From 1996 to the present, the Third-Party Logistics (3PL) study has helped to identify and track key trends and views of the 3PL industry from the point of view of the customer.
In mid-2008, 1,644 logistics executives completed a survey on trends and issues in third-party logistics. The study was produced by C. John Langley Jr., Ph.D., of the Georgia Institute of Technology, with a team of industry experts from Capgemini, DHL, and Oracle. In addition to the survey, the team conducted a facilitated workshop to interpret study results, as well as focus interviews with experts on three special topics covered in the report: integrated logistics, green supply chain and supply chain security. The findings presented are intended to help 3PLs and logistics outsourcers better understand and more effectively manage their relationships.
Visit http://www.3plstudy.com
Retailers face challenges meeting fluctuating consumer demand due to long, complex global supply chains and volatile demand. Traditional ERP systems do not provide visibility into inventory in transit, forcing allocation decisions to be made far in advance based only on past sales forecasts. This can lead to lost sales, high inventory costs, and increased transportation costs. Adopting a cloud-based supply chain agility solution allows retailers to track demand changes and dynamically allocate in-transit inventory, avoiding stockouts and reducing costs through less buffer stock and expedited shipping. The solution provides end-to-end visibility across multi-leg shipments to enable retailers to quickly adapt allocation and better meet unexpected demand shifts.
2010 Third-Party Logistics: Results and Findings of the 15th Annual StudyCapgemini Media
油
Discovering and exploring 3PL trends, issues and opportunities is the overall objective of the 2010 Third-Party Logistics Study. A web-based survey, desk research, focus interviews and workshops provide a well-rounded, diverse sampling of attitudes, ideas and results experienced by 3PL users, non-users and 3PL providers. Each year the study results also suggest trends that warrant closer examination. Included in the 2010 study are special topic reports on total landed cost, life sciences and fast-moving consumer goods. The study also provides some perspectives on what shippers and 3PLs are doing to improve and enhance their businesses and their business relationships.
http://3plstudy.com
Summer Internship project On Study of 3PLKapil Mittal
油
This project was basically done to find out the errors that are encountered by a logistics company and how can they overcome those error by using the required technology
The document discusses third party logistics (3PL) providers. It begins by defining 1PL, 2PL, 3PL and 4PL providers and their roles in the supply chain. It then covers the evolution of 3PL, services provided, benefits of using 3PL, types of 3PL providers including transportation-based, warehouse/distribution-based and more. New technologies in 3PL and relationship management are also discussed. The document concludes with a case study on selecting a 3PL using multi-criteria decision making.
This document discusses various forecasting techniques. It covers qualitative and quantitative methods as well as different time horizons for forecasting. Specific quantitative techniques discussed include moving averages, exponential smoothing, regression analysis, and double exponential smoothing. Moving averages and exponential smoothing are described as methods for forecasting stationary time series. Exponential smoothing provides a weighted average of past observations with more weight given to recent observations. Double exponential smoothing accounts for trends by smoothing changes in the intercept and slope over time.
There are three main types of forecasting methods: qualitative, extrapolative, and causal. Qualitative methods rely on expert opinions and are useful for medium to long range forecasting. Extrapolative methods use past historical demand data to identify patterns and extrapolate them into the future. Causal methods use statistical models based on historical demand data and other variables that influence demand. Some specific forecasting techniques mentioned include the Delphi technique, market surveys, scenario writing, moving averages, weighted moving averages, exponential smoothing, regression analysis, and econometric methods.
Eines i contexts per a l'experimentaci坦 a les aules (bloc 2)jdomen44
油
Presentaci坦 que forma part de les sessions de formaci坦 per a professorat de Ci竪ncies, dins el marc de la proposta Experimentaci坦 a les aules, de la FCRI 2015. Tant les presentacions com el dossier per als participants s坦n disponibles a: http://wp.me/p25seH-kN
Eines i contexts per a l'experimentaci坦 a les aules (bloc 3)jdomen44
油
Presentaci坦 que forma part de les sessions de formaci坦 per a professorat de Ci竪ncies, dins el marc de la proposta Experimentaci坦 a les aules, de la FCRI 2015. Tant les presentacions com el dossier per als participants s坦n disponibles a: http://wp.me/p25seH-kN
Precaucions a l'hora de comprar, en les vendes que es realitzen en les excursions organitzades, per part de les empreses de venda directa. Consells per a les persones consumidores.
Eines i contexts per a l'experimentaci坦 a les aules (bloc 2)jdomen44
油
Presentaci坦 que forma part de les sessions de formaci坦 per a professorat de Ci竪ncies, dins el marc de la proposta Experimentaci坦 a les aules, de la FCRI 2015. Tant les presentacions com el dossier per als participants s坦n disponibles a: http://wp.me/p25seH-kN
Eines i contexts per a l'experimentaci坦 a les aules (bloc 3)jdomen44
油
Presentaci坦 que forma part de les sessions de formaci坦 per a professorat de Ci竪ncies, dins el marc de la proposta Experimentaci坦 a les aules, de la FCRI 2015. Tant les presentacions com el dossier per als participants s坦n disponibles a: http://wp.me/p25seH-kN
Precaucions a l'hora de comprar, en les vendes que es realitzen en les excursions organitzades, per part de les empreses de venda directa. Consells per a les persones consumidores.
Biografia di Leonardo da Vinci: origini, educazione e lavoro.
Pittore, disegnatore, scrittore, inventore.
2019: celebrazione del cinquecentesimo anniversario della sua morte
Breve descripci坦n y problemas de termoqu鱈mica: primer principio de termodin叩mica, entalp鱈a, energ鱈a de enlace, ley de Hess, entrop鱈a y energ鱈a libre de Gibbs. Este tema est叩 pensado para ser impartido en qu鱈mica de 2尊 de bachillerato.
The document discusses communicating vessels and hydraulic presses. Communicating vessels are devices where two or more vessels are connected by a tube, causing them to equalize in water level. Hydraulic presses work similarly, multiplying force through transmission of pressure in a fluid. Examples given include how car brakes and fork lifts function through hydraulic systems to produce larger forces from smaller inputs.
1. U N I T A T 2 : E L C A M P G R A V I T A T O R I
C o n s u e l o B a t a l l a G a r c 鱈 a
I N S Va l l d e m o s s a
B a r c e l o n a
F鱈sica 2n de Batxillerat
2. 1 . - C o n c e p t e d e c a m p
2 . - C a m p g r a v i t a t o r i c r e a t p e r m a s s e s p u n t u a l s
3 . - R e p r e s e n t a c i 坦 d e l c a m p g r a v i t a t o r i
4 . - C a m p c r e a t p e r u n a d i s t r i b u c i 坦 c o n t 鱈 n u a d e
m a s s a
5 . - M o v i m e n t d e l s p l a n e t e s i d e l s s a t 竪 l 揃 l i t s
A d r e c e s w e b
B i b l i o g ra f i a
ndex
3. C a m p : r e g i 坦 d e l e s p a i e n q u 竪 s a p r e c i a l e f e c t e
d u n a p e r t o r b a c i 坦 .
S e g o n s e l t i p u s d e l a m a g n i t u d q u e d e f i n e i x l a
p e r t o r b a c i 坦 e l s c a m p s p o d e n s e r :
E s c a l a r s : l a m a g n i t u d q u e m e s u r a l a p e r t o r b a c i 坦
辿 s e s c a l a r . P e r e x e m p l e , u n c a m p d e t e m p e r a t u r e s
o d e p r e s s i o n s .
V e c t o r i a l s : l a m a g n i t u d q u e m e s u r a l a
p e r t o r b a c i 坦 辿 s v e c t o r i a l . P e r e x e m p l e , u n c a m p d e
f o r c e s g r a v i t a t 嘆 r i e s o e l 竪 c t r i q u e s .
Concepte de camp
4. C a m p g r a v i t a t o r i : r e g i 坦 d e l e s p a i e n q u 竪 s a p r e c i a l a
p e r t o r b a c i 坦 p r o v o c a d a p e r l a m a s s a d u n c o s .
P e r q u 竪 e l c a m p e s p o s i d e m a n i f e s t , c a l q u e s i n t r o d u e i x i
e n e l c a m p u n a l t r e c o s a m b m a s s a . L a i n t e r a c c i 坦 q u e
s o r i g i n a 辿 s u n a f o r 巽 a d a t r a c c i 坦 g r a v i t a t 嘆 r i a e n t r e e l
c o s q u e c r e a e l c a m p i e l q u e h i i n t r o d u 誰 m .
Camp gravitatori creat per
masses puntuals
5. C a m p c r e a t p e r u n c o s p u n t u a l d e m a s s a M
C a m p c r e a t p e r u n a d i s t r i b u c i 坦 d e m a s s e s p u n t u a l s
Intensitat del camp gravitatori en un punt
Intensitat del camp gravitatori en un punt, , 辿s la for巽a que el
cos M exerceix sobre el cos de massa unitat que es col揃loca en
aquest punt:
La intensitat del camp gravitatori en un punt 辿s la suma
vectorial dels camps que crearien cadascuna daquestes
masses si estigu辿ssim soles en aquesta regi坦 de lespai
(principi de superposici坦).
2
2
r
G
r
GMm
uF GMrg g u
m m r
駕
2
i
Total i ri
i i i
GM
g g u
r
6. E l t r e b a l l q u e f a n l e s f o r c e s d e l c a m p g r a v i t a t o r i d e p 竪 n d e l p u n t i n i c i a l i d e l
p u n t f i n a l d e l d e s p l a 巽 a m e n t , n o d e l a t r a j e c t 嘆 r i a
s e g u i d a . s u n c a m p c o n s e r v a t i u .
Treball causat per les forces gravitat嘆ries
El treball de les forces del camp gravitatori al llarg duna traject嘆ria
tancada 辿s zero.
Si rf < ri Wif > 0. El treball de les forces del camp gravitatori 辿s
positiu quan el cos que es despla巽a sacosta al que crea el camp.
Si rf > ri Wif < 0. El treball de les forces del camp gravitatori 辿s
negatiu quan el cos que es despla巽a sallunya del que crea el camp.
2 2
f f f
r
i f
i i i
GMm u GMm
W F dr dr dr
r r
駕
2
1 1 1f
i f
i
f i f i
GMm GMm
W GMm dr GMm
r r r r r
i f
f i
GMm GMm
W
r r
7. L e n e r g i a p o t e n c i a l g r a v i t a t 嘆 r i a , E p , : e n e r g i a q u e t 辿 u n a m a s s a p e l
f e t d e t r o b a r - s e s o t a l a i n f l u 竪 n c i a g r a v i t a t 嘆 r i a d u n a a l t r a o d u n e s
a l t r e s . T a m b 辿 e s d e f i n e i x c o m e l t r e b a l l q u e h a n d e f e r l e s f o r c e s d e l
c a m p p e r p o r t a r - l a d e s d a q u e s t p u n t f i n s a f o r a d e l c a m p a m b
v e l o c i t a t c o n s t a n t :
s u n a m a g n i t u d e s c a l a r . E n e l S I e s m e s u r a e n J o u l e s ( J ) .
Energia potencial gravitat嘆ria
conservativos p i f pf pi
f i
GMm GMm
W E W E E
r r
p
GMm
E
r
8. Q u a n t e n i m u n s i s t e m a f o r m a t p e r d u e s p a r t 鱈 c u l e s , e l v a l o r d e l a s e v a
e n e r g i a p o t e n c i a l 辿 s :
S i t e n i m u n s i s t e m a f o r m a t p e r n p a r t 鱈 c u l e s , l a s e v a e n e r g i a s e r l a
s u m a d e l e n e r g i a d e t o t e s l e s p a r e l l e s q u e h i p o d e m f o r m a r :
Energia potencial dun sistema de part鱈cules
1 2
1,2
1,2
p
GM M
E
r
1 2 1 3 2 3
t 1,2 1,3 2,3
1,2 1,3 2,3
p p p
GM M GM M GM M
E E E E
r r r
9. Q u a n u n c o s d e m a s s a m e s d e s p l a 巽 a d u n p u n t a u n a l t r e p u n t d e l
c a m p g r a v i t a t o r i c r e a t p e r u n a m a s s a M , l a s e v a e n e r g i a p o t e n c i a l
v a r i a s e g o n s l e x p r e s s i 坦 :
Difer竪ncia denergia potencial
pf pi
f i
GMm GMm
E E
r r
Si el cos de massa m sacosta al cos que crea el camp (ri > rf):
El treball que fan les forces del camp 辿s positiu.
El cos perd energia potencial.
Si el cos de massa m sallunya del cos que crea el camp (ri < rf):
El treball que fan les forces del camp 辿s negatiu. Cal una for巽a exterior perqu竪 es produeixi
el despla巽ament.
El cos guanya energia potencial.
10. Q u a n u n s i s t e m a e s t s o t m 竪 s n o m 辿 s a l a c c i 坦 d e f o r c e s c o n s e r v a t i v e s ,
l a s e v a e n e r g i a m e c n i c a e s c o n s e r v a :
Conservaci坦 de lenergia mecnica
en un camp gravitatori
M cf pf Ci piE E E E E
11. P o t e n c i a l e n u n p u n t ( V ) 辿 s l e n e r g i a p o t e n c i a l q u e t 辿 l a u n i t a t d e
m a s s a q u a n e s c o l 揃 l o c a e n a q u e s t p u n t :
E l p o t e n c i a l 辿 s u n a m a g n i t u d e s c a l a r j a q u e e n c a d a p u n t d e l c a m p ,
e l p o t e n c i a l t 辿 u n v a l o r . L a s e v a u n i t a t e n e l s i s t e m a i n t e r n a c i o n a l e s
J / k g .
E l p o t e n c i a l a l i n f i n i t ( f o r a d e l c a m p ) 辿 s z e r o , i e n q u a l s e v o l a l t r e
p u n t d e l c a m p 辿 s n e g a t i u , j a q u e l a f o r 巽 a g r a v i t a t 嘆 r i a 辿 s a t r a c t i v a .
Potencial gravitatori en un punt
p
GMm
E GMrV
m m r
12. Q u a n e n u n a r e g i 坦 d e t e r m i n a d a d e l e s p a i s a p r e c i a l e f e c t e d e
d i v e r s o s p u n t s m a t e r i a l s d e m a s s a M 1 , M 2 , M 3 , e t c . , e l p o t e n c i a l
g r a v i t a t o r i e n u n p u n t P 辿 s l a s u m a d e l s p o t e n c i a l s q u e c r e a r i e n
c a d a s c u n d a q u e s t s c o s s o s s i e s t i g u e s s i n t o t s s o l s e n a q u e s t a r e g i 坦 d e
l e s p a i ( p r i n c i p i d e s u p e r p o s i c i 坦 ) .
C o m q u e e l p o t e n c i a l 辿 s u n e s c a l a r , e l p o t e n c i a l t o t a l 辿 s l a s u m a
e s c a l a r d e l s p o t e n c i a l s c r e a t s p e r c a d a p u n t m a t e r i a l :
Potencial en un punt causat per una distribuci坦
de masses puntuals
i
Total i
i i i
GM
V V
r
13. C o n s i d e r a n t d o s p u n t s d u n c a m p g r a v i t a t o r i , i i f , l a d i f e r 竪 n c i a d e
p o t e n c i a l e n t r e t o t s d o s , v f v i , 辿 s :
L a d i f e r 竪 n c i a d e p o t e n c i a l g r a v i t a t o r i e n t r e d o s p u n t s 辿 s i g u a l i d e
s i g n e c o n t r a r i a l t r e b a l l q u e f a n l e s f o r c e s d e l c a m p p e r t r a s l l a d a r l a
u n i t a t d e m a s s a e n t r e a q u e s t s p u n t s :
S i r i > r f , V < 0 . E n a c o s t a r - s e a l c o s q u e c r e a e l c a m p , e l
p o t e n c i a l d i s m i n u e i x .
S i r i < r f , V > 0 . E n a l l u n y a r - s e d e l c o s q u e c r e a e l c a m p , e l
p o t e n c i a l a u g m e n t a .
Difer竪ncia de potencial
f i
f i
GM GM
V V V V
r r
i fW
V
m
14. E l c a m p g r a v i t a t o r i e s p o t r e p r e s e n t a r g r f i c a m e n t
d e d u e s m a n e r e s :
L 鱈 n i e s d e c a m p .
S u p e r f 鱈 c i e s e q u i p o t e n c i a l s .
Representaci坦 del camp
gravitatori
15. L e s l 鱈 n i e s d e c a m p s 坦 n t a n g e n t s a l v e c t o r i n t e n s i t a t d e c a m p e n c a d a p u n t .
E s d i b u i x e n d e m a n e r a q u e e l n o m b r e d e l 鱈 n i e s d e c a m p q u e t r a v e s s e n u n a
u n i t a t d e s u p e r f 鱈 c i e p e r p e n d i c u l a r a l e s l 鱈 n i e s 辿 s p r o p o r c i o n a l a l a
i n t e n s i t a t d e l c a m p e n e l p u n t .
S i e l c a m p 辿 s c r e a t p e r u n a 炭 n i c a m a s s a p u n t u a l , l e s l 鱈 n i e s d e
c a m p t e n e n d i r e c c i 坦 r a d i a l i s e n t i t c a p a l c o s q u e c r e a e l c a m p .
E n u n c a m p c r e a t p e r d u e s m a s s e s , a l a z o n a i n t e r m 竪 d i a l e s
l 鱈 n i e s e s d e f o r m e n . H i h a u n p u n t e n t r e l e s m a s s e s
o n e l c a m p 辿 s n u l : s i l e s m a s s e s s 坦 n i g u a l s , e l p u n t
e s t r o b a a l m i g d e l e s d u e s m a s s e s , p e r 嘆 s i u n a d e
l e s m a s s e s 辿 s m 辿 s g r a n q u e l a l t r a , e l p u n t e s t m 辿 s
p r 嘆 x i m a l c o s d e m a s s a m e n o r .
L e s l 鱈 n i e s d e c a m p n o e s p o d e n e n c r e u a r j a q u e s i d u e s
l 鱈 n i e s d e c a m p s e n c r e u e s s i n , e n e l p u n t d e t a l l h i h a u r i a
d o s v a l o r s d i n t e n s i t a t d e l c a m p g r a v i t a t o r i ,
L鱈nies de camp
16. S u p e r f 鱈 c i e s e q u i p o t e n c i a l s : r e g i o n s d e l e s p a i e n q u 竪 e l p o t e n c i a l
g r a v i t a t o r i t 辿 e l m a t e i x v a l o r . P r t a n t , e l t r e b a l l n e c e s s a r i p e r d e s p l a 巽 a r
u n a m a s s a d u n p u n t d u n a s u p e r f 鱈 c i e e q u i p o t e n c i a l a u n a l t r e 辿 s n u l :
W i f = - ( E p f - E p i ) = - ( m V f - m V i ) = 0
L e s s u p e r f 鱈 c i e s e q u i p o t e n c i a l s n o e s p o d e n t a l l a r . S i h o f e s s i n , e l p u n t
d e t a l l h a u r i a d e t e n i r d o s v a l o r s d e p o t e n c i a l .
L e s s u p e r f 鱈 c i e s e q u i p o t e n c i a l s s 坦 n p e r p e n d i c u l a r s
a l e s l 鱈 n i e s d e c a m p .
Superf鱈cies equipotencials
17. C a m p g r a v i t a t o r i t e r r e s t r e :
P e r a u n p u n t i n t e r i o r a l a T e r r a ( r < R ) :
D e n s i t a t , = M / V
V o l u m d u n a e s f e r a ,
i
P e r t a n t :
P e r a u n p u n t e x t e r i o r a l a T e r r a ( r > R ) :
Camp creat per una distribuci坦
cont鱈nua de massa
T
2
'
r
M
g G u
r
居居 居居
18. 1 . - S a t 竪 l 揃 l i t s q u e o r b i t e n l a t e r r a
V e l o c i t a t o r b i t a l
P e r 鱈 o d e d e r e v o l u c i 坦
S a t 竪 l 揃 l i t s g e o e s t a c i o n a r i s
2 . - E n e r g i a d e l s s a t 竪 l 揃 l i t s
V e l o c i t a t d e l l a n 巽 a m e n t p e r p o s a r e n 嘆 r b i t a u n
s a t 竪 l 揃 l i t .
E n e r g i a n e c e s s r i a p e r e n v i a r u n s a t 竪 l 揃 l i t d u n a
嘆 r b i t a a u n a a l t r a
V e l o c i t a t d e s c a p a m e n t
Moviment dels planetes i dels
sat竪l揃lits
19. V e l o c i t a t o r b i t a l
S u p o s a n t q u e l 嘆 r b i t a 辿 s c i r c u l a r , q u a n u n s a t 竪 l 揃 l i t g i r a a u n a
a l t u r a h s o b r e l a s u p e r f 鱈 c i e d e l a T e r r a ,
v : v e l o c i t a t o r b i t a l d e l c o s q u e g i r a .
M T : m a s s a d e l a T e r r a
.
R T : r a d i d e l a T e r r a ( 6 . 3 7 0 k m ) .
r : r a d i d e l 嘆 r b i t a q u e d e s c r i u , r = R T + h ,
o n h 辿 s l a l t u r a a l a q u a l e s t s i t u a t p e r s o b r e d e l a
s u p e r f 鱈 c i e d e l a t e r r a .
Sat竪l揃lits que orbiten la terra
2
2
T s s
C G
M m m v
F F G
r r
T T
T
G M G M
v
r R h
20. P e r 鱈 o d e d e r e v o l u c i 坦
E l p e r 鱈 o d e d u n s a t 竪 l 揃 l i t q u e o r b i t a a u n a a l t u r a h 辿 s :
Sat竪l揃lits que orbiten la terra
2
2
2
s sT T
C G
M m Mm v
F F G v G
r rr
2
2 2 2 2
2
2 4; TGM
v r v r r
T rT
2 32 3 4 ( )4 T
T T
R hrT
G M G M
21. S a t 竪 l 揃 l i t g e o e s t a c i o n a r i o g e o s 鱈 n c r o n : o r b i t e n a l v o l t a n t d e l a
T e r r a m a n t e n i n t - s e s e m p r e e n u n m a t e i x p u n t ; p e r t a n t , e l s e u
p e r 鱈 o d e d e r e v o l u c i 坦 h a d e s e r e l m a t e i x q u e e l d e l a T e r r a ( 2 3 , 9 8 h ) i
h a d o r b i t a r e n e l p l a d e l e q u a d o r t e r r e s t r e .
S u s t i t u i n t l e s d a d e s G , M T i T = 2 3 , 9 8 h , o b t e n i m : r =
A l t u r a a l a q u a l o r b i t a s o b r e l a s u p e r f 鱈 c i e t e r r e s t r e :
Sat竪l揃lits que orbiten la terra
22 3
3
2
4
4
T
T
T G MrT r
G M
22. E n e r g i a m e c n i c a :
E n u n s a t 竪 l 揃 l i t e n 嘆 r b i t a :
A i x 嘆 e n s p e r m e t o b t e n i r u n a f o r m a m 辿 s s i m p l i f i c a d a p e r a
l a s e v a E M :
Energia dels sat竪l揃lits
21
2pM C
GMmE E E m v
r
G CF F
2
2
2
M m v M mG m G m v
r rr
1 1
2 2M M
GMm GMm GMmE E
r r r
23. V e l o c i t a t d e l l a n 巽 a m e n t p e r p o s a r e n 嘆 r b i t a u n s a t 竪 l 揃 l i t
A p l i c a c i 坦 d e l p r i n c i p i d e c o n s e r v a c i 坦 d e l e n e r g i a :
E n l a p o s i c i 坦 2 :
R e l a c i o n a n t l e s e q u a c i o n s a n t e r i o r s :
P e r t a n t , l a v e l o c i t a t d e l l a n 巽 a m e n t n e c e s s r i a p e r p o s a r u n s a t 竪 l 揃 l i t e n
嘆 r b i t a 辿 s :
Energia dels sat竪l揃lits
1 2 1 1 2 2M M C p C pE E E E E E
2 2
1 2
1 1
2 2T
GMm GMm
mv mv
R r
2
22
22C G
m vM m GM
F F G v
r r r
2 2
1 1
1 1 1
2
2 2 2T T
GM GM GM GM GM
v v
R r r R r
1
1 1
2
2T
v GM
R r
24. E n e r g i a n e c e s s r i a p e r e n v i a r u n s a t 竪 l 揃 l i t d u n a 嘆 r b i t a a u n a
a l t r a
E n e r g i a d u n s a t 竪 l 揃 l i t e n u n a 嘆 r b i t a :
L e n e r g i a n e c e s s r i a p e r p a s s a r d u n a 嘆 r b i t a d e r a d i r 1 a u n a a l t r a
d e r a d i r 2 , s i r 1 < r 2 辿 s :
Energia dels sat竪l揃lits
21 1
2 2
M C p
GMm GMm
E E E m v
r r
2 1
2 1
1 1
2 2
GMm GMm
E E E
r r
1 2
1 1 1
2
E GMm
r r
25. V e l o c i t a t d e s c a p a m e n t
V e l o c i t a t d ' e s c a p a m e n t 辿 s l a m 鱈 n i m a v e l o c i t a t a m b q u e s h a d e l l a n 巽 a r u n
c o s v e r t i c a l m e n t c a p a m u n t , d e s d e l a s u p e r f 鱈 c i e d ' u n p l a n e t a , p e r t a l q u e
e s c a p i d e l ' a t r a c c i 坦 g r a v i t a t 嘆 r i a d e l p l a n e t a .
E n e r g i a t o t a l d u n s a t 竪 l 揃 l i t q u e e s t o r b i t a n t :
E l s a t 竪 l 揃 l i t s u r t d e l c a m p g r a v i t a t o r i q u a n r , e l q u e f a q u e E M = 0 .
E n e l p u n t d e l l a n 巽 a m e n t c a l d r c o m u n i c a r - l i u n a v e l o c i t a t q u e f a c i q u e :
R e o r d e n a n t l e x p r e s i 坦 a n t e r i o r :
Energia dels sat竪l揃lits
M
1
2
GMm
E
r
21
0
2
M C p
GMm
E E E m v
r
escapament 2
GM
v
r
26. Adreces web
1. RBITES DE PROJECTILS I SATL揃LITS
http://www.colegioheidelberg.com/deps/fisicaq
uimica/applets/Orbitas%20de%20Proyectiles%2
0y%20satelites/projectileOrbit.html
Inclou un interessant applet que permet simular el
llan巽ament tant de projectils com de sat竪l揃lits des de la
superf鱈cie de la Terra.
2. CAMPS VECTORIALS
http://www.falstad.com/vector3d
Permet visualitzar camps vectorials de caracter鱈stiques
diferents: lineals, radials, etc.
3. LA CONSTANT DE LA GRAVITACI UNIVERSAL
http://www.sc.ehu.es/sbweb/fisica/celeste/
constante/constante.htm
En aquesta pgina es descriu amb detall lexperi竪ncia
realitzada per Cavendish i es proposa una experi竪ncia
virtual amb l'objectiu de determinar el valor de G.
4. GRAVITACI
http://www.xtec.es/~ocasella/applets/gravita/
alumne2.html
Permet col揃locar un o diversos planetes i visualitzar-ne
les l鱈nies de for巽a, les superf鱈cies equipotencials en dues i
en tres dimensions.
5. RBITES DE TRANSFERNCIA
http://www.sc.ehu.es/sbweb/fisica/celeste/
kepler3/kepler3.html
Les 嘆rbites de transfer竪ncia de Hohman es fan servir per
llan巽ar sondes i naus espacials des dun planeta cap a un
altre. Lobjectiu 辿s triar el moment del llan巽ament i la
velocitat per estalviar combustible.
6. LLANAMENT DE SATL揃LITS
http://www.mcasco.com/p1aso.html
Inclou un applet per situar un sat竪l揃lit sobre la Terra i
llan巽arlo amb una velocitat inicial.
27. B a t a l l a G a r c 鱈 a , C . ; V i d a l F e r n 叩 n d e z , M . C . ( 2 0 0 8 ) .
F 鱈 s i c a 2 . B a r c e l o n a : G r u p P r o m o t o r S a n t i l l a n a
Bibliografia