1. The document discusses integration and properties of integrals. It shows that the integral of the derivative of a function equals the function evaluated from negative infinity to positive infinity.
2. Several integral properties are demonstrated, including properties related to adding or subtracting integrals and integrating with respect to different variables.
3. The document also explores integrals of functions over all real numbers and shows some integrals equal zero while others do not, depending on the properties of the functions.
1. The document provides information about a math exam, including the exam time of 180 minutes and 6 questions ranging from 1 to 2 points each. The questions cover topics such as solving equations, finding roots of equations, integrals, geometry problems, and systems of equations.
2. The responses provide solutions to each question, showing the steps and reasoning for obtaining the answers. Solutions include solving equations, finding integrals, using geometry relationships, and solving a system of inequalities.
3. Diagrams and calculations are shown to visually depict the solutions to the geometry problems involving shapes, angles, and areas.
1. S畛 GD V T NGH畛 AN 畛 THI TH畛 畉I H畛C, CAO 畉NG L畉N I NM 2012
TR働畛NG THPT L働NG 4 M担n: To叩n kh畛i A, B
Th畛i gian:180 ph炭t kh担ng k畛 th畛i gian giao 畛.
I. PH畉N CHUNG CHO T畉T C畉 CC TH SINH
C但u I. (2i畛m) Cho hm s畛 ( )3 2
3 1 12 3 4y x m x mx m= + + + (C)
1. Kh畉o s叩t v v畉 畛 th畛 hm s畛 khi m = 0.
2. T狸m m 畛 hm s畛 c坦 hai c畛c tr畛 l A v B sao cho hai i畛m ny c湛ng v畛i i畛m
9
1;
2
C
錚 錚
錚 錚
錚 錚
l畉p thnh
tam gi叩c nh畉n g畛c t畛a 畛 O lm tr畛ng t但m.
C但u II. (2i畛m)
1. Gi畉i ph動董ng tr狸nh: ( ) 3
cos 1 2 3sin 2 cos3 4cos 2
2
x x x x
錚 錚
+ = 錚 錚
錚 錚
.
2. Gi畉i h畛 ph動董ng tr狸nh.
( ) ( )
2 2
3 8 5
8 3 13
x y y x
x x y y
錚 + + + =錚
錚
+ + + =錚器3
C但u III. (1i畛m) T鱈nh t鱈ch ph但n:
24
2
3
sin 1 cos
cos
x x
I dx
x
=
C但u IV. (1i畛m) Cho h狸nh ch坦p S.ABCD c坦 叩y l h狸nh thang vu担ng t畉i A v D. Bi畉t AB = 2a, AD =a, DC =
a (a > 0) v SA m畉t ph畉ng 叩y (ABCD). G坦c t畉o b畛i gi畛a m畉t ph畉ng (SBC) v畛i 叩y b畉ng 450
. T鱈nh th畛
t鱈ch kh畛i ch坦p S.ABCD v kho畉ng c叩ch t畛 B t畛i m畉t ph畉ng (SCD) theo a.
C但u V. (1i畛m) Cho c叩c s畛 d動董ng a, b, c tho畉 m達n i畛u ki畛n 2 2 2
4a b c abc+ + + = . Ch畛ng minh r畉ng
3a b c+ + .
II. PH畉N RING. (3i畛m) Th鱈 sinh ch畛 動畛c lm m畛t trong hai ph畉n.
1. Theo ch動董ng tr狸nh chu畉n.
C但u VIa. (2i畛m).
1. Trong m畉t ph畉ng Oxy cho h狸nh vu担ng ABCD c坦 t但m
3 1
;
2 2
I
錚 錚
錚 錚
錚 錚
. C叩c 動畛ng th畉ng AB, CD l畉n l動畛t i qua
c叩c i畛m ( )4; 1M , ( )2; 4N . T狸m to畉 畛 c叩c 畛nh c畛a h狸nh vu担ng 坦 bi畉t B c坦 honh 畛 但m.
2. T狸m m 畛 ph動董ng tr狸nh sau c坦 nghi畛m th畛c: ( )2
9 2 4 2 2x m x x+ = + +
C但u VIIa. (1i畛m). Trong m畉t ph畉ng to畉 畛 Oxy. 畛 g坦c ph畉n t動 th畛 nh畉t ta l畉y 2 i畛m ph但n bi畛t, c畛 th畉 畛 c叩c
g坦c ph畉n t動 th畛 hai, th畛 ba, th畛 t動 ta l畉n l動畛t l畉y 3, 4, 5 i畛m ph但n bi畛t (c叩c i畛m kh担ng n畉m tr棚n c叩c tr畛c to畉
畛). Trong 14 i畛m 坦 ta l畉y 2 i畛m b畉t k畛. T鱈nh x叩c su畉t 畛 o畉n th畉ng n畛i hai i畛m 坦 c畉t c畉 hai tr畛c to畉 畛.
2. Theo ch動董ng tr狸nh n但ng cao.
C但u VIb. (2i畛m).
1. Trong m畉t ph畉ng t畛a 畛 Oxy, cho h狸nh ch畛 nh畉t ABCD c坦 di畛n t鱈ch b畉ng 12, t但m I thu畛c 動畛ng th畉ng
( ): 3 0d x y = v c坦 honh 畛
9
2
Ix = , trung i畛m c畛a m畛t c畉nh l giao i畛m c畛a (d) v tr畛c Ox. T狸m t畛a
畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t.
2. Trong kh担ng gian Oxyz cho 動畛ng th畉ng 1 1
:
1 2 1
x y z
d
+
= =
v hai i畛m ( ) ( )1;1; 2 , 1;0;2 .A B
a. Vi畉t ph動董ng tr狸nh m畉t ph畉ng (P) ch畛a A v B 畛ng th畛i song song v畛i 動畛ng th畉ng d.
b. Qua A vi畉t ph動董ng tr狸nh 動畛ng th畉ng ( ) vu担ng g坦c v畛i d sao cho kho畉ng c叩ch t畛 B t畛i ( ) l nh畛 nh畉t.
C但u VIIb. (1i畛m). Cho hai s畛 ph畛c li棚n h畛p nhau 1 2,z z tho畉 m達n i畛u ki畛n 1
2
2
z
z
l m畛t s畛 th畛c v
1 2 2 3z z = . T狸m s畛 ph畛c z1.
............................. H畉t ............................
Thi th畛 畉i h畛c www.toanpt.net
2. P N TON L畉N 1
CU N畛I DUNG I畛M
V畛i 0m = ta c坦 hm s畛 3 2
3 4y x x= +
* TX: D =
* S畛 bi畉n thi棚n. 2
' 3 6y x x= , n棚n ' 0 0y x= = ho畉c 2x =
0,25
- Hm s畛 畛ng bi畉n tr棚n c叩c kho畉ng ( );0 v ( )2;+ , ngh畛ch bi畉n tr棚n ( )0;2
- C畛c tr畛. C畛c 畉i ( )0;4 ; c畛c ti畛u ( )2;0
- Gi畛i h畉n. lim , lim
x x
y y
+
= = +
0,25
- B畉ng bi畉n thi棚n.
x 0 2 +
y + 0 - 0 +
y
4 +
0
0,25
1
* 畛 th畛. y
Giao v畛i Ox: ( ) ( )1;0 ; 2;0 4
Giao v畛i Oy: ( )0;4
C叩c i畛m kh叩c ( ) ( )1;2 ; 3;4
-1 x
2
0,25
Ta c坦 ( )2
' 3 3 1 12y x m x m= + + . Hm s畛 c坦 hai c畛c tr畛 khi y 畛i d畉u hai l畉n, khi 坦 y = 0
c坦 hai nghi畛m ph但n bi畛t n棚n ( )
2
1 0 1m m = >
0,25
Khi 坦 hai c畛c tr畛 l ( ) ( )3 2
2;9 , 2 ; 4 12 3 4A m B m m m m + + 0,25
Theo bi ra ta c坦. 3 2
2 2 1 0
1
9
24 12 6 4 0
2
m
m
m m m
+ =錚
錚
= 錚
+ + + =錚器3
th畛a m達n
0,25
I.
2
Khi 坦 d畛 th畉y A, B, C l tam gi叩c nh畉n O lm tr畛ng t但m 0,25
PT cos 2 3sin 2 cos cos3 4sin 2x x x x x + = +
( ) 2
sin 2 sin 3 cos 2 0
2
6
k
x
x x x
x k
錚
=錚
+ = 錚
錚 = +
錚錚
0,5II.
1.
V畉y ph動董ng tr狸nh c坦 c叩c nghi畛m. , 2
2 6
k
x x k
= = +
0,25
3. K c畛a h畛:
2
2
3 0
8 0
x y
y x
錚 + ワ4
錚
+ ワ4錚
畉t ( )2 2
3 , 8 0, 0a x y b y x a b= + = +
Khi 坦 ta c坦 h畛. 2 2
5 3
413
a b a
ba b
+ = =錚 錚
錚 錚
=+ = 錚鰹3
ho畉c
4
3
a
b
=錚
錚
=錚
0,25
V畛i
4
3
a
b
=錚
錚
=錚
ta c坦.
( )22
2
4 2
1
43 4
3
8 9
8 72 65 0
y xx y
y x
x x x
錚
錚 = + =錚 錚
錚 錚
+ =錚器3 錚 + =錚
( )
( )( )( )
2
2
1
4
3
1 5 4 13 0
y x
x x x x
錚
= 錚
錚
錚 + + =錚
0,25
h畛 c坦 hai nghi畛m. ( ) ( ); 1;1x y = v ( ) ( ); 5; 7x y = 0,25
2. V畛i
( )22
2
4 2
1
93 9
3
8 4
18 72 45 0
y xx y
y x
x x x
錚
錚 = + =錚 錚
錚 錚
+ =錚器3 錚 + =錚
( )
( )
( )
( )
2 2
2 22 2 2 2
1 1
9 9
3 3
9 36 72 36 0 9 36 72 36 0
y x y x
x x x x x x
錚 錚
= = 錚 錚
錚 錚
錚 錚+ + = + + =錚 錚
( )
( ) ( )
( )2 2
2 22
1 19 9 0
3 3
9 6 6 0 3 6, 3 6
y x y x
x x x x
錚 錚= = =錚 錚
錚 錚
錚 錚+ = = + = 錚鰹3
V畉y h畛 c坦 4 nghi畛m ( ) ( ); 1;1x y = ,( ) ( ); 5; 7x y = , ( ) ( ); 3 6;2 6 2x y = + v
( ) ( ); 3 6;2 6 2x y = +
0.25
* Ta c坦
4 4
2
2 2
3 3
sin sin
1 cos sin
cos cos
x x
I xdx x dx
x x
= =
0,25
=
0 4
2 2
0
3
sin sin
sin sin
cos cos
x x
x dx x dx
x x
= +
0,25
=
0 02 24 4
2 2 2 2
0 0
3 3
sin sin 1 1
1 1
cos cos cos cos
x x
dx dx dx dx
x x x x
錚 錚 錚 錚
+ = + 錚 錚 錚 錚
錚 錚 錚 錚
0,25
III.
= ( ) ( )
0
4
0
3
7
tan tan 3 1
12
x x x x
+ =
0,25
4. s
* Ta c坦 2AC a= n棚n tam gi叩c ACD vu担ng
t畉i C g坦c 0
45SCA = do 坦 2SA a=
- .
1
.
3
S ABCD ABCDV S SA= trong 坦
( )
2
1 3
2 2
ABCD
a
S AB DC AD= + =
V畉y
2 3
.
1 3 2
2
3 2 2
S ABCD
a a
V a= = A B
D
C
0,5
* Ta c坦 ( )( ) ( )( ) .
.
31
; ;
3
S DCB
S DCB BCD
BCD
V
V S d B SCD d B SCD
S
= =
0,25
IV
Trong 坦
3
.
1 1 1 2
. . sin .
3 3 2 6
S BCD BCD
a
V S SA CB CD C SA= = =
V畉y ( )( )
3
.
2
3 2 6
;
33
S DCB
BCD
V a a
d B SCD
S a
= = =
0,25
Gi畉 s畛 ( )( )1 1 0 1a b a b ab + + khi 坦 ta ch畛 c畉n ch畛ng minh
2 2c ab c ab +
0,25
Theo gi畉 thi畉t. 2 2 2 2 2
4 2 4 2a b c abc ab c abc ab c abc= + + + + + + + 0,25
( )( )2 2 0 2 0c ab c ab c + + + pcm
D畉u b畉ng khi 1a b c= = = .
0,25
V.
Trong tr動畛ng h畛p ng動畛c l畉i th狸 ( )( )1 1 0b c ho畉c ( )( )1 1 0c a v lm t動董ng t畛 0,25
PH畉N RING
1. Theo ch動董ng tr狸nh chu畉n
G畛i ( )' 7;2M v ( )' 5;5N l i畛m 畛i x畛ng v畛i M, N qua I . ta c坦 'N AB v 'M CD
N棚n 動畛ng th畉ng AB c坦 ph動董ng tr狸nh 2 3 5 0x y + =
0,25
G畛i H l h狸nh chi畉u vu担ng g坦c c畛a I l棚n AB
1
;2
2
H
錚 錚
錚 錚
錚 錚
0,25
G畛i ( );A a b khi 坦 ta c坦
( )
2
2
2 3 5
2
1 13
32
2 4
a b
A AB a
HA HI ba b
= 錚
=錚 錚縁4
錚 錚 錚駕 錚= = + =錚 錚鰹 錚件4
錚 錚醐3
hay
( )2;3A khi 坦 ( )1;1B
0,251.
B畉ng c叩ch 畛i x畛ng A, B qua I ta c坦 動畛c ( ) ( )1; 2 , 4;0C D 0,25
i畛u ki畛n. 2 2x
畉t 2 2t x x= + + khi 坦 ta c坦 2 2 2t
0,25
Bi to叩n quy v畛 t狸m m 畛 ph動董ng tr狸nh 2
5t mt+ = tr棚n 2;2 2錚 錚
錚 錚
0,25
VIa.
2.
B畉ng vi畛c x辿t hm s畛 ( )
2
5x
f x
x
+
= tr棚n o畉n 2;2 2錚 錚
錚 錚
0,25
5. Ta c坦 k畉t qu畉
13 2
2 5
4
m
0,25
畛 o畉n th畉ng n畛i hai i畛m 動畛c chon c畉t c畉 hai tr畛c th狸 hai 畉u o畉n thng 坦 ph畉i 畛 g坦c
ph畉n t動 th畛 nh畉t v th畛 ba ho畉c ph畉n t動 th畛 hai v th畛 b畛n
0,25
Do v畉y s畛 c叩ch ch畛n 動畛c s畛 o畉n th畉ng nh動 v畉y l 1 1 1 1
2 4 3 5 23C C C C+ = c叩ch 0,25
S畛 c叩ch ch畛n hai i畛m b畉t k畛 2
14 91C = 0,25VIIa.
V畉y x叩c su畉t x畉y ra 畛 畛 bi l:
23
91
0,25
2. Theo ch動董ng tr狸nh n但ng cao
I c坦 honh 畛
9
2
Ix = v ( )
9 3
: 3 0 ;
2 2
I d x y I
錚 錚
= 錚 錚
錚 錚
Vai tr嘆 A, B, C, D l nh動 nhau n棚n trung i畛m M c畛a c畉nh AD l giao i畛m c畛a (d) v
Ox, suy ra M(3;0)
( ) ( )
2 2 9 9
2 2 2 3 2
4 4
I M I MAB IM x x y y= = + = + =
D
12
. D = 12 AD = 2 2.
3 2
ABCD
ABC
S
S AB A
AB
= = =
( )AD d
M AD
ワ1錚
錚
錚器3
, suy ra ph動董ng tr狸nh AD: ( ) ( )1. 3 1. 0 0 3 0x y x y + = + = .
L畉i c坦 MA = MD = 2 .
0,5
V畉y t畛a 畛 A, D l nghi畛m c畛a h畛 ph動董ng tr狸nh:
( ) ( ) ( ) ( )
2 2 22 22
3 0 3 3
3 2 3 3 23 2
x y y x y x
x y x xx y
+ =錚 = + = +錚 錚縁4 錚 錚
錚 錚 錚
+ = + = + = 錚 錚器4 錚 錚鰹3
3 2
3 1 1
y x x
x y
= =錚 錚
錚 錚
= 賊 =錚 錚
ho畉c
4
1
x
y
=錚
錚
= 錚
.V畉y A(2;1), D(4;-1),
1
9 3
;
2 2
I
錚 錚
錚 錚
錚 錚
l trung i畛m c畛a AC, suy ra:
2 9 2 72
2 3 1 2
2
A C
I
C I A
A C C I A
I
x x
x
x x x
y y y y y
y
+錚
=錚 = = =錚縁4
錚 錚
+ = = =錚鰹4 =
錚器3
T動董ng t畛 I c滴ng l trung i畛m BD n棚n ta c坦: B(5;4).
V畉y t畛a 畛 c叩c 畛nh c畛a h狸nh ch畛 nh畉t l (2;1), (5;4), (7;2), (4;-1).
0,5
a. 0,5
VIb.
2.
b. G畛i (P) l m畉t ph畉ng i qua A v vu担ng g坦c v畛i d,
G畛i H l h狸nh chi畉u vu担ng g坦c c畛a B l棚n (P) khi 坦 動畛ng th畉ng i qua A v H th畛a
m達n bi to叩n
0,5
G畛i 1z a bi= + ( ),a b khi 坦 2z a bi=
T畛 i畛u ki畛n c畛a bi to叩n ta l畉p h畛 ph動董ng tr狸nh
T狸m 動畛c. 1 1 3z i= 賊 +
Ho畉c 1 1 3z i= 賊
. .. H畉t .