際際滷

際際滷Share a Scribd company logo
S畛 GD V T NGH畛 AN 畛 THI TH畛 畉I H畛C, CAO 畉NG L畉N I NM 2012
TR働畛NG THPT  L働NG 4 M担n: To叩n kh畛i A, B
Th畛i gian:180 ph炭t kh担ng k畛 th畛i gian giao 畛.
I. PH畉N CHUNG CHO T畉T C畉 CC TH SINH
C但u I. (2i畛m) Cho hm s畛 ( )3 2
3 1 12 3 4y x m x mx m=  + +  + (C)
1. Kh畉o s叩t v v畉 畛 th畛 hm s畛 khi m = 0.
2. T狸m m 畛 hm s畛 c坦 hai c畛c tr畛 l A v B sao cho hai i畛m ny c湛ng v畛i i畛m
9
1;
2
C
錚 錚
 錚 錚
錚 錚
l畉p thnh
tam gi叩c nh畉n g畛c t畛a 畛 O lm tr畛ng t但m.
C但u II. (2i畛m)
1. Gi畉i ph動董ng tr狸nh: ( ) 3
cos 1 2 3sin 2 cos3 4cos 2
2
x x x x
錚 錚
+ =  錚 錚
錚 錚
.
2. Gi畉i h畛 ph動董ng tr狸nh.
( ) ( )
2 2
3 8 5
8 3 13
x y y x
x x y y
錚 + + + =錚
錚
+ + + =錚器3
C但u III. (1i畛m) T鱈nh t鱈ch ph但n:
24
2
3
sin 1 cos
cos
x x
I dx
x




= 
C但u IV. (1i畛m) Cho h狸nh ch坦p S.ABCD c坦 叩y l h狸nh thang vu担ng t畉i A v D. Bi畉t AB = 2a, AD =a, DC =
a (a > 0) v SA  m畉t ph畉ng 叩y (ABCD). G坦c t畉o b畛i gi畛a m畉t ph畉ng (SBC) v畛i 叩y b畉ng 450
. T鱈nh th畛
t鱈ch kh畛i ch坦p S.ABCD v kho畉ng c叩ch t畛 B t畛i m畉t ph畉ng (SCD) theo a.
C但u V. (1i畛m) Cho c叩c s畛 d動董ng a, b, c tho畉 m達n i畛u ki畛n 2 2 2
4a b c abc+ + + = . Ch畛ng minh r畉ng
3a b c+ +  .
II. PH畉N RING. (3i畛m) Th鱈 sinh ch畛 動畛c lm m畛t trong hai ph畉n.
1. Theo ch動董ng tr狸nh chu畉n.
C但u VIa. (2i畛m).
1. Trong m畉t ph畉ng Oxy cho h狸nh vu担ng ABCD c坦 t但m
3 1
;
2 2
I
錚 錚
錚 錚
錚 錚
. C叩c 動畛ng th畉ng AB, CD l畉n l動畛t i qua
c叩c i畛m ( )4; 1M   , ( )2; 4N   . T狸m to畉 畛 c叩c 畛nh c畛a h狸nh vu担ng 坦 bi畉t B c坦 honh 畛 但m.
2. T狸m m 畛 ph動董ng tr狸nh sau c坦 nghi畛m th畛c: ( )2
9 2 4 2 2x m x x+  =  + +
C但u VIIa. (1i畛m). Trong m畉t ph畉ng to畉 畛 Oxy. 畛 g坦c ph畉n t動 th畛 nh畉t ta l畉y 2 i畛m ph但n bi畛t, c畛 th畉 畛 c叩c
g坦c ph畉n t動 th畛 hai, th畛 ba, th畛 t動 ta l畉n l動畛t l畉y 3, 4, 5 i畛m ph但n bi畛t (c叩c i畛m kh担ng n畉m tr棚n c叩c tr畛c to畉
畛). Trong 14 i畛m 坦 ta l畉y 2 i畛m b畉t k畛. T鱈nh x叩c su畉t 畛 o畉n th畉ng n畛i hai i畛m 坦 c畉t c畉 hai tr畛c to畉 畛.
2. Theo ch動董ng tr狸nh n但ng cao.
C但u VIb. (2i畛m).
1. Trong m畉t ph畉ng t畛a 畛 Oxy, cho h狸nh ch畛 nh畉t ABCD c坦 di畛n t鱈ch b畉ng 12, t但m I thu畛c 動畛ng th畉ng
( ): 3 0d x y  = v c坦 honh 畛
9
2
Ix = , trung i畛m c畛a m畛t c畉nh l giao i畛m c畛a (d) v tr畛c Ox. T狸m t畛a
畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t.
2. Trong kh担ng gian Oxyz cho 動畛ng th畉ng 1 1
:
1 2 1
x y z
d
 +
= =

v hai i畛m ( ) ( )1;1; 2 , 1;0;2 .A B 
a. Vi畉t ph動董ng tr狸nh m畉t ph畉ng (P) ch畛a A v B 畛ng th畛i song song v畛i 動畛ng th畉ng d.
b. Qua A vi畉t ph動董ng tr狸nh 動畛ng th畉ng ( ) vu担ng g坦c v畛i d sao cho kho畉ng c叩ch t畛 B t畛i ( ) l nh畛 nh畉t.
C但u VIIb. (1i畛m). Cho hai s畛 ph畛c li棚n h畛p nhau 1 2,z z tho畉 m達n i畛u ki畛n 1
2
2
z
z
l m畛t s畛 th畛c v
1 2 2 3z z = . T狸m s畛 ph畛c z1.
............................. H畉t ............................
Thi th畛 畉i h畛c www.toanpt.net
P N TON L畉N 1
CU N畛I DUNG I畛M
V畛i 0m = ta c坦 hm s畛 3 2
3 4y x x=  +
* TX: D = 
* S畛 bi畉n thi棚n. 2
' 3 6y x x=  , n棚n ' 0 0y x=  = ho畉c 2x =
0,25
- Hm s畛 畛ng bi畉n tr棚n c叩c kho畉ng ( );0 v ( )2;+ , ngh畛ch bi畉n tr棚n ( )0;2
- C畛c tr畛. C畛c 畉i ( )0;4 ; c畛c ti畛u ( )2;0
- Gi畛i h畉n. lim , lim
x x
y y
 +
=  = +
0,25
- B畉ng bi畉n thi棚n.
x  0 2 +
y + 0 - 0 +
y
4 +
 0
0,25
1
* 畛 th畛. y
Giao v畛i Ox: ( ) ( )1;0 ; 2;0 4
Giao v畛i Oy: ( )0;4
C叩c i畛m kh叩c ( ) ( )1;2 ; 3;4
-1 x
2
0,25
Ta c坦 ( )2
' 3 3 1 12y x m x m=  + + . Hm s畛 c坦 hai c畛c tr畛 khi y 畛i d畉u hai l畉n, khi 坦 y = 0
c坦 hai nghi畛m ph但n bi畛t n棚n ( )
2
1 0 1m m =  >  
0,25
Khi 坦 hai c畛c tr畛 l ( ) ( )3 2
2;9 , 2 ; 4 12 3 4A m B m m m m +  + 0,25
Theo bi ra ta c坦. 3 2
2 2 1 0
1
9
24 12 6 4 0
2
m
m
m m m
+  =錚
錚
 = 錚
 + + +  =錚器3
th畛a m達n
0,25
I.
2
Khi 坦 d畛 th畉y A, B, C l tam gi叩c nh畉n O lm tr畛ng t但m 0,25
PT cos 2 3sin 2 cos cos3 4sin 2x x x x x + = +
( ) 2
sin 2 sin 3 cos 2 0
2
6
k
x
x x x
x k



錚
=錚
 +  =  錚
錚 = +
錚錚
0,5II.
1.
V畉y ph動董ng tr狸nh c坦 c叩c nghi畛m. , 2
2 6
k
x x k
 
= = +
0,25
K c畛a h畛:
2
2
3 0
8 0
x y
y x
錚 + ワ4
錚
+ ワ4錚
畉t ( )2 2
3 , 8 0, 0a x y b y x a b= + = +  
Khi 坦 ta c坦 h畛. 2 2
5 3
413
a b a
ba b
+ = =錚 錚
錚 錚
=+ = 錚鰹3
ho畉c
4
3
a
b
=錚
錚
=錚
0,25
V畛i
4
3
a
b
=錚
錚
=錚
ta c坦.
( )22
2
4 2
1
43 4
3
8 9
8 72 65 0
y xx y
y x
x x x
錚
錚 = + =錚 錚
錚 錚
+ =錚器3 錚  +  =錚
( )
( )( )( )
2
2
1
4
3
1 5 4 13 0
y x
x x x x
錚
= 錚
 錚
錚  +  + =錚
0,25
h畛 c坦 hai nghi畛m. ( ) ( ); 1;1x y = v ( ) ( ); 5; 7x y =   0,25
2. V畛i
( )22
2
4 2
1
93 9
3
8 4
18 72 45 0
y xx y
y x
x x x
錚
錚 = + =錚 錚
錚 錚
+ =錚器3 錚  +  =錚
( )
( )
( )
( )
2 2
2 22 2 2 2
1 1
9 9
3 3
9 36 72 36 0 9 36 72 36 0
y x y x
x x x x x x
錚 錚
=  = 錚 錚
 錚 錚
錚 錚+  +  = +  +  =錚 錚
( )
( ) ( )
( )2 2
2 22
1 19 9 0
3 3
9 6 6 0 3 6, 3 6
y x y x
x x x x
錚 錚=  =  =錚 錚
 錚 錚
錚 錚+   = =  + =  錚鰹3
V畉y h畛 c坦 4 nghi畛m ( ) ( ); 1;1x y = ,( ) ( ); 5; 7x y =   , ( ) ( ); 3 6;2 6 2x y =  +  v
( ) ( ); 3 6;2 6 2x y =   +
0.25
* Ta c坦
4 4
2
2 2
3 3
sin sin
1 cos sin
cos cos
x x
I xdx x dx
x x
 
 
 
=  = 
0,25
=
0 4
2 2
0
3
sin sin
sin sin
cos cos
x x
x dx x dx
x x

 
= + 
0,25
=
0 02 24 4
2 2 2 2
0 0
3 3
sin sin 1 1
1 1
cos cos cos cos
x x
dx dx dx dx
x x x x
 
 
 
錚 錚 錚 錚
 + =  + 錚 錚 錚 錚
錚 錚 錚 錚
   
0,25
III.
= ( ) ( )
0
4
0
3
7
tan tan 3 1
12
x x x x




 +  =  
0,25
s
* Ta c坦 2AC a= n棚n tam gi叩c ACD vu担ng
t畉i C  g坦c 0
45SCA = do 坦 2SA a=
- .
1
.
3
S ABCD ABCDV S SA= trong 坦
( )
2
1 3
2 2
ABCD
a
S AB DC AD= + =
V畉y
2 3
.
1 3 2
2
3 2 2
S ABCD
a a
V a= = A B
D
C
0,5
* Ta c坦 ( )( ) ( )( ) .
.
31
; ;
3
S DCB
S DCB BCD
BCD
V
V S d B SCD d B SCD
S
=  =
0,25
IV
Trong 坦
3
.
1 1 1 2
. . sin .
3 3 2 6
S BCD BCD
a
V S SA CB CD C SA= = =
V畉y ( )( )
3
.
2
3 2 6
;
33
S DCB
BCD
V a a
d B SCD
S a
= = =
0,25
Gi畉 s畛 ( )( )1 1 0 1a b a b ab    +  + khi 坦 ta ch畛 c畉n ch畛ng minh
2 2c ab c ab   + 
0,25
Theo gi畉 thi畉t. 2 2 2 2 2
4 2 4 2a b c abc ab c abc ab c abc= + + +  + +   + + 0,25
( )( )2 2 0 2 0c ab c ab c + +    +   pcm
D畉u b畉ng khi 1a b c= = = .
0,25
V.
Trong tr動畛ng h畛p ng動畛c l畉i th狸 ( )( )1 1 0b c   ho畉c ( )( )1 1 0c a   v lm t動董ng t畛 0,25
PH畉N RING
1. Theo ch動董ng tr狸nh chu畉n
G畛i ( )' 7;2M v ( )' 5;5N l i畛m 畛i x畛ng v畛i M, N qua I . ta c坦 'N AB v 'M CD
N棚n 動畛ng th畉ng AB c坦 ph動董ng tr狸nh 2 3 5 0x y + =
0,25
G畛i H l h狸nh chi畉u vu担ng g坦c c畛a I l棚n AB
1
;2
2
H
錚 錚
 錚 錚
錚 錚
0,25
G畛i ( );A a b khi 坦 ta c坦
( )
2
2
2 3 5
2
1 13
32
2 4
a b
A AB a
HA HI ba b
 = 錚
 =錚 錚縁4
 錚 錚 錚駕 錚= = +  =錚 錚鰹 錚件4
錚 錚醐3
hay
( )2;3A khi 坦 ( )1;1B 
0,251.
B畉ng c叩ch 畛i x畛ng A, B qua I ta c坦 動畛c ( ) ( )1; 2 , 4;0C D 0,25
i畛u ki畛n. 2 2x  
畉t 2 2t x x=  + + khi 坦 ta c坦 2 2 2t 
0,25
Bi to叩n quy v畛 t狸m m 畛 ph動董ng tr狸nh 2
5t mt+ = tr棚n 2;2 2錚 錚
錚 錚
0,25
VIa.
2.
B畉ng vi畛c x辿t hm s畛 ( )
2
5x
f x
x
+
= tr棚n o畉n 2;2 2錚 錚
錚 錚
0,25
Ta c坦 k畉t qu畉
13 2
2 5
4
m 
0,25
畛 o畉n th畉ng n畛i hai i畛m 動畛c chon c畉t c畉 hai tr畛c th狸 hai 畉u o畉n thng 坦 ph畉i 畛 g坦c
ph畉n t動 th畛 nh畉t v th畛 ba ho畉c ph畉n t動 th畛 hai v th畛 b畛n
0,25
Do v畉y s畛 c叩ch ch畛n 動畛c s畛 o畉n th畉ng nh動 v畉y l 1 1 1 1
2 4 3 5 23C C C C+ = c叩ch 0,25
S畛 c叩ch ch畛n hai i畛m b畉t k畛 2
14 91C = 0,25VIIa.
V畉y x叩c su畉t x畉y ra 畛 畛 bi l:
23
91
0,25
2. Theo ch動董ng tr狸nh n但ng cao
I c坦 honh 畛
9
2
Ix = v ( )
9 3
: 3 0 ;
2 2
I d x y I
錚 錚
   =  錚 錚
錚 錚
Vai tr嘆 A, B, C, D l nh動 nhau n棚n trung i畛m M c畛a c畉nh AD l giao i畛m c畛a (d) v
Ox, suy ra M(3;0)
( ) ( )
2 2 9 9
2 2 2 3 2
4 4
I M I MAB IM x x y y= =  +  = + =
D
12
. D = 12 AD = 2 2.
3 2
ABCD
ABC
S
S AB A
AB
=  = =
( )AD d
M AD
ワ1錚
錚
錚器3
, suy ra ph動董ng tr狸nh AD: ( ) ( )1. 3 1. 0 0 3 0x y x y +  =  +  = .
L畉i c坦 MA = MD = 2 .
0,5
V畉y t畛a 畛 A, D l nghi畛m c畛a h畛 ph動董ng tr狸nh:
( ) ( ) ( ) ( )
2 2 22 22
3 0 3 3
3 2 3 3 23 2
x y y x y x
x y x xx y
+  =錚 =  + =  +錚 錚縁4 錚 錚
 錚 錚 錚
 + =  +  = + = 錚 錚器4 錚 錚鰹3
3 2
3 1 1
y x x
x y
=  =錚 錚
 錚 錚
 = 賊 =錚 錚
ho畉c
4
1
x
y
=錚
錚
= 錚
.V畉y A(2;1), D(4;-1),
1
9 3
;
2 2
I
錚 錚
錚 錚
錚 錚
l trung i畛m c畛a AC, suy ra:
2 9 2 72
2 3 1 2
2
A C
I
C I A
A C C I A
I
x x
x
x x x
y y y y y
y
+錚
=錚 =  =  =錚縁4
錚 錚
+ =  =  =錚鰹4 =
錚器3
T動董ng t畛 I c滴ng l trung i畛m BD n棚n ta c坦: B(5;4).
V畉y t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t l (2;1), (5;4), (7;2), (4;-1).
0,5
a. 0,5
VIb.
2.
b. G畛i (P) l m畉t ph畉ng i qua A v vu担ng g坦c v畛i d,
G畛i H l h狸nh chi畉u vu担ng g坦c c畛a B l棚n (P) khi 坦 動畛ng th畉ng i qua A v H th畛a
m達n bi to叩n
0,5
G畛i 1z a bi= + ( ),a b khi 坦 2z a bi= 
T畛 i畛u ki畛n c畛a bi to叩n ta l畉p h畛 ph動董ng tr狸nh
T狸m 動畛c. 1 1 3z i= 賊 +
Ho畉c 1 1 3z i= 賊 
. .. H畉t .

More Related Content

What's hot (19)

Tai lieu luyen thi dai hoc de thi dh toan khoi b
Tai lieu luyen thi dai hoc   de thi dh toan khoi bTai lieu luyen thi dai hoc   de thi dh toan khoi b
Tai lieu luyen thi dai hoc de thi dh toan khoi b
Trungt但mluy畛nthi Qsc
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Trungt但mluy畛nthi Qsc
Laisac.de2.2012
Laisac.de2.2012Laisac.de2.2012
Laisac.de2.2012
boymetoan90
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015 c坦 叩p 叩n chi ti畉t
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015   c坦 叩p 叩n chi ti畉t60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015   c坦 叩p 叩n chi ti畉t
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015 c坦 叩p 叩n chi ti畉t
D動董ng Ng畛c Taeny
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
Trungt但mluy畛nthi Qsc
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
Trungt但mluy畛nthi Qsc
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
[Vnmath.com]  de thi thpt qg 2015 quynh luu 3[Vnmath.com]  de thi thpt qg 2015 quynh luu 3
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
Dang_Khoi
畛 thi th畛 To叩n - Chuy棚n Nguy畛n Hu畛 2014 l畉n 3
畛 thi th畛 To叩n - Chuy棚n Nguy畛n Hu畛 2014 l畉n 3畛 thi th畛 To叩n - Chuy棚n Nguy畛n Hu畛 2014 l畉n 3
畛 thi th畛 To叩n - Chuy棚n Nguy畛n Hu畛 2014 l畉n 3
dlinh123
Toan pt.de029.2010
Toan pt.de029.2010Toan pt.de029.2010
Toan pt.de029.2010
B畉O H鱈
Toan pt.de127.2011
Toan pt.de127.2011Toan pt.de127.2011
Toan pt.de127.2011
B畉O H鱈
[Vnmath.com] de thi thu thpt quoc gia cua truong dong son 1
[Vnmath.com]  de thi thu thpt quoc gia cua truong dong son 1[Vnmath.com]  de thi thu thpt quoc gia cua truong dong son 1
[Vnmath.com] de thi thu thpt quoc gia cua truong dong son 1
Marco Reus Le
Khoi b.2012
Khoi b.2012Khoi b.2012
Khoi b.2012
B畉O H鱈
畛 V 叩p 叩n thi th畛 cvp truonghocso.com
畛 V 叩p 叩n thi th畛 cvp   truonghocso.com畛 V 叩p 叩n thi th畛 cvp   truonghocso.com
畛 V 叩p 叩n thi th畛 cvp truonghocso.com
Th畉 Gi畛i Tinh Hoa
B畛 畛 thi th畛 畉i h畛c m担n To叩n c坦 叩p 叩n chi ti畉t
B畛 畛 thi th畛 畉i h畛c m担n To叩n c坦 叩p 叩n chi ti畉tB畛 畛 thi th畛 畉i h畛c m担n To叩n c坦 叩p 叩n chi ti畉t
B畛 畛 thi th畛 畉i h畛c m担n To叩n c坦 叩p 叩n chi ti畉t
Webdiemthi.vn - Trang Th担ng tin tuy畛n sinh v Du h畛c
Tai lieu luyen thi dai hoc de thi dh toan khoi b - nam 2012
Tai lieu luyen thi dai hoc   de thi dh toan khoi b - nam 2012Tai lieu luyen thi dai hoc   de thi dh toan khoi b - nam 2012
Tai lieu luyen thi dai hoc de thi dh toan khoi b - nam 2012
Trungt但mluy畛nthi Qsc
De dap an lan 4 le hong phong thhcm (1)
De  dap an lan 4 le hong phong thhcm (1)De  dap an lan 4 le hong phong thhcm (1)
De dap an lan 4 le hong phong thhcm (1)
BaoTram Pham
[Vnmath.com] de ks 12 lan 1 nam 2015 thanh hoa
[Vnmath.com]  de ks 12 lan 1 nam 2015 thanh hoa[Vnmath.com]  de ks 12 lan 1 nam 2015 thanh hoa
[Vnmath.com] de ks 12 lan 1 nam 2015 thanh hoa
Dang_Khoi
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
Marco Reus Le
Toan pt.de075.2011
Toan pt.de075.2011Toan pt.de075.2011
Toan pt.de075.2011
B畉O H鱈
Tai lieu luyen thi dai hoc de thi dh toan khoi b
Tai lieu luyen thi dai hoc   de thi dh toan khoi bTai lieu luyen thi dai hoc   de thi dh toan khoi b
Tai lieu luyen thi dai hoc de thi dh toan khoi b
Trungt但mluy畛nthi Qsc
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Trungt但mluy畛nthi Qsc
Laisac.de2.2012
Laisac.de2.2012Laisac.de2.2012
Laisac.de2.2012
boymetoan90
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015 c坦 叩p 叩n chi ti畉t
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015   c坦 叩p 叩n chi ti畉t60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015   c坦 叩p 叩n chi ti畉t
60 畛 thi th畛 to叩n c畛a c叩c tr動畛ng thpt 2015 c坦 叩p 叩n chi ti畉t
D動董ng Ng畛c Taeny
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2010
Trungt但mluy畛nthi Qsc
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi b - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi b - nam 2009
Trungt但mluy畛nthi Qsc
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
[Vnmath.com]  de thi thpt qg 2015 quynh luu 3[Vnmath.com]  de thi thpt qg 2015 quynh luu 3
[Vnmath.com] de thi thpt qg 2015 quynh luu 3
Dang_Khoi
畛 thi th畛 To叩n - Chuy棚n Nguy畛n Hu畛 2014 l畉n 3
畛 thi th畛 To叩n - Chuy棚n Nguy畛n Hu畛 2014 l畉n 3畛 thi th畛 To叩n - Chuy棚n Nguy畛n Hu畛 2014 l畉n 3
畛 thi th畛 To叩n - Chuy棚n Nguy畛n Hu畛 2014 l畉n 3
dlinh123
Toan pt.de029.2010
Toan pt.de029.2010Toan pt.de029.2010
Toan pt.de029.2010
B畉O H鱈
Toan pt.de127.2011
Toan pt.de127.2011Toan pt.de127.2011
Toan pt.de127.2011
B畉O H鱈
[Vnmath.com] de thi thu thpt quoc gia cua truong dong son 1
[Vnmath.com]  de thi thu thpt quoc gia cua truong dong son 1[Vnmath.com]  de thi thu thpt quoc gia cua truong dong son 1
[Vnmath.com] de thi thu thpt quoc gia cua truong dong son 1
Marco Reus Le
Khoi b.2012
Khoi b.2012Khoi b.2012
Khoi b.2012
B畉O H鱈
畛 V 叩p 叩n thi th畛 cvp truonghocso.com
畛 V 叩p 叩n thi th畛 cvp   truonghocso.com畛 V 叩p 叩n thi th畛 cvp   truonghocso.com
畛 V 叩p 叩n thi th畛 cvp truonghocso.com
Th畉 Gi畛i Tinh Hoa
Tai lieu luyen thi dai hoc de thi dh toan khoi b - nam 2012
Tai lieu luyen thi dai hoc   de thi dh toan khoi b - nam 2012Tai lieu luyen thi dai hoc   de thi dh toan khoi b - nam 2012
Tai lieu luyen thi dai hoc de thi dh toan khoi b - nam 2012
Trungt但mluy畛nthi Qsc
De dap an lan 4 le hong phong thhcm (1)
De  dap an lan 4 le hong phong thhcm (1)De  dap an lan 4 le hong phong thhcm (1)
De dap an lan 4 le hong phong thhcm (1)
BaoTram Pham
[Vnmath.com] de ks 12 lan 1 nam 2015 thanh hoa
[Vnmath.com]  de ks 12 lan 1 nam 2015 thanh hoa[Vnmath.com]  de ks 12 lan 1 nam 2015 thanh hoa
[Vnmath.com] de ks 12 lan 1 nam 2015 thanh hoa
Dang_Khoi
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
[Vnmath.com] de thi thu toan 2015 dang thuc hua 2015
Marco Reus Le
Toan pt.de075.2011
Toan pt.de075.2011Toan pt.de075.2011
Toan pt.de075.2011
B畉O H鱈

Viewers also liked (15)

Toan pt.de055.2012
Toan pt.de055.2012Toan pt.de055.2012
Toan pt.de055.2012
B畉O H鱈
Toan pt.de045.2012
Toan pt.de045.2012Toan pt.de045.2012
Toan pt.de045.2012
B畉O H鱈
Toan pt.de025.2010
Toan pt.de025.2010Toan pt.de025.2010
Toan pt.de025.2010
B畉O H鱈
Toan pt.de009.2012
Toan pt.de009.2012Toan pt.de009.2012
Toan pt.de009.2012
B畉O H鱈
Toan pt.de015.2012
Toan pt.de015.2012Toan pt.de015.2012
Toan pt.de015.2012
B畉O H鱈
Toan pt.de026.2012
Toan pt.de026.2012Toan pt.de026.2012
Toan pt.de026.2012
B畉O H鱈
Toan pt.de014.2010
Toan pt.de014.2010Toan pt.de014.2010
Toan pt.de014.2010
B畉O H鱈
Toan pt.de002.2012
Toan pt.de002.2012Toan pt.de002.2012
Toan pt.de002.2012
B畉O H鱈
Toan pt.de014.2012
Toan pt.de014.2012Toan pt.de014.2012
Toan pt.de014.2012
B畉O H鱈
Toan pt.de011.2010
Toan pt.de011.2010Toan pt.de011.2010
Toan pt.de011.2010
B畉O H鱈
Toan pt.de051.2012
Toan pt.de051.2012Toan pt.de051.2012
Toan pt.de051.2012
B畉O H鱈
Toan pt.de020.2010
Toan pt.de020.2010Toan pt.de020.2010
Toan pt.de020.2010
B畉O H鱈
Toan pt.de006.2010
Toan pt.de006.2010Toan pt.de006.2010
Toan pt.de006.2010
B畉O H鱈
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
B畉O H鱈
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
B畉O H鱈
Toan pt.de055.2012
Toan pt.de055.2012Toan pt.de055.2012
Toan pt.de055.2012
B畉O H鱈
Toan pt.de045.2012
Toan pt.de045.2012Toan pt.de045.2012
Toan pt.de045.2012
B畉O H鱈
Toan pt.de025.2010
Toan pt.de025.2010Toan pt.de025.2010
Toan pt.de025.2010
B畉O H鱈
Toan pt.de009.2012
Toan pt.de009.2012Toan pt.de009.2012
Toan pt.de009.2012
B畉O H鱈
Toan pt.de015.2012
Toan pt.de015.2012Toan pt.de015.2012
Toan pt.de015.2012
B畉O H鱈
Toan pt.de026.2012
Toan pt.de026.2012Toan pt.de026.2012
Toan pt.de026.2012
B畉O H鱈
Toan pt.de014.2010
Toan pt.de014.2010Toan pt.de014.2010
Toan pt.de014.2010
B畉O H鱈
Toan pt.de002.2012
Toan pt.de002.2012Toan pt.de002.2012
Toan pt.de002.2012
B畉O H鱈
Toan pt.de014.2012
Toan pt.de014.2012Toan pt.de014.2012
Toan pt.de014.2012
B畉O H鱈
Toan pt.de011.2010
Toan pt.de011.2010Toan pt.de011.2010
Toan pt.de011.2010
B畉O H鱈
Toan pt.de051.2012
Toan pt.de051.2012Toan pt.de051.2012
Toan pt.de051.2012
B畉O H鱈
Toan pt.de020.2010
Toan pt.de020.2010Toan pt.de020.2010
Toan pt.de020.2010
B畉O H鱈
Toan pt.de006.2010
Toan pt.de006.2010Toan pt.de006.2010
Toan pt.de006.2010
B畉O H鱈
Toan pt.de075.2012
Toan pt.de075.2012Toan pt.de075.2012
Toan pt.de075.2012
B畉O H鱈
Toan pt.de067.2012
Toan pt.de067.2012Toan pt.de067.2012
Toan pt.de067.2012
B畉O H鱈

Similar to Toan pt.de032.2012 (20)

Toan pt.de046.2010
Toan pt.de046.2010Toan pt.de046.2010
Toan pt.de046.2010
B畉O H鱈
Toan pt.de019.2012
Toan pt.de019.2012Toan pt.de019.2012
Toan pt.de019.2012
B畉O H鱈
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Trungt但mluy畛nthi Qsc
Toan pt.de027.2011
Toan pt.de027.2011Toan pt.de027.2011
Toan pt.de027.2011
B畉O H鱈
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
B畉O H鱈
Thi th畛 to叩n THPT Chu Vn An TN l畉n 2 2014
Thi th畛 to叩n THPT Chu Vn An TN l畉n 2 2014Thi th畛 to叩n THPT Chu Vn An TN l畉n 2 2014
Thi th畛 to叩n THPT Chu Vn An TN l畉n 2 2014
dlinh123
Toan pt.de033.2011
Toan pt.de033.2011Toan pt.de033.2011
Toan pt.de033.2011
B畉O H鱈
Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012
B畉O H鱈
Toan pt.de109.2011
Toan pt.de109.2011Toan pt.de109.2011
Toan pt.de109.2011
B畉O H鱈
Toan pt.de052.2011
Toan pt.de052.2011Toan pt.de052.2011
Toan pt.de052.2011
B畉O H鱈
Toan pt.de049.2010
Toan pt.de049.2010Toan pt.de049.2010
Toan pt.de049.2010
B畉O H鱈
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
B畉O H鱈
畛 thi th畛 H To叩n Chuy棚n Qu畛c H畛c Hu畉 2014 - Kh畛i D - L畉n 1
畛 thi th畛 H To叩n Chuy棚n Qu畛c H畛c Hu畉 2014 - Kh畛i D - L畉n 1畛 thi th畛 H To叩n Chuy棚n Qu畛c H畛c Hu畉 2014 - Kh畛i D - L畉n 1
畛 thi th畛 H To叩n Chuy棚n Qu畛c H畛c Hu畉 2014 - Kh畛i D - L畉n 1
Jo Calderone
Toan pt.de024.2011
Toan pt.de024.2011Toan pt.de024.2011
Toan pt.de024.2011
B畉O H鱈
Toan pt.de064.2011
Toan pt.de064.2011Toan pt.de064.2011
Toan pt.de064.2011
B畉O H鱈
Toan pt.de031.2011
Toan pt.de031.2011Toan pt.de031.2011
Toan pt.de031.2011
B畉O H鱈
Toan pt.de028.2012
Toan pt.de028.2012Toan pt.de028.2012
Toan pt.de028.2012
B畉O H鱈
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
Marco Reus Le
Toan pt.de038.2012
Toan pt.de038.2012Toan pt.de038.2012
Toan pt.de038.2012
B畉O H鱈
Khoi b.2011
Khoi b.2011Khoi b.2011
Khoi b.2011
B畉O H鱈
Toan pt.de046.2010
Toan pt.de046.2010Toan pt.de046.2010
Toan pt.de046.2010
B畉O H鱈
Toan pt.de019.2012
Toan pt.de019.2012Toan pt.de019.2012
Toan pt.de019.2012
B畉O H鱈
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Trungt但mluy畛nthi Qsc
Toan pt.de027.2011
Toan pt.de027.2011Toan pt.de027.2011
Toan pt.de027.2011
B畉O H鱈
Toan pt.de080.2012
Toan pt.de080.2012Toan pt.de080.2012
Toan pt.de080.2012
B畉O H鱈
Thi th畛 to叩n THPT Chu Vn An TN l畉n 2 2014
Thi th畛 to叩n THPT Chu Vn An TN l畉n 2 2014Thi th畛 to叩n THPT Chu Vn An TN l畉n 2 2014
Thi th畛 to叩n THPT Chu Vn An TN l畉n 2 2014
dlinh123
Toan pt.de033.2011
Toan pt.de033.2011Toan pt.de033.2011
Toan pt.de033.2011
B畉O H鱈
Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012
B畉O H鱈
Toan pt.de109.2011
Toan pt.de109.2011Toan pt.de109.2011
Toan pt.de109.2011
B畉O H鱈
Toan pt.de052.2011
Toan pt.de052.2011Toan pt.de052.2011
Toan pt.de052.2011
B畉O H鱈
Toan pt.de049.2010
Toan pt.de049.2010Toan pt.de049.2010
Toan pt.de049.2010
B畉O H鱈
Toan pt.de081.2012
Toan pt.de081.2012Toan pt.de081.2012
Toan pt.de081.2012
B畉O H鱈
畛 thi th畛 H To叩n Chuy棚n Qu畛c H畛c Hu畉 2014 - Kh畛i D - L畉n 1
畛 thi th畛 H To叩n Chuy棚n Qu畛c H畛c Hu畉 2014 - Kh畛i D - L畉n 1畛 thi th畛 H To叩n Chuy棚n Qu畛c H畛c Hu畉 2014 - Kh畛i D - L畉n 1
畛 thi th畛 H To叩n Chuy棚n Qu畛c H畛c Hu畉 2014 - Kh畛i D - L畉n 1
Jo Calderone
Toan pt.de024.2011
Toan pt.de024.2011Toan pt.de024.2011
Toan pt.de024.2011
B畉O H鱈
Toan pt.de064.2011
Toan pt.de064.2011Toan pt.de064.2011
Toan pt.de064.2011
B畉O H鱈
Toan pt.de031.2011
Toan pt.de031.2011Toan pt.de031.2011
Toan pt.de031.2011
B畉O H鱈
Toan pt.de028.2012
Toan pt.de028.2012Toan pt.de028.2012
Toan pt.de028.2012
B畉O H鱈
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
[Vnmath.com] de thi quoc gia lan 1 thpt hau loc 2
Marco Reus Le
Toan pt.de038.2012
Toan pt.de038.2012Toan pt.de038.2012
Toan pt.de038.2012
B畉O H鱈
Khoi b.2011
Khoi b.2011Khoi b.2011
Khoi b.2011
B畉O H鱈

More from B畉O H鱈 (20)

Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
B畉O H鱈
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
B畉O H鱈
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
B畉O H鱈
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
B畉O H鱈
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
B畉O H鱈
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
B畉O H鱈
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
B畉O H鱈
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
B畉O H鱈
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
B畉O H鱈
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
B畉O H鱈
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
B畉O H鱈
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
B畉O H鱈
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
B畉O H鱈
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
B畉O H鱈
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
B畉O H鱈
Toan pt.de054.2012
Toan pt.de054.2012Toan pt.de054.2012
Toan pt.de054.2012
B畉O H鱈
Toan pt.de052.2012
Toan pt.de052.2012Toan pt.de052.2012
Toan pt.de052.2012
B畉O H鱈
Toan pt.de049.2012
Toan pt.de049.2012Toan pt.de049.2012
Toan pt.de049.2012
B畉O H鱈
Toan pt.de048.2012
Toan pt.de048.2012Toan pt.de048.2012
Toan pt.de048.2012
B畉O H鱈
Toan pt.de047.2012
Toan pt.de047.2012Toan pt.de047.2012
Toan pt.de047.2012
B畉O H鱈
Toan pt.de082.2012
Toan pt.de082.2012Toan pt.de082.2012
Toan pt.de082.2012
B畉O H鱈
Toan pt.de079.2012
Toan pt.de079.2012Toan pt.de079.2012
Toan pt.de079.2012
B畉O H鱈
Toan pt.de077.2012
Toan pt.de077.2012Toan pt.de077.2012
Toan pt.de077.2012
B畉O H鱈
Toan pt.de076.2012
Toan pt.de076.2012Toan pt.de076.2012
Toan pt.de076.2012
B畉O H鱈
Toan pt.de073.2012
Toan pt.de073.2012Toan pt.de073.2012
Toan pt.de073.2012
B畉O H鱈
Toan pt.de071.2012
Toan pt.de071.2012Toan pt.de071.2012
Toan pt.de071.2012
B畉O H鱈
Toan pt.de069.2012
Toan pt.de069.2012Toan pt.de069.2012
Toan pt.de069.2012
B畉O H鱈
Toan pt.de068.2012
Toan pt.de068.2012Toan pt.de068.2012
Toan pt.de068.2012
B畉O H鱈
Toan pt.de066.2012
Toan pt.de066.2012Toan pt.de066.2012
Toan pt.de066.2012
B畉O H鱈
Toan pt.de064.2012
Toan pt.de064.2012Toan pt.de064.2012
Toan pt.de064.2012
B畉O H鱈
Toan pt.de060.2012
Toan pt.de060.2012Toan pt.de060.2012
Toan pt.de060.2012
B畉O H鱈
Toan pt.de059.2012
Toan pt.de059.2012Toan pt.de059.2012
Toan pt.de059.2012
B畉O H鱈
Toan pt.de058.2012
Toan pt.de058.2012Toan pt.de058.2012
Toan pt.de058.2012
B畉O H鱈
Toan pt.de057.2012
Toan pt.de057.2012Toan pt.de057.2012
Toan pt.de057.2012
B畉O H鱈
Toan pt.de056.2012
Toan pt.de056.2012Toan pt.de056.2012
Toan pt.de056.2012
B畉O H鱈
Toan pt.de054.2012
Toan pt.de054.2012Toan pt.de054.2012
Toan pt.de054.2012
B畉O H鱈
Toan pt.de052.2012
Toan pt.de052.2012Toan pt.de052.2012
Toan pt.de052.2012
B畉O H鱈
Toan pt.de049.2012
Toan pt.de049.2012Toan pt.de049.2012
Toan pt.de049.2012
B畉O H鱈
Toan pt.de048.2012
Toan pt.de048.2012Toan pt.de048.2012
Toan pt.de048.2012
B畉O H鱈
Toan pt.de047.2012
Toan pt.de047.2012Toan pt.de047.2012
Toan pt.de047.2012
B畉O H鱈

Toan pt.de032.2012

  • 1. S畛 GD V T NGH畛 AN 畛 THI TH畛 畉I H畛C, CAO 畉NG L畉N I NM 2012 TR働畛NG THPT L働NG 4 M担n: To叩n kh畛i A, B Th畛i gian:180 ph炭t kh担ng k畛 th畛i gian giao 畛. I. PH畉N CHUNG CHO T畉T C畉 CC TH SINH C但u I. (2i畛m) Cho hm s畛 ( )3 2 3 1 12 3 4y x m x mx m= + + + (C) 1. Kh畉o s叩t v v畉 畛 th畛 hm s畛 khi m = 0. 2. T狸m m 畛 hm s畛 c坦 hai c畛c tr畛 l A v B sao cho hai i畛m ny c湛ng v畛i i畛m 9 1; 2 C 錚 錚 錚 錚 錚 錚 l畉p thnh tam gi叩c nh畉n g畛c t畛a 畛 O lm tr畛ng t但m. C但u II. (2i畛m) 1. Gi畉i ph動董ng tr狸nh: ( ) 3 cos 1 2 3sin 2 cos3 4cos 2 2 x x x x 錚 錚 + = 錚 錚 錚 錚 . 2. Gi畉i h畛 ph動董ng tr狸nh. ( ) ( ) 2 2 3 8 5 8 3 13 x y y x x x y y 錚 + + + =錚 錚 + + + =錚器3 C但u III. (1i畛m) T鱈nh t鱈ch ph但n: 24 2 3 sin 1 cos cos x x I dx x = C但u IV. (1i畛m) Cho h狸nh ch坦p S.ABCD c坦 叩y l h狸nh thang vu担ng t畉i A v D. Bi畉t AB = 2a, AD =a, DC = a (a > 0) v SA m畉t ph畉ng 叩y (ABCD). G坦c t畉o b畛i gi畛a m畉t ph畉ng (SBC) v畛i 叩y b畉ng 450 . T鱈nh th畛 t鱈ch kh畛i ch坦p S.ABCD v kho畉ng c叩ch t畛 B t畛i m畉t ph畉ng (SCD) theo a. C但u V. (1i畛m) Cho c叩c s畛 d動董ng a, b, c tho畉 m達n i畛u ki畛n 2 2 2 4a b c abc+ + + = . Ch畛ng minh r畉ng 3a b c+ + . II. PH畉N RING. (3i畛m) Th鱈 sinh ch畛 動畛c lm m畛t trong hai ph畉n. 1. Theo ch動董ng tr狸nh chu畉n. C但u VIa. (2i畛m). 1. Trong m畉t ph畉ng Oxy cho h狸nh vu担ng ABCD c坦 t但m 3 1 ; 2 2 I 錚 錚 錚 錚 錚 錚 . C叩c 動畛ng th畉ng AB, CD l畉n l動畛t i qua c叩c i畛m ( )4; 1M , ( )2; 4N . T狸m to畉 畛 c叩c 畛nh c畛a h狸nh vu担ng 坦 bi畉t B c坦 honh 畛 但m. 2. T狸m m 畛 ph動董ng tr狸nh sau c坦 nghi畛m th畛c: ( )2 9 2 4 2 2x m x x+ = + + C但u VIIa. (1i畛m). Trong m畉t ph畉ng to畉 畛 Oxy. 畛 g坦c ph畉n t動 th畛 nh畉t ta l畉y 2 i畛m ph但n bi畛t, c畛 th畉 畛 c叩c g坦c ph畉n t動 th畛 hai, th畛 ba, th畛 t動 ta l畉n l動畛t l畉y 3, 4, 5 i畛m ph但n bi畛t (c叩c i畛m kh担ng n畉m tr棚n c叩c tr畛c to畉 畛). Trong 14 i畛m 坦 ta l畉y 2 i畛m b畉t k畛. T鱈nh x叩c su畉t 畛 o畉n th畉ng n畛i hai i畛m 坦 c畉t c畉 hai tr畛c to畉 畛. 2. Theo ch動董ng tr狸nh n但ng cao. C但u VIb. (2i畛m). 1. Trong m畉t ph畉ng t畛a 畛 Oxy, cho h狸nh ch畛 nh畉t ABCD c坦 di畛n t鱈ch b畉ng 12, t但m I thu畛c 動畛ng th畉ng ( ): 3 0d x y = v c坦 honh 畛 9 2 Ix = , trung i畛m c畛a m畛t c畉nh l giao i畛m c畛a (d) v tr畛c Ox. T狸m t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t. 2. Trong kh担ng gian Oxyz cho 動畛ng th畉ng 1 1 : 1 2 1 x y z d + = = v hai i畛m ( ) ( )1;1; 2 , 1;0;2 .A B a. Vi畉t ph動董ng tr狸nh m畉t ph畉ng (P) ch畛a A v B 畛ng th畛i song song v畛i 動畛ng th畉ng d. b. Qua A vi畉t ph動董ng tr狸nh 動畛ng th畉ng ( ) vu担ng g坦c v畛i d sao cho kho畉ng c叩ch t畛 B t畛i ( ) l nh畛 nh畉t. C但u VIIb. (1i畛m). Cho hai s畛 ph畛c li棚n h畛p nhau 1 2,z z tho畉 m達n i畛u ki畛n 1 2 2 z z l m畛t s畛 th畛c v 1 2 2 3z z = . T狸m s畛 ph畛c z1. ............................. H畉t ............................ Thi th畛 畉i h畛c www.toanpt.net
  • 2. P N TON L畉N 1 CU N畛I DUNG I畛M V畛i 0m = ta c坦 hm s畛 3 2 3 4y x x= + * TX: D = * S畛 bi畉n thi棚n. 2 ' 3 6y x x= , n棚n ' 0 0y x= = ho畉c 2x = 0,25 - Hm s畛 畛ng bi畉n tr棚n c叩c kho畉ng ( );0 v ( )2;+ , ngh畛ch bi畉n tr棚n ( )0;2 - C畛c tr畛. C畛c 畉i ( )0;4 ; c畛c ti畛u ( )2;0 - Gi畛i h畉n. lim , lim x x y y + = = + 0,25 - B畉ng bi畉n thi棚n. x 0 2 + y + 0 - 0 + y 4 + 0 0,25 1 * 畛 th畛. y Giao v畛i Ox: ( ) ( )1;0 ; 2;0 4 Giao v畛i Oy: ( )0;4 C叩c i畛m kh叩c ( ) ( )1;2 ; 3;4 -1 x 2 0,25 Ta c坦 ( )2 ' 3 3 1 12y x m x m= + + . Hm s畛 c坦 hai c畛c tr畛 khi y 畛i d畉u hai l畉n, khi 坦 y = 0 c坦 hai nghi畛m ph但n bi畛t n棚n ( ) 2 1 0 1m m = > 0,25 Khi 坦 hai c畛c tr畛 l ( ) ( )3 2 2;9 , 2 ; 4 12 3 4A m B m m m m + + 0,25 Theo bi ra ta c坦. 3 2 2 2 1 0 1 9 24 12 6 4 0 2 m m m m m + =錚 錚 = 錚 + + + =錚器3 th畛a m達n 0,25 I. 2 Khi 坦 d畛 th畉y A, B, C l tam gi叩c nh畉n O lm tr畛ng t但m 0,25 PT cos 2 3sin 2 cos cos3 4sin 2x x x x x + = + ( ) 2 sin 2 sin 3 cos 2 0 2 6 k x x x x x k 錚 =錚 + = 錚 錚 = + 錚錚 0,5II. 1. V畉y ph動董ng tr狸nh c坦 c叩c nghi畛m. , 2 2 6 k x x k = = + 0,25
  • 3. K c畛a h畛: 2 2 3 0 8 0 x y y x 錚 + ワ4 錚 + ワ4錚 畉t ( )2 2 3 , 8 0, 0a x y b y x a b= + = + Khi 坦 ta c坦 h畛. 2 2 5 3 413 a b a ba b + = =錚 錚 錚 錚 =+ = 錚鰹3 ho畉c 4 3 a b =錚 錚 =錚 0,25 V畛i 4 3 a b =錚 錚 =錚 ta c坦. ( )22 2 4 2 1 43 4 3 8 9 8 72 65 0 y xx y y x x x x 錚 錚 = + =錚 錚 錚 錚 + =錚器3 錚 + =錚 ( ) ( )( )( ) 2 2 1 4 3 1 5 4 13 0 y x x x x x 錚 = 錚 錚 錚 + + =錚 0,25 h畛 c坦 hai nghi畛m. ( ) ( ); 1;1x y = v ( ) ( ); 5; 7x y = 0,25 2. V畛i ( )22 2 4 2 1 93 9 3 8 4 18 72 45 0 y xx y y x x x x 錚 錚 = + =錚 錚 錚 錚 + =錚器3 錚 + =錚 ( ) ( ) ( ) ( ) 2 2 2 22 2 2 2 1 1 9 9 3 3 9 36 72 36 0 9 36 72 36 0 y x y x x x x x x x 錚 錚 = = 錚 錚 錚 錚 錚 錚+ + = + + =錚 錚 ( ) ( ) ( ) ( )2 2 2 22 1 19 9 0 3 3 9 6 6 0 3 6, 3 6 y x y x x x x x 錚 錚= = =錚 錚 錚 錚 錚 錚+ = = + = 錚鰹3 V畉y h畛 c坦 4 nghi畛m ( ) ( ); 1;1x y = ,( ) ( ); 5; 7x y = , ( ) ( ); 3 6;2 6 2x y = + v ( ) ( ); 3 6;2 6 2x y = + 0.25 * Ta c坦 4 4 2 2 2 3 3 sin sin 1 cos sin cos cos x x I xdx x dx x x = = 0,25 = 0 4 2 2 0 3 sin sin sin sin cos cos x x x dx x dx x x = + 0,25 = 0 02 24 4 2 2 2 2 0 0 3 3 sin sin 1 1 1 1 cos cos cos cos x x dx dx dx dx x x x x 錚 錚 錚 錚 + = + 錚 錚 錚 錚 錚 錚 錚 錚 0,25 III. = ( ) ( ) 0 4 0 3 7 tan tan 3 1 12 x x x x + = 0,25
  • 4. s * Ta c坦 2AC a= n棚n tam gi叩c ACD vu担ng t畉i C g坦c 0 45SCA = do 坦 2SA a= - . 1 . 3 S ABCD ABCDV S SA= trong 坦 ( ) 2 1 3 2 2 ABCD a S AB DC AD= + = V畉y 2 3 . 1 3 2 2 3 2 2 S ABCD a a V a= = A B D C 0,5 * Ta c坦 ( )( ) ( )( ) . . 31 ; ; 3 S DCB S DCB BCD BCD V V S d B SCD d B SCD S = = 0,25 IV Trong 坦 3 . 1 1 1 2 . . sin . 3 3 2 6 S BCD BCD a V S SA CB CD C SA= = = V畉y ( )( ) 3 . 2 3 2 6 ; 33 S DCB BCD V a a d B SCD S a = = = 0,25 Gi畉 s畛 ( )( )1 1 0 1a b a b ab + + khi 坦 ta ch畛 c畉n ch畛ng minh 2 2c ab c ab + 0,25 Theo gi畉 thi畉t. 2 2 2 2 2 4 2 4 2a b c abc ab c abc ab c abc= + + + + + + + 0,25 ( )( )2 2 0 2 0c ab c ab c + + + pcm D畉u b畉ng khi 1a b c= = = . 0,25 V. Trong tr動畛ng h畛p ng動畛c l畉i th狸 ( )( )1 1 0b c ho畉c ( )( )1 1 0c a v lm t動董ng t畛 0,25 PH畉N RING 1. Theo ch動董ng tr狸nh chu畉n G畛i ( )' 7;2M v ( )' 5;5N l i畛m 畛i x畛ng v畛i M, N qua I . ta c坦 'N AB v 'M CD N棚n 動畛ng th畉ng AB c坦 ph動董ng tr狸nh 2 3 5 0x y + = 0,25 G畛i H l h狸nh chi畉u vu担ng g坦c c畛a I l棚n AB 1 ;2 2 H 錚 錚 錚 錚 錚 錚 0,25 G畛i ( );A a b khi 坦 ta c坦 ( ) 2 2 2 3 5 2 1 13 32 2 4 a b A AB a HA HI ba b = 錚 =錚 錚縁4 錚 錚 錚駕 錚= = + =錚 錚鰹 錚件4 錚 錚醐3 hay ( )2;3A khi 坦 ( )1;1B 0,251. B畉ng c叩ch 畛i x畛ng A, B qua I ta c坦 動畛c ( ) ( )1; 2 , 4;0C D 0,25 i畛u ki畛n. 2 2x 畉t 2 2t x x= + + khi 坦 ta c坦 2 2 2t 0,25 Bi to叩n quy v畛 t狸m m 畛 ph動董ng tr狸nh 2 5t mt+ = tr棚n 2;2 2錚 錚 錚 錚 0,25 VIa. 2. B畉ng vi畛c x辿t hm s畛 ( ) 2 5x f x x + = tr棚n o畉n 2;2 2錚 錚 錚 錚 0,25
  • 5. Ta c坦 k畉t qu畉 13 2 2 5 4 m 0,25 畛 o畉n th畉ng n畛i hai i畛m 動畛c chon c畉t c畉 hai tr畛c th狸 hai 畉u o畉n thng 坦 ph畉i 畛 g坦c ph畉n t動 th畛 nh畉t v th畛 ba ho畉c ph畉n t動 th畛 hai v th畛 b畛n 0,25 Do v畉y s畛 c叩ch ch畛n 動畛c s畛 o畉n th畉ng nh動 v畉y l 1 1 1 1 2 4 3 5 23C C C C+ = c叩ch 0,25 S畛 c叩ch ch畛n hai i畛m b畉t k畛 2 14 91C = 0,25VIIa. V畉y x叩c su畉t x畉y ra 畛 畛 bi l: 23 91 0,25 2. Theo ch動董ng tr狸nh n但ng cao I c坦 honh 畛 9 2 Ix = v ( ) 9 3 : 3 0 ; 2 2 I d x y I 錚 錚 = 錚 錚 錚 錚 Vai tr嘆 A, B, C, D l nh動 nhau n棚n trung i畛m M c畛a c畉nh AD l giao i畛m c畛a (d) v Ox, suy ra M(3;0) ( ) ( ) 2 2 9 9 2 2 2 3 2 4 4 I M I MAB IM x x y y= = + = + = D 12 . D = 12 AD = 2 2. 3 2 ABCD ABC S S AB A AB = = = ( )AD d M AD ワ1錚 錚 錚器3 , suy ra ph動董ng tr狸nh AD: ( ) ( )1. 3 1. 0 0 3 0x y x y + = + = . L畉i c坦 MA = MD = 2 . 0,5 V畉y t畛a 畛 A, D l nghi畛m c畛a h畛 ph動董ng tr狸nh: ( ) ( ) ( ) ( ) 2 2 22 22 3 0 3 3 3 2 3 3 23 2 x y y x y x x y x xx y + =錚 = + = +錚 錚縁4 錚 錚 錚 錚 錚 + = + = + = 錚 錚器4 錚 錚鰹3 3 2 3 1 1 y x x x y = =錚 錚 錚 錚 = 賊 =錚 錚 ho畉c 4 1 x y =錚 錚 = 錚 .V畉y A(2;1), D(4;-1), 1 9 3 ; 2 2 I 錚 錚 錚 錚 錚 錚 l trung i畛m c畛a AC, suy ra: 2 9 2 72 2 3 1 2 2 A C I C I A A C C I A I x x x x x x y y y y y y +錚 =錚 = = =錚縁4 錚 錚 + = = =錚鰹4 = 錚器3 T動董ng t畛 I c滴ng l trung i畛m BD n棚n ta c坦: B(5;4). V畉y t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t l (2;1), (5;4), (7;2), (4;-1). 0,5 a. 0,5 VIb. 2. b. G畛i (P) l m畉t ph畉ng i qua A v vu担ng g坦c v畛i d, G畛i H l h狸nh chi畉u vu担ng g坦c c畛a B l棚n (P) khi 坦 動畛ng th畉ng i qua A v H th畛a m達n bi to叩n 0,5 G畛i 1z a bi= + ( ),a b khi 坦 2z a bi= T畛 i畛u ki畛n c畛a bi to叩n ta l畉p h畛 ph動董ng tr狸nh T狸m 動畛c. 1 1 3z i= 賊 + Ho畉c 1 1 3z i= 賊 . .. H畉t .