- The document discusses Neutron L3 HA (VRRP) and summarizes a presentation given on the topic.
- Neutron L3 HA uses the VRRP protocol to provide redundancy and failover for virtual routers across multiple network nodes. A heartbeat network is created for each tenant using their tenant network.
- When a router is created, a heartbeat port and interface are created on each L3 agent node using the tenant's heartbeat network to enable communication between the agents for the VRRP implementation.
RabbitMQ is said a point of bottleneck in OpenStack.
We researched RabbitMQ and analyzed OpenStack RPC messaging.
This slide shows that RabbitMQ can scale out with HA setting.
- The document discusses Neutron L3 HA (VRRP) and summarizes a presentation given on the topic.
- Neutron L3 HA uses the VRRP protocol to provide redundancy and failover for virtual routers across multiple network nodes. A heartbeat network is created for each tenant using their tenant network.
- When a router is created, a heartbeat port and interface are created on each L3 agent node using the tenant's heartbeat network to enable communication between the agents for the VRRP implementation.
RabbitMQ is said a point of bottleneck in OpenStack.
We researched RabbitMQ and analyzed OpenStack RPC messaging.
This slide shows that RabbitMQ can scale out with HA setting.
公開URL:https://openaccess.thecvf.com/content/CVPR2024/papers/Li_Generative
_Image_Dynamics_CVPR_2024_paper.pdf
出典:Zhengqi Li, Richard Tucker, Noah Snavely, Aleksander Holynski: Generative Image Dynamics, Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
概要:自然な物体の動きを学習し、静止画から動画を生成する新しいアプローチを提案しています。実際の映像から抽出した動きのパターンをフーリエ領域でモデル化し、拡散モデルを用いて予測します。単一の画像から、周波数調整された拡散サンプリングプロセスを使用してスペクトル体積を予測し、これを動画全体をカバーする動きのテクスチャに変換します。この手法により、静止画からシームレスにループする動画を作成したり、実際の画像内のオブジェクトとインタラクティブに動きを生成したりすることが可能になります。
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matchingharmonylab
?
公開URL:https://arxiv.org/pdf/2404.19174
出典:Guilherme Potje, Felipe Cadar, Andre Araujo, Renato Martins, Erickson R. ascimento: XFeat: Accelerated Features for Lightweight Image Matching, Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
概要:リソース効率に優れた特徴点マッチングのための軽量なアーキテクチャ「XFeat(Accelerated Features)」を提案します。手法は、局所的な特徴点の検出、抽出、マッチングのための畳み込みニューラルネットワークの基本的な設計を再検討します。特に、リソースが限られたデバイス向けに迅速かつ堅牢なアルゴリズムが必要とされるため、解像度を可能な限り高く保ちながら、ネットワークのチャネル数を制限します。さらに、スパース下でのマッチングを選択できる設計となっており、ナビゲーションやARなどのアプリケーションに適しています。XFeatは、高速かつ同等以上の精度を実現し、一般的なラップトップのCPU上でリアルタイムで動作します。
A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...harmonylab
?
This study focuses on addressing the challenges associated with decision-making in winter road snow removal operations, aiming to alleviate the burden on snow removal personnel. Specifically, we propose an approach to develop a system that collects and visualizes information on road snow conditions and weather data to support decision-making by personnel. Additionally, by sharing the collected information, we aim to facilitate the sharing of premonitions about changes in decision-making among snow removal personnel, reducing the need for physical inspections.We have validated the effectiveness of the system and confirmed its efficacy.
DLゼミ: MobileOne: An Improved One millisecond Mobile Backboneharmonylab
?
公開URL:https://openaccess.thecvf.com/content/CVPR2023/html/Vasu_MobileOne_An_Improved_One_Millisecond_Mobile_Backbone_CVPR_2023_paper.html
出典:Vasu, Pavan Kumar Anasosalu, et al.: MobileOne: An Improved One Millisecond Mobile Backbone, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)
概要:モバイル端末向けのニューラルネットワークは多くの場合、FLOPsやパラメータ数で最適化されています。しかし、これらの最適化は実際のモバイルデバイスで実行した場合のネットワークの応答時間に相関しない場合があります。我々は昨今のニューラルネットワークの最適化のボトルネックを特定?分析し、その結果をもとにした新たな効率的なバックボーンMobileOneを設計しました。結果はMobileFormerと同等の性能を得ながら、38倍高速であり、最先端の効率性を達成しました。
6. TravelAgent
TravelAgentの機能
Client 2 Client 3
Client 1
全Clientにおける負荷情報の取得?提供の機能
TravelAgent
Client 1 1:2
Client 2 3:2
Client 3 1:1
Address othre
TAPdp
TAP :
32 ?dp
P
22 ?other
P
11 ?dp
P
21 ?other
P
dp
TAP :TravelAgentが取得した
分散処理プロセス数
:TravelAgentが取得した
他プロセス数
other
TAP
13 ?dp
P
13 ?other
P
提供
取得
7. 分散処理プロセス
: Client n の閾値
のClient j が存在
するならば
Do_active
Client j へmove
YES
NO
Do_sleep
YES
: Client n の他プロ
セス占有率
NO
Client i における分散処理プロセス
Do_active/Do_sleep/moveの分岐条件
ii TOPO ?
ij TOPO ?
nT
nOPO