi th畛 to叩n 2015 + 叩p 叩n (B狸nh Thu畉n)
3 畛 thi th畛 to叩n 2015 + 叩p 叩n (B狸nh Thu畉n)3 畛 thi th畛 to叩n 2015 + 叩p 叩n (B狸nh Thu畉n)
3 畛 thi th畛 to叩n 2015 + 叩p 叩n (B狸nh Thu畉n)
Vui L棚n B畉n Nh辿
De thi thu ql3 lan 1
De thi thu ql3 lan 1De thi thu ql3 lan 1
De thi thu ql3 lan 1
Hung Le
chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...
chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...
chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...
Hong Th叩i Vi畛t
Thi th畛 to叩n chuy棚n nguy畛n quang di棚u t 2012 l畉n 1 k d
Thi th畛 to叩n chuy棚n nguy畛n quang di棚u t 2012 l畉n 1 k dThi th畛 to叩n chuy棚n nguy畛n quang di棚u t 2012 l畉n 1 k d
Thi th畛 to叩n chuy棚n nguy畛n quang di棚u t 2012 l畉n 1 k d
Th畉 Gi畛i Tinh Hoa
To叩n DH (THPT L棚 L畛i)
To叩n DH (THPT L棚 L畛i)To叩n DH (THPT L棚 L畛i)
To叩n DH (THPT L棚 L畛i)
Van-Duyet Le
Thi th畛 to叩n chuy棚n phan b畛i ch但u na 2011 l畉n 2 k ab
Thi th畛 to叩n chuy棚n phan b畛i ch但u na 2011 l畉n 2 k abThi th畛 to叩n chuy棚n phan b畛i ch但u na 2011 l畉n 2 k ab
Thi th畛 to叩n chuy棚n phan b畛i ch但u na 2011 l畉n 2 k ab
Th畉 Gi畛i Tinh Hoa
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
[Vnmath.com] de thi thu chuye ha tinh lan 1 2015
Marco Reus Le
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu  thanh hoa 2015
[Vnmath.com] de thi thu dh lan 1 thpt dao duy tu thanh hoa 2015
Marco Reus Le
畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vn
畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vn畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vn
畛 thi th畛 v 叩p 叩n chi ti畉t m担n To叩n h畛c s畛 3 - Megabook.vn
Megabook
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
Marco Reus Le
[Vnmath.com] de thi thu thptqg lan 4 chuyen vinh phuc 2015
[Vnmath.com]  de thi thu thptqg lan 4  chuyen vinh phuc 2015[Vnmath.com]  de thi thu thptqg lan 4  chuyen vinh phuc 2015
[Vnmath.com] de thi thu thptqg lan 4 chuyen vinh phuc 2015
Dang_Khoi
Bo de thi thu dh khoi d nam 2014 thay hung
Bo de thi thu dh khoi d nam 2014 thay hungBo de thi thu dh khoi d nam 2014 thay hung
Bo de thi thu dh khoi d nam 2014 thay hung
Quang D滴ng
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
[Vnmath.com]  de thi thpt qg 2015 quynh luu 3[Vnmath.com]  de thi thpt qg 2015 quynh luu 3
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
Dang_Khoi
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Trungt但mluy畛nthi Qsc
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015 c坦 叩p 叩n chi ti畉t
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015   c坦 叩p 叩n chi ti畉t60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015   c坦 叩p 叩n chi ti畉t
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015 c坦 叩p 叩n chi ti畉t
D動董ng Ng畛c Taeny
200 bai tap hinh hoc toa do phang tran si tung (2)
200 bai tap hinh hoc toa do phang   tran si tung (2)200 bai tap hinh hoc toa do phang   tran si tung (2)
200 bai tap hinh hoc toa do phang tran si tung (2)
Song T畛 M畉t N但u
Toan pt.de031.2010
Toan pt.de031.2010Toan pt.de031.2010
Toan pt.de031.2010
B畉O H鱈
25 畛 Thi th畛 qu畛c gia nm 2015 m担n To叩n Hay
25 畛 Thi th畛 qu畛c gia nm 2015 m担n To叩n Hay25 畛 Thi th畛 qu畛c gia nm 2015 m担n To叩n Hay
25 畛 Thi th畛 qu畛c gia nm 2015 m担n To叩n Hay
Zaj B辿 畉p
14 畛 thi th畛 k狸 thi Qu畛c gia 2015 c坦 叩p 叩n
14 畛 thi th畛 k狸 thi Qu畛c gia 2015 c坦 叩p 叩n14 畛 thi th畛 k狸 thi Qu畛c gia 2015 c坦 叩p 叩n
14 畛 thi th畛 k狸 thi Qu畛c gia 2015 c坦 叩p 叩n
T担i H畛c T畛t
Khoi a.2010
Khoi a.2010Khoi a.2010
Khoi a.2010
B畉O H鱈
3 畛 thi th畛 to叩n 2015 + 叩p 叩n (B狸nh Thu畉n)
3 畛 thi th畛 to叩n 2015 + 叩p 叩n (B狸nh Thu畉n)3 畛 thi th畛 to叩n 2015 + 叩p 叩n (B狸nh Thu畉n)
3 畛 thi th畛 to叩n 2015 + 叩p 叩n (B狸nh Thu畉n)
Vui L棚n B畉n Nh辿
De thi thu ql3 lan 1
De thi thu ql3 lan 1De thi thu ql3 lan 1
De thi thu ql3 lan 1
Hung Le
chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...
chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...
chuong 1 hinh hoc 11 - phep doi hinh dong dang bien soan cong phu - hay nhat ...
Hong Th叩i Vi畛t
Thi th畛 to叩n chuy棚n nguy畛n quang di棚u t 2012 l畉n 1 k d
Thi th畛 to叩n chuy棚n nguy畛n quang di棚u t 2012 l畉n 1 k dThi th畛 to叩n chuy棚n nguy畛n quang di棚u t 2012 l畉n 1 k d
Thi th畛 to叩n chuy棚n nguy畛n quang di棚u t 2012 l畉n 1 k d
Th畉 Gi畛i Tinh Hoa
To叩n DH (THPT L棚 L畛i)
To叩n DH (THPT L棚 L畛i)To叩n DH (THPT L棚 L畛i)
To叩n DH (THPT L棚 L畛i)
Van-Duyet Le

Similar to Toan pt.de028.2012 (20)

Toan pt.de023.2011
Toan pt.de023.2011Toan pt.de023.2011
Toan pt.de023.2011
B畉O H鱈
Toan pt.de024.2011
Toan pt.de024.2011Toan pt.de024.2011
Toan pt.de024.2011
B畉O H鱈
[Vnmath.com] de thi va dap an chuyen d ai hoc vinh 2015
[Vnmath.com]  de thi va dap an chuyen d ai hoc vinh 2015[Vnmath.com]  de thi va dap an chuyen d ai hoc vinh 2015
[Vnmath.com] de thi va dap an chuyen d ai hoc vinh 2015
Dang_Khoi
[Vnmath.com] de thi va dap an chuyen d ai hoc vinh 2015
[Vnmath.com]  de thi va dap an chuyen d ai hoc vinh 2015[Vnmath.com]  de thi va dap an chuyen d ai hoc vinh 2015
[Vnmath.com] de thi va dap an chuyen d ai hoc vinh 2015
Marco Reus Le
Toan pt.de044.2011
Toan pt.de044.2011Toan pt.de044.2011
Toan pt.de044.2011
B畉O H鱈
Toan pt.de046.2010
Toan pt.de046.2010Toan pt.de046.2010
Toan pt.de046.2010
B畉O H鱈
[Vnmath.com] de thi thu chuyen hung yen 2015
[Vnmath.com] de thi thu chuyen hung yen 2015[Vnmath.com] de thi thu chuyen hung yen 2015
[Vnmath.com] de thi thu chuyen hung yen 2015
Dang_Khoi
Toan pt.de018.2010
Toan pt.de018.2010Toan pt.de018.2010
Toan pt.de018.2010
B畉O H鱈
Toan pt.de031.2011
Toan pt.de031.2011Toan pt.de031.2011
Toan pt.de031.2011
B畉O H鱈
Toan pt.de027.2011
Toan pt.de027.2011Toan pt.de027.2011
Toan pt.de027.2011
B畉O H鱈
Toan pt.de003.2011
Toan pt.de003.2011Toan pt.de003.2011
Toan pt.de003.2011
B畉O H鱈
Toan pt.de047.2010
Toan pt.de047.2010Toan pt.de047.2010
Toan pt.de047.2010
B畉O H鱈
Toan pt.de069.2011
Toan pt.de069.2011Toan pt.de069.2011
Toan pt.de069.2011
B畉O H鱈
Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012
B畉O H鱈
Toan pt.de070.2011
Toan pt.de070.2011Toan pt.de070.2011
Toan pt.de070.2011
B畉O H鱈
Toan pt.de068.2011
Toan pt.de068.2011Toan pt.de068.2011
Toan pt.de068.2011
B畉O H鱈
Toan pt.de010.2012
Toan pt.de010.2012Toan pt.de010.2012
Toan pt.de010.2012
B畉O H鱈
Toan pt.de032.2012
Toan pt.de032.2012Toan pt.de032.2012
Toan pt.de032.2012
B畉O H鱈
thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4
Oanh MJ
Toan pt.de055.2011
Toan pt.de055.2011Toan pt.de055.2011
Toan pt.de055.2011
B畉O H鱈
Toan pt.de023.2011
Toan pt.de023.2011Toan pt.de023.2011
Toan pt.de023.2011
B畉O H鱈
Toan pt.de024.2011
Toan pt.de024.2011Toan pt.de024.2011
Toan pt.de024.2011
B畉O H鱈
[Vnmath.com] de thi va dap an chuyen d ai hoc vinh 2015
[Vnmath.com]  de thi va dap an chuyen d ai hoc vinh 2015[Vnmath.com]  de thi va dap an chuyen d ai hoc vinh 2015
[Vnmath.com] de thi va dap an chuyen d ai hoc vinh 2015
Dang_Khoi
[Vnmath.com] de thi va dap an chuyen d ai hoc vinh 2015
[Vnmath.com]  de thi va dap an chuyen d ai hoc vinh 2015[Vnmath.com]  de thi va dap an chuyen d ai hoc vinh 2015
[Vnmath.com] de thi va dap an chuyen d ai hoc vinh 2015
Marco Reus Le
Toan pt.de044.2011
Toan pt.de044.2011Toan pt.de044.2011
Toan pt.de044.2011
B畉O H鱈
Toan pt.de046.2010
Toan pt.de046.2010Toan pt.de046.2010
Toan pt.de046.2010
B畉O H鱈
[Vnmath.com] de thi thu chuyen hung yen 2015
[Vnmath.com] de thi thu chuyen hung yen 2015[Vnmath.com] de thi thu chuyen hung yen 2015
[Vnmath.com] de thi thu chuyen hung yen 2015
Dang_Khoi
Toan pt.de018.2010
Toan pt.de018.2010Toan pt.de018.2010
Toan pt.de018.2010
B畉O H鱈
Toan pt.de031.2011
Toan pt.de031.2011Toan pt.de031.2011
Toan pt.de031.2011
B畉O H鱈
Toan pt.de027.2011
Toan pt.de027.2011Toan pt.de027.2011
Toan pt.de027.2011
B畉O H鱈
Toan pt.de003.2011
Toan pt.de003.2011Toan pt.de003.2011
Toan pt.de003.2011
B畉O H鱈
Toan pt.de047.2010
Toan pt.de047.2010Toan pt.de047.2010
Toan pt.de047.2010
B畉O H鱈
Toan pt.de069.2011
Toan pt.de069.2011Toan pt.de069.2011
Toan pt.de069.2011
B畉O H鱈
Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012
B畉O H鱈
Toan pt.de070.2011
Toan pt.de070.2011Toan pt.de070.2011
Toan pt.de070.2011
B畉O H鱈
Toan pt.de068.2011
Toan pt.de068.2011Toan pt.de068.2011
Toan pt.de068.2011
B畉O H鱈
Toan pt.de010.2012
Toan pt.de010.2012Toan pt.de010.2012
Toan pt.de010.2012
B畉O H鱈
Toan pt.de032.2012
Toan pt.de032.2012Toan pt.de032.2012
Toan pt.de032.2012
B畉O H鱈
thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4thi thu dh nam 2013 thpt trieu son-4
thi thu dh nam 2013 thpt trieu son-4
Oanh MJ
Toan pt.de055.2011
Toan pt.de055.2011Toan pt.de055.2011
Toan pt.de055.2011
B畉O H鱈

More from B畉O H鱈 (20)

Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
B畉O H鱈
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
B畉O H鱈
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
B畉O H鱈
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
B畉O H鱈
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
B畉O H鱈
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
B畉O H鱈
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
B畉O H鱈
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
B畉O H鱈
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
B畉O H鱈
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
B畉O H鱈
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
B畉O H鱈
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
B畉O H鱈
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
B畉O H鱈
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
B畉O H鱈
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
B畉O H鱈
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
B畉O H鱈
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
B畉O H鱈
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
B畉O H鱈
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
B畉O H鱈
Toan pt.de055.2012
Toan pt.de055.2012Toan pt.de055.2012
Toan pt.de055.2012
B畉O H鱈
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
B畉O H鱈
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
B畉O H鱈
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
B畉O H鱈
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
B畉O H鱈
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
B畉O H鱈
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
B畉O H鱈
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
B畉O H鱈
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
B畉O H鱈
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
B畉O H鱈
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
B畉O H鱈
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
B畉O H鱈
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
B畉O H鱈
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
B畉O H鱈
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
B畉O H鱈
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
B畉O H鱈
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
B畉O H鱈
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
B畉O H鱈
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
B畉O H鱈
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
B畉O H鱈
Toan pt.de055.2012
Toan pt.de055.2012Toan pt.de055.2012
Toan pt.de055.2012
B畉O H鱈

Toan pt.de028.2012

  • 1. 1 H畛i Nh畛ng Ng動畛i n Thi 畉i H畛c 畛 thi th畛 s畛 1 畛 THI TH畛 畉I H畛C NM 2012 M担n thi : TON - kh畛i A. Th畛i gian: 180 ph炭t I. PH畉N CHUNG CHO T畉T C畉 TH SINH (7,0 i畛m) C但u I (2,0 i畛m) Cho hm s畛 23 23 mxxxy (1) v畛i m l tham s畛 th畛c. 1. Kh畉o s叩t s畛 bi畉n thi棚n v v畉 畛 th畛 c畛a hm s畛 (1) khi m = 0. 2. 畛nh m 畛 hm s畛 (1) c坦 c畛c tr畛, 畛ng th畛i 動畛ng th畉ng i qua hai i畛m c畛c tr畛 c畛a 畛 th畛 hm s畛 t畉o v畛i hai tr畛c t畛a 畛 m畛t tam gi叩c c但n. C但u II (2,0 i畛m) 1. Gi畉i ph動董ng tr狸nh: 1 2tan cot 2 2sin 2 sin 2 x x x x 2. Gi畉i b畉t ph動董ng tr狸nh : 2 2 35 5 4 24x x x C但u III (1,0 i畛m) T鱈nh t鱈ch ph但n 2ln3 0 23 )2( x e dx I . C但u IV (1,0 i畛m) Cho h狸nh ch坦p t畛 gi叩c S.ABCD c坦 叩y l h狸nh ch畛 nh畉t v畛i SA vu担ng g坦c v畛i 叩y, G l tr畛ng t但m tam gi叩c SAC, m畉t ph畉ng (ABG) c畉t SC t畉i M, c畉t SD t畉i N. T鱈nh th畛 t鱈ch c畛a kh畛i a di畛n MNABCD bi畉t SA=AB=a v g坦c h畛p b畛i 動畛ng th畉ng AN v mp(ABCD) b畉ng 0 30 . C但u V (1,0 i畛m) Cho a, b, c l 3 c畉nh c畛a 1 tam gi叩c. T狸m GTLN c畛a bi畛u th畛c 3 3 3 15 2 2 2 2 2 2 a b c abc T a b b a b c c b a c c a II. PH畉N RING (3,0 i畛m) Th鱈 sinh ch畛 動畛c lm m畛t trong hai ph畉n (ph畉n A ho畉c B) A. Theo ch藤董ng tr狸nh Chu畉n C但u VI.a (2,0 i畛m) 1. Trong m畉t ph畉ng t畛a 畛 Oxy, cho h狸nh ch畛 nh畉t ABCD c坦 di畛n t鱈ch b畉ng 12, t但m I thu畛c 動畛ng th畉ng : 3 0d x y v c坦 honh 畛 xI=9/2, trung i畛m c畛a m畛t c畉nh l giao i畛m c畛a (d) v tr畛c Ox. T狸m t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t. 2. Trong m畉t phng Oxy cho 動畛ng tr嘆n ( C): x2 + y2 =1. T狸m t畉t c畉 c叩c gi叩 tr畛 th畛c m 畛 tr棚n 動畛ng th畉ng y = m t畛n t畉i 炭ng hai i畛m ph但n bi畛t m t畛 m畛i i畛m 坦 k畉 動畛c hai ti畉p tuy畉n v畛i (C) sao cho g坦c gi畛a hai ti畉p tuy畉n b畉ng 600 C但u VII.a (1,0 i畛m). Gi畉i b畉t ph動董ng tr狸nh: 2 1 2 2 2 1 2 3 log 1 log 1 6 2 log 1 2 log ( 1) x x x x B. Theo ch藤董ng tr狸nh N但ng cao C但u VI.b (2,0 i畛m) 1. Trong m畉t ph畉ng Oxy cho 動畛ng tr嘆n (C ): 0216822 緒 yxyx v 動畛ng th畉ng (d): x + y - 1=0. X叩c 畛nh to畉 畛 c叩c 畛nh h狸nh vu担ng ABCD ngo畉i ti畉p 動畛ng tr嘆n (C) bi畉t A n畉m tr棚n (d). 2. Trong kh担ng gian v畛i h畛 t畛a 畛 Oxyz, h達y x叩c 畛nh to畉 畛 t但m v b叩n k鱈nh 動畛ng tr嘆n ngo畉i ti畉p tam gi叩c ABC, bi畉t A(-1; 0; 1), B(1; 2; -1), C(-1; 2; 3). C但u VII.b (1 i畛m) T狸m s畛 ph畛c z c坦 m担un nh畛 nh畉t th畛a m達n: z i z i 1 5 2 3 ------------H畉T------------ Thi th畛 畉i h畛c www.toanpt.net
  • 2. http://facebook.com/onthidh 2 S L蕩畛C P N V BI畛U I畛M 畛 THI KH畉O ST L畉N 1_2012 C但u N畛i dung i畛m I 1.0 2 Hm s畛 c坦 c畛c tr畛 khi v ch畛 khi y = 0 c坦 2 nghi畛m ph但n bi畛t ' 9 3 0 3m m (1) 0.25 3 2)2 3 2 (').1( 3 1 23 23 m x m yx mxxxy 動畛ng th畉ng qua hai i畛m c畛c tr畛 c畛a 畛 th畛 hm s畛 c坦 ph動董ng tr狸nh 3 2)2 3 2 ( m x m y 0.25 動畛ng th畉ng ny c畉t 2 tr畛c Ox v Oy l畉n l動畛t tai 件 э 3 6 ;0,0; )3(2 6 m B m m A Tam gi叩c OAB c但n khi v ch畛 khi OA OB 6 6 2( 3) 3 9 3 6; ; 2 2 m m m m m m 0.25 V畛i m = 6 th狸 OBA 削 do 坦 so v畛i i畛u ki畛n ta nh畉n 2 3 m 0.25 II 2.0 1 1.0 1 2tan cot 2 2sin 2 sin 2 x x x x ,(1) i畛u ki畛n: 2 x k 2 2 2 2 4sin cos2 2sin 2 1 (1) sin 2 sin 2 2(1 cos2 ) cos2 2(1 cos 2 ) 1 2cos 2 cos2 1 0 cos2 1 (loai do:sin 2 0) 1 3cos2 2 x x x x x x x x x x x x x k x 緒 0,25 0,25 0,25 0.25 0.25 畛i chi畉u i畛u ki畛n ph動董ng tr狸nh c坦 nghi畛m l: , 3 x k k Z 逸 0.25 2 1.0
  • 3. http://facebook.com/onthidh 3 BPT t動董ng 動董ng: 2 2 2 2 2 2 11 35 24 5 4 5 4 11 (5 4)( 35 24) 35 24 x x x x x x x x x a)N畉u x 4 5 kh担ng th畛a m達n BPT 0.25 b)N畉u x > 4/5: Hm s畛 2 2 (5 4)( 35 24)y x x x v畛i x > 4/5 y = 2 2 2 2 1 1 5( 35 24) (5 4)( ) 35 24 x x x x x >0 m畛i x>4/5 0.25 V畉y HSB. +N畉u 4/5<x 1 th狸 y(x) 11 0.25 +N畉u x>1 th狸 y(x)>11 V畉y nghi畛m BPT x>1 0.25 III 1.0 Ta c 坦 2ln3 0 233 3 )2( xx x ee dxe I = 畉t u= 3 x e dxedu x 3 3 ; 22ln3;10 緒緒緒 uxux 0.25 Ta 動畛c: 2 1 2 )2( 3 uu du I =3 du uuu 件 э 2 1 2 )2(2 1 )2(4 1 4 1 0.25 =3 2 1 )2(2 1 2ln 4 1 ln 4 1 件 э u uu 0.25 8 1 ) 2 3 ln( 4 3 V畉y I 8 1 ) 2 3 ln( 4 3 0.25 IV 1.0 + Trong mp(SAC) k畉 AG c畉t SC t畉i M, trong mp(SBD) k畉 BG c畉t SD t畉i N. + V狸 G l tr畛ng t但m tam gi叩c ABC n棚n d畛 c坦 2 3 SG SO suy ra G c滴ng l tr畛ng t但m tam gi叩c SBD. T畛 坦 suy ra M, N l畉n l動畛t l trung i畛m c畛a SC, SD. 0.25 + D畛 c坦: . . . 1 1 2 2 S ABD S BCD S ABCDV V V V . Theo c担ng th畛c t畛 s畛 th畛 t鱈ch ta c坦: . . . 1 1 1 . . 1.1. 2 2 4 S ABN S ABN S ABD V SA SB SN V V V SA SB SD . . . 1 1 1 1 . . 1. . 2 2 4 8 S BMN S ABN S BCD V SB SM SN V V V SB SC SD T畛 坦 suy ra: . . . 3 . 8 S ABMN S ABN S BMNV V V V 0.25 + Ta c坦: 1 . ( ) 3 V SAdt ABCD ; m theo gi畉 thi畉t ( )SA ABCD n棚n g坦c h畛p b畛i AN v畛i mp(ABCD) ch鱈nh l g坦c NAD , l畉i c坦 N l trung i畛m c畛a SC n棚n tam gi叩c NAD c但n t畉i N, suy ra 0 30 .NAD NDA Suy ra: 0 3 tan30 SA AD a . 0.25
  • 4. http://facebook.com/onthidh 4 Suy ra: 31 1 3 . ( ) . . 3 3 3 3 V SAdt ABCD a a a a . Suy ra: th畛 t鱈ch c畉n t狸m l: 3 . . 3 5 8 8 5 3 . 24 MNABCD S ABCD S ABMN a V V V V V V 0.25 V 1.0 Gi畉 s畛 a b c X辿t hm s畛 3 3 3 2 2 2 2 2 2( ) 15 3( )f x x b c xbc x b b x b c c b x c c x , ;x b a 2 2 2( ) 3 15 3(2 2 )f x x bc xb b xc c . 0.25 ( ) 6 3(2 2 ) 6( ) 0f x x b c x b c ( )f x l hm gi畉m tr棚n mi畛n ;b a 2 2 2 2 2 2( ) ( ) 3 15 3(2 2 ) 9 6 3 3( )(2 )f x f b b bc b b bc c bc b c b c b c ( )f x l hm gi畉m 0.25 3 3 2 3 2 2 2 2( ) ( ) 2 15 3(2 2 2 ) ( )[4 5 ] 2( ) (4 ) 0 f a f b b c b c b b c c b b c b c bc b c b c 0.25 ( ) 0f a 3 3 3 2 2 2 2 2 215 3( ) 0 3a b c abc a b b a b c c b a c c a T 0.25 VI.a 2.0 1 1.0 I c坦 honh 畛 9 2 Ix v 9 3 : 3 0 ; 2 2 I d x y I Vai tr嘆 A, B, C, D l nh動 nhau n棚n trung i畛m M c畛a c畉nh AD l giao i畛m c畛a (d) v Ox, suy ra M(3;0) 2 2 9 9 2 2 2 3 2 4 4 I M I MAB IM x x y y D 12 . D = 12 AD = 2 2. 3 2 ABCD ABC S S AB A AB 0.25 AD d M AD , suy ra ph動董ng tr狸nh AD: 1. 3 1. 0 0 3 0x y x y . L畉i c坦 MA = MD = 2 . V畉y t畛a 畛 A, D l nghi畛m c畛a h畛 ph動董ng tr狸nh: 2 2 22 22 3 0 3 3 3 2 3 3 23 2 x y y x y x x y x xx y 緒 緒 3 2 3 1 1 y x x x y 緒 緒 ho畉c 4 1 x y 緒 .V畉y A(2;1), D(4;-1), 0.25
  • 5. http://facebook.com/onthidh 5 9 3 ; 2 2 I l trung i畛m c畛a AC, suy ra: 2 9 2 72 2 3 1 2 2 A C I C I A A C C I A I x x x x x x y y y y y y 緒 緒 緒 0.25 T動董ng t畛 I c滴ng l trung i畛m BD n棚n ta c坦: B(5;4). V畉y t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t l (2;1), (5;4), (7;2), (4;-1). 0.25 2 1.0 動畛ng tr嘆n t但m O(0;0); b叩n k鱈nh R = 1 Gi畉 s畛 PA; PB l hai ti畉p tuy畉n c畛a 動畛ng tr嘆n (A; B l hai ti畉p i畛m) TH 1: 緒 260 0 OPBPA P thu畛c 藤畛ng tr嘆n (C1) t但m O; b叩n k鱈nh R = 2 0.25 TH 2: 緒 3 2 120 0 OPBPA P thu畛c 動畛ng tr嘆n (C2) t但m O;b叩n k鱈nh R = 3 2 0.25 動董ng th畉ng y = m tho畉 m達n y棚u c畉u bi to叩n khi n坦 c畉t (C1) t畉i hai i畛m ph但n bi畛t v kh担ng c坦 i畛m chung v畛i (C2) 0.25 V畉y c叩c gi叩 tr畛 m tho畉 m達n bi to叩n l: 3 2 2 逸 m v 2 3 2 逸 m 0.25 VII.a 1.0 畉t 2log ( 1)t x ta 動畛c: 2 1 3 6 2 2 2 t t t t 0.25 2 6 5 14 24 0 5 4(2 ) 2 4 tt t t t o 0.25 v畉y: 2 2 6 log ( 1) 5 2 log ( 1) 4 x x o 0.25 6 5 1 2 1 3 15 x x o 0.25 VI.b 2.0 1 1.0 動畛ng tr嘆n (C ) c坦 t但m I(4;-3); b叩n k鱈nh R = 2 V狸 I n畉m tr棚n (d), do 坦 AI l m畛t 動畛ng ch辿o c畛a h狸nh vu担ng x = 2 ho畉c x = 6 l hai ti畉p tuy畉n c畛a (C ) n棚n: 0.25 Ho畉c A l giao i畛m c畛a (d) v畛i 動嘆ng th畉ng: x = 2 A(2; -1) Ho畉c A l giao i畛m c畛a (d) v畛i 動嘆ng th畉ng: x = 6 A(2; -1) 0.25 V畛i A(2;-1) th狸 C(6;-5); hai 畛nh kia l (2;-5) ; (6;-1) 0.25 V畛i A(6;-5) th狸 C(2;-1) ; hai 畛nh kia l: (6;-1); (2;-5) 0.25 2 1.0 Ta c坦: (2; 2; 2), (0; 2;2).AB AC Suy ra ph藤董ng tr狸nh m畉t ph畉ng trung tr畛c c畛a AB, AC l: 1 0, 3 0.x y z y z 0.25
  • 6. http://facebook.com/onthidh 6 Vect董 ph叩p tuy畉n c畛a mp(ABC) l , (8; 4;4).n AB AC 刻 Suy ra (ABC): 2 1 0x y z . 0.25 Gi畉i h畛: 1 0 0 3 0 2 2 1 0 1 x y z x y z y x y z z 緒 緒 緒 . Suy ra t但m 動畛ng tr嘆n l (0; 2;1).I 0.25 B叩n k鱈nh l 2 2 2 ( 1 0) (0 2) (1 1 .) 5 R IA 0.25 VII.b 1.0 G畛i z = a + bi (a,b thu畛c R) z a bi a b iz i a bi i a bi i a b iz i 1 51 5 1 5 3 3 13 , a bz i z i a b 2 2 2 2 1 51 5 2 3 3 1 0.25 a b a b a b a b 2 2 2 2 2 2 1 5 2 10 14 6 0 * 3 1 0.25 * l ph動董ng tr狸nh c畛a 動畛ng tr嘆n trong m畉t ph畉ng ph畛c N棚n s畛 ph畛c c坦 m担un nh畛 nh畉t ph畉n th畛c v ph畉n 畉o l nghi畛m c畛a 藤畛ng tr嘆n * v 藤畛ng th畉ng IO v畛i I l t但m c畛a 藤畛ng tr嘆n, I(-5;-7) 0.25 緒 緒 t a t IO pt t t b t t 2 34 2 370 5 37: :37 74 3 0 7 37 2 370 37 z n z l 34 2 370 34 2 370 37 2 370 37 2 370 5 7 , 5 7 37 37 37 37 0.25 C但u V c叩ch kh叩c Ta s畉 ch畛ng minh 3T , v d畉u 畉ng th畛c x畉y ra khi a b c . Gi畉 s畛 a b c 畉t 2 2 2 2 2 2 3 3 3 ( ) 3( ) 15f a a b b a b c c b a c c a a b c abc 3 3 2 2 2 2 3 3 3 2 ( ) 3( ) 15f b b b b c c b b c c b b b c b c 2 2 2 2 2 2 ( ) ( ) ( )[3 ( ) 3 3 ( ) 3 ( ) 15 ] ( )(2 5 3 3 12 ) ( ). ( ) f a f b a b b a b b c a b c a b ab bc a b ab b ac c bc a b g a v畛i 2 2 2 2 2 ( ) 2 5 3 3 12 ( ) 2 5 3 3 12 g a ab b ac c bc g b b b bc c bc ( ) ( ) 2 ( ) 3 ( ) ( )(2 3 ) 0g a g b b a b c a b a b b c , m 2 2 ( ) 7 3 9 2. 21 9 0g b b c bc bc Suy ra ( ) ( )f a f b m
  • 7. http://facebook.com/onthidh 7 3 3 2 2 2 2 3 3 3 2 3 2 2 3 3 3 3 2 2 2 2 2 2 2 2 2 ( ) 3( ) 15 4 6 9 3 3 6 6 ( )[ 3 6 ] ( )[4 5 ] ( )[4 ( ) ( )] ( ) (4 ) 0 f b b b b c c b b c c b b b c b c b c b b c c b c b b c c b b c b c b c bc b bc b c b c bc b c b b c c b c b c b c ( ) 0 3f a T . C畉m 董n油Onthdh_fb@yahoo.com..vn油g畛i油t畛i油www.laisac.page.tl